The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analys...The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analysis platform,including online activation and offiine low background High-Purity Germanium(HPGe)detector measurement systems,as an alternative to direct measurement methods and low-throughput cross-tests.Owing to short half-lives spanning from minutes to days and characteristics such as ease of fabrication,cost-effectiveness,and stability,gold(~(197)Au)and zinc(~(64)Zn)emerge as favorable activation targets for theγ-ray beam flux monitor.Notably,they exhibit a multitude of advantages in monitoring theγ-ray beam flux,typically 10^(5)photons/s,with energies of 13.16 Me V to 19.08 Me V using a 3 mm coarse collimator.In particular,high-fluxγ-ray beam experiments can be conducted effectively.展开更多
基金supported by National Key Research and Development Program of China(Nos.2022YFA1602404 and2023YFA1606901)the National Natural Science Foundation of China(Nos.12275338,12388102,and U2441221)the Key Laboratory of Nuclear Data Foundation(JCKY2022201C152)。
文摘The Shanghai Laser Electron Gamma Source(SLEGS)delivers quasi-monochromatic,continuously energy-tunableγ-ray beams.Based on a Photon Activation Analysis(PAA)method,SLEGS built and developed a photon activation analysis platform,including online activation and offiine low background High-Purity Germanium(HPGe)detector measurement systems,as an alternative to direct measurement methods and low-throughput cross-tests.Owing to short half-lives spanning from minutes to days and characteristics such as ease of fabrication,cost-effectiveness,and stability,gold(~(197)Au)and zinc(~(64)Zn)emerge as favorable activation targets for theγ-ray beam flux monitor.Notably,they exhibit a multitude of advantages in monitoring theγ-ray beam flux,typically 10^(5)photons/s,with energies of 13.16 Me V to 19.08 Me V using a 3 mm coarse collimator.In particular,high-fluxγ-ray beam experiments can be conducted effectively.