期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
Improvement Detecting Method of Optical Axes Parallelism of Shipboard Photoelectrical Theodolite Based on Image Processing 被引量:3
1
作者 Huihui Zou 《Optics and Photonics Journal》 2017年第8期127-133,共7页
An improvement detecting method was proposed according to the disadvantages of testing method of optical axes parallelism of shipboard photoelectrical theodolite (short for theodolite) based on image processing. Point... An improvement detecting method was proposed according to the disadvantages of testing method of optical axes parallelism of shipboard photoelectrical theodolite (short for theodolite) based on image processing. Pointolite replaced 0.2'' collimator to reduce the errors of crosshair images processing and improve the quality of image. What’s more, the high quality images could help to optimize the image processing method and the testing accuracy. The errors between the trial results interpreted by software and the results tested in dock were less than 10'', which indicated the improve method had some actual application values. 展开更多
关键词 IMPROVEMENT Detecting Method SHIPBOARD photoelectrical THEODOLITE OPTICAL Axes PARALLELISM Image Processing
暂未订购
Significant photoelectrical response of epitaxial graphene grown on Si-terminated 6H-SiC
2
作者 郝昕 陈远富 +3 位作者 王泽高 刘竞博 贺加瑞 李言荣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期37-40,共4页
Photoelectrical response characteristics of epitaxial graphene (EG) films on Si- and C-terminated 6H-SiC, and transferred chemical vapor deposition (CVD) graphene films on Si-terminated 6H-SiC have been investigat... Photoelectrical response characteristics of epitaxial graphene (EG) films on Si- and C-terminated 6H-SiC, and transferred chemical vapor deposition (CVD) graphene films on Si-terminated 6H-SiC have been investigated. The results show that upon illumination by a xenon lamp, the photocurrent of EG grown on Si-terminated SiC significantly increases by 147.6%, while the photocurrents of EG grown on C-terminated SiC, and transferred CVD graphene on Si-terminated SiC slightly decrease by 0.5% and 2.7%, respectively. The interfacial buffer layer between EG and Si-terminated 6H-SiC is responsible for the significant photoelectrical response of EG. Its strong photoelectrical response makes it promising for optoelectronic applications. 展开更多
关键词 epitaxial graphene photoelectrical response oxygen absorption
原文传递
Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction 被引量:2
3
作者 Mengyu Yan Xunbiao Zhou +7 位作者 Xuelei Pan dunhui Wang Lixue Xia Kesong Yu Xiaobin Liao Xu Xu Liang He Liqiang Mai 《Nano Research》 SCIE EI CAS CSCD 2018年第6期3205-3212,共8页
Molybdenum disulfide (MoS2) is an earth-abundant and low-cost hydrogen evolving electrocatalyst with the potential to replace traditional noble metal catalysts. The catalytic activity can be significantly enhanced a... Molybdenum disulfide (MoS2) is an earth-abundant and low-cost hydrogen evolving electrocatalyst with the potential to replace traditional noble metal catalysts. The catalytic activity can be significantly enhanced after modification due to higher conductivity and enriched active sites. However, the underlying mechanism of the influence of the resistance of electrode material and contact resistance on the hydrogen evolution reaction (HER) process is unclear. Herein, we present a systematic study to understand the relationship between HER performance and electrode conductivity, which is bi-tuned through the electric field and photoelectrical effect. It was found that the onset overpotential consistently decreased with the increase of electrode conductivity. In addition, the reduction of the contact resistance resulted in a quicker electrochemical reaction process than enhancing the conductivity of the MoS2 nanosheet. An onset overpotential of 89 mV was achieved under 60 mW/cm^2 sunlight illumination (0.6 sun) and a simultaneous gate voltage of 3 V. These physical strategies can also be applied to other catalysts, and offer new directions to improve HER catalytic performance of semiconductor materials. 展开更多
关键词 ELECTROCHEMICAL DEVICE hydrogen evolution reaction photoelectrical effect field effect
原文传递
Printed thin film transistors with 10^(8)on/off ratios and photoelectrical synergistic characteristics using isoindigo-based polymers-enriched(9,8)carbon nanotubes 被引量:2
4
作者 Wenjing Xu Min Li +6 位作者 Masayoshi Tange Liqiang Li Juncai Hou Jun Ye Li Wei Yuan Chen Jianwen Zhao 《Nano Research》 SCIE EI CSCD 2022年第6期5517-5526,共10页
Monochiral single-walled carbon nanotubes(SWCNTs)can enable high-performance carbon-based electronic devices and integrated circuits.However,their fabrication often requires complex SWCNT purification and enrichment.H... Monochiral single-walled carbon nanotubes(SWCNTs)can enable high-performance carbon-based electronic devices and integrated circuits.However,their fabrication often requires complex SWCNT purification and enrichment.Herein,we showed that isoindigo-based polymer derivatives(PDPPIID and PFIID)directly enriched(9,8)nanotubes from as-synthesized SWCNT powders selectively and efficiently to yield high concentration(9,8)nanotube inks.The selective wrapping mechanism was elucidated by classical full-atomistic molecular dynamic(MD)simulations.Thin-film transistors(TFTs)were fabricated by depositing the SWCNT ink into device channels using aerosol jet printing.TFT performance was strongly influenced by polymer residues,the deposition condition(humidity),and ink concentration.Optimized TFTs showed excellent device-to-device uniformity with 108 on/off ratios.Further,optoelectronic transistors were fabricated,and their photoelectrical neuromorphic characteristics,storage,memory,and logic functions were characterized under the pulsed light and voltage stimulations,demonstrating excellent application potentials. 展开更多
关键词 monochiral carbon nanotube polymer wrapping printed thin-film transistor photoelectrical synergistic molecular dynamic simulation
原文传递
Space solar cells with down-conversion quantum dots
5
作者 CHEN Zijian ZHONG Yanhua +3 位作者 SI Meng WANG Jiayi LI Heng LI Wenhua 《Optoelectronics Letters》 2025年第7期413-418,共6页
Quantum dots(QDs)can modulate the solar spectrum through the down-conversion mechanism to better match the spectral response of solar cells.Following previous work,this paper first tested the response of QD solar cell... Quantum dots(QDs)can modulate the solar spectrum through the down-conversion mechanism to better match the spectral response of solar cells.Following previous work,this paper first tested the response of QD solar cells to specific monochromatic light,and found that QDs can effectively improve the photoelectric conversion efficiency(PCE)in the ultraviolet(UV)band by comparison.Then the photoelectric properties of the QD solar cells are tested under the air-mass 1.5(AM1.5)and air-mass 0(AM0)spectra.The experimental results show that because the absorption band of QDs is in the UV region,the space solar cells in the AM0 spectrum can obtain better PCE after coating QDs.The research results show the technical route of space solar cells with down-conversion mechanism,and put forward an important direction for the application of space solar photovoltaic(PV)technology,and have a good application prospect. 展开更多
关键词 photoelectric conversion efficiency photoelectric properties qd solar cells solar cellsfollowing down conversion quantum dots photoelectric conversion efficiency pce modulate solar spectrum quantum dots qds can
原文传递
Low Energy Consumption Photoelectric Memristors with Multi-Level Linear Conductance Modulation in Artificial Visual Systems Application
6
作者 Zhenyu Zhou Zixuan Zhang +6 位作者 Pengfei Li Zhiyuan Guan Yuchen Li Xiaoxu Li Shan Xu Jianhui Zhao Xiaobing Yan 《Nano-Micro Letters》 2025年第12期468-480,共13页
Optical synapses have an ability to perceive and remember visual information,making them expected to provide more intelligent and efficient visual solutions for humans.As a new type of artificial visual sensory device... Optical synapses have an ability to perceive and remember visual information,making them expected to provide more intelligent and efficient visual solutions for humans.As a new type of artificial visual sensory devices,photoelectric memristors can fully simulate synaptic performance and have great prospects in the development of biological vision.However,due to the urgent problems of nonlinear conductance and high-energy consumption,its further application in high-precision control scenarios and integration is hindered.In this work,we report an optoelectronic memristor with a structure of TiN/CeO_(2)/ZnO/ITO/Mica,which can achieve minimal energy consumption(187 pJ)at a single pulse(0.5 V,5 ms).Under the stimulation of continuous pulses,linearity can be achieved up to 99.6%.In addition,the device has a variety of synaptic functions under the combined action of photoelectric,which can be used for advanced vision.By utilizing its typical long-term memory characteristics,we achieved image recognition and long-term memory in a 3×3 synaptic array and further achieved female facial feature extraction behavior with an activation rate of over 92%.Moreover,we also use the linear response characteristic of the device to design and implement the night meeting behavior of autonomous vehicles based on the hardware platform.This work highlights the potential of photoelectric memristors for advancing neuromorphic vision systems,offering a new direction for bionic eyes and visual automation technology. 展开更多
关键词 Photoelectric memristors Optical synapses Low energy Linear response Intelligent drive
在线阅读 下载PDF
Revealing the Role of Hydrogen in Highly Efficient Ag-Substituted CZTSSe Photovoltaic Devices:Photoelectric Properties Modulation and Defect Passivation
7
作者 Xiaoyue Zhao Jingru Li +6 位作者 Chenyang Hu Yafang Qi Zhengji Zhou Dongxing Kou Wenhui Zhou Shengjie Yuan Sixin Wu 《Nano-Micro Letters》 2025年第4期166-180,共15页
The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enh... The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enhancement of CZTSSe devices.Although the incorporation of Ag in CZTSSe can effectively suppress the SnZn-related defects and significantly improve the resulting cell performance,an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution.Herein,this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress SnZn defects for achieving efficient CZTSSe devices.In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution.Importantly,the C=O and O-H functional groups induced by hydrogen incorporation,serving as an electron donor,can interact with under-coordinated cations in CZTSSe material,effectively passivating the SnZn-related defects.Consequently,the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination,prolongs minority carrier lifetime,and thus yields a champion efficiency of 14.74%,showing its promising application in kesterite-based CZTSSe devices. 展开更多
关键词 CZTSSe Ag/H co-doping Photoelectric properties modulation Defect passivation Non-radiative recombination
在线阅读 下载PDF
A novel Dyson-Harrop CubeSat for harvesting energy in solar wind
8
作者 Fuzhen YAO Zheng H.ZHU 《Chinese Journal of Aeronautics》 2025年第6期166-173,共8页
This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy ... This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy based on the photoelectric effect, which has the potential to achieve significantly higher efficiency than current photovoltaic technology. The proposed CubeSat system consists of three main components: a tether unit, an energy harvesting unit, and the central 3U CubeSat body. The tether unit generates a cylindrical magnetic field along its main tether,effectively concentrating electrons from the solar wind to the energy harvesting unit. The energy harvesting unit includes a spherical electron receiver, functioning as a capacitor, which attracts electrons from the solar wind, as well as an annular flat solar sail that captures photons in the solar wind to eject electrons via the photoelectric effect, resulting in an electric current in the system.The Dyson-Harrop CubeSat is shown to be highly efficient as an energy-generation system, producing approximately 1 kW of power by a 3U CubeSat. This energy can be transmitted via microwave beams to other spacecraft or ground stations on the Earth. It is important to note that this estimation is based on first-principle estimations, and thorough theoretical analysis and experimental validation are required to confirm the feasibility of the concept. 展开更多
关键词 Dyson sphere Solar wind Space powergeneration Photoelectric effect CUBESAT Tethered satellite formation Microwave power transmission
原文传递
Polyethyleneimine modified Au core Rh shell nanodendrites for light-promoted nitrite reduction reaction at low concentration
9
作者 Zhe Wang Xiaohui Wang +6 位作者 Mengzhu Yun Xinyao Shi Xue Xiao Yan Liu Fan Yang Yucheng Jiang Yu Chen 《Journal of Energy Chemistry》 2025年第4期400-407,共8页
Ammonia(NH_(3))is a fundamental chemical in agriculture and an ideal hydrogen carrier.Consequently,NH_(3)synthesis strategies with high efficiency,energy conservation,environmental friendliness,and sustainability are ... Ammonia(NH_(3))is a fundamental chemical in agriculture and an ideal hydrogen carrier.Consequently,NH_(3)synthesis strategies with high efficiency,energy conservation,environmental friendliness,and sustainability are desired eminently.The nitrite(NO_(2)^(-))reduction reaction(NO_(2-)RR)to NH_(3)offers a feasibly low-energy consumption and continuable approach to replace industrial NH_(3)synthesis.Herein,polyethyleneimine(PEI)modified Au core Rh shell nanodendrites(Au@Rh-NDs)nanohybrid(Au@Rh-NDs/PEI)with branched structure is synthesized,which achieves the high NH_(3)yield(1.68 mg h^(-1)mg_(cat)^(-1))and Faradaic efficiency(FE)of 95.86%for NO_(2)^(-)-RR at-0.39 V potential in neutral electrolyte.Particularly,the introduction of PEI significantly enhances the electroactivity of Au@Rh-NDs at low concentration of 1 mM NaNO_(2),which originates from the enrichment function of PEI for NO_(2)^(-)-ion.In addition,the Au basement permits the sustainable solar power to expedite the NO_(2)^(-)-RR at Au@Rh-NDs/PEI owing to the localized surface plasmon resonance(LSPR)of the Au core substrate.This work may provide an admissible tactic to build excellent catalysts on account of organic molecule-mediated interfacial engineering in a variety of fields of catalysis and electrocatalysis. 展开更多
关键词 AMMONIA Shell-core structure Interfacial engineering Nitrite reduction reaction Photothermal and photoelectric effect
在线阅读 下载PDF
A position distribution measurement method and mathematical modeling of two projectiles simultaneous hitting target based on three photoelectric encoder detection screens
10
作者 Hanshan Li Zixuan Cao Xiaoqian Zhang 《Defence Technology(防务技术)》 2025年第11期151-168,共18页
To solve the problem of identification and measurement of two projectiles hitting the target at the same time,this paper proposes a projectile coordinate test method combining three photoelectric encoder detection scr... To solve the problem of identification and measurement of two projectiles hitting the target at the same time,this paper proposes a projectile coordinate test method combining three photoelectric encoder detection screens,and establishes a coordinate calculation model for two projectiles to reach the same detection screen at the same time.The design method of three photoelectric encoder detection screens and the position coordinate recognition algorithm of the blocked array photoelectric detector when projectile passing through the photoelectric encoder detection screen are studied.Using the screen projection method,the intersected linear equation of the projectile and the line laser with the main detection screen as the core coordinate plane is established,and the projectile coordinate data set formed by any two photoelectric encoder detection screens is constructed.The principle of minimum error of coordinate data set is used to determine the coordinates of two projectiles hitting the target at the same time.The rationality and feasibility of the proposed test method are verified by experiments and comparative tests. 展开更多
关键词 Photoelectric encoder detection screen PROJECTILE Matching and recognition Linear laser Position distribution
在线阅读 下载PDF
Ni_(3)S_(2)@MoS_(2)nano-arrays with Mo atomic site as efficient photoanode materials for photoelectrocatalytic inactivation of antibiotic-resistance bacteria and degradation of antibiotic-resistance gene
11
作者 Jing-Ting Yang Tao Xu +5 位作者 Pan-Di Lv Yue Su Jing Xie Zhen-Xing Li Huan Zhou Peng-Peng Chen 《Rare Metals》 2025年第1期358-372,共15页
In this paper,hierarchical ultra-thin core/shell Ni_(3)S_(2)@MoS_(2)nano-arrays with Mo atomic site grown on nickel foam(Ni_(3)S_(2)@MoS_(2)-NF)were designed and synthesized through the hydrothermal method.When they a... In this paper,hierarchical ultra-thin core/shell Ni_(3)S_(2)@MoS_(2)nano-arrays with Mo atomic site grown on nickel foam(Ni_(3)S_(2)@MoS_(2)-NF)were designed and synthesized through the hydrothermal method.When they are tested as photoelectric catalysis electrodes to anti-bacteria,the Ni_(3)S_(2)@MoS_(2)within core/shell structure exhibits about several times higher rate capability and outstanding cycling stability than traditional photocatalysts.After reacting with water and oxygen,large numbers of extracellular reactive oxygen species on the surface of Ni_(3)S_(2)@MoS_(2)are observed.These reactive oxygen species can penetrate bacterial cells,resulting in a rapid rise of intracellular reactive oxygen species in a short time.The integrity of the bacterial cell membrane is also destroyed,which can be observed in both scanning and transmission images.The synthetic primer was used to specifically label the gene fragment with antibiotic resistance,which was oxidized and eliminated after the photoelectron catalysis(PEC)reaction,proving that this material for PEC antibacterial can not only kill bacteria.Successful elimination of antibiotic-resistance gene fragments can also be achieved. 展开更多
关键词 Photoelectric catalysis Antibiotic-resistance bacteria Visible light Antibiotic-resistance gene Reactive oxygen species Mo atomic site
原文传递
Marked improvement of photoelectric response performance based on CNTF/AgNSF/PZT pyroelectric photodetector: A comprehensive study
12
作者 Bocheng Lv Xiyu Hong +2 位作者 Jinquan Wei Mohsin Rafique Zhe Li 《Chinese Physics B》 2025年第6期597-602,共6页
Pyroelectric materials, known for their ability to convert thermal energy into electrical signals, have garnered significant attention due to their wide-ranging applications. In this work, we report the fabrication of... Pyroelectric materials, known for their ability to convert thermal energy into electrical signals, have garnered significant attention due to their wide-ranging applications. In this work, we report the fabrication of high-performance pyroelectric photodetectors utilizing a heterostructure of carbon nanotube film(CNTF) and silver nanostructure film(Ag NSF)on a lead zirconate titanate(PZT) substrate. The resulting device exhibits an impressive broad-spectrum photoelectric response, covering wavelengths from ultraviolet to near-infrared, with a responsivity range of 0.49 V·W^(-1)–1.01 V·W^(-1) and a fast response time of 8 ms–40 ms. The enhanced photoelectric properties of the CNTF/Ag NSF/PZT composite suggest its strong potential for applications in advanced broadband photodetectors, positioning this material system as a promising candidate for next-generation optoelectronic devices. 展开更多
关键词 photoelectric response pyroelectric material composite
原文传递
Thermionic Emission Dynamics of Ultrafast Electron Sources
13
作者 Chao-Yu Guo Hao-Tian Zheng +7 位作者 Gui-Lin Zhu Yu-Qing Huang Qin Wang Da Wu Zheng-Pu Zhao Chu-Wei Zhang Jing-Tao Lu Ying Jiang 《Chinese Physics Letters》 2025年第5期215-219,共5页
Ultrafast electron sources, which enable high spatiotemporal resolution in time-resolved electron microscopy and scanning probe microscopy, are receiving increased attention. The most widely used method for achieving ... Ultrafast electron sources, which enable high spatiotemporal resolution in time-resolved electron microscopy and scanning probe microscopy, are receiving increased attention. The most widely used method for achieving ultrafast electron sources involves irradiating metal tips by ultrashort laser pulses, causing electron beam emission via the photoelectric effect [including photon-driven(quantum) or field-driven(classical) emission]. However, the thermionic electrons emission process due to the heating effect of ultrashort lasers, particularly its dynamic aspects, has rarely been addressed in previous studies. In this paper, we improved the signal-to-noise ratio of a two-pulse correlation measurement on the tip electron emission by nearly two orders of magnitude using a delay time modulation method. This allowed us to obtain information on the temperature evolution of hot electrons and phonons in a non-equilibrium state, and to extract characteristic time scales for electron-phonon and phonon-phonon scattering. Our findings indicate that the thermionic electrons emission, unlike the instantaneous photoelectric effect, causes electron emission to lag behind the laser pulse by tens of picoseconds, thus significantly affecting the detection of ultrafast dynamics of samples. Furthermore, such a lagging effect was found to be sensitive to the local structure of the metal tip, offering new insights into the improved design of ultrafast electron sources. 展开更多
关键词 thermionic emission ultrafast electron sources scanning probe microscopy heating effect time resolved electron microscopy irradiating metal tips ultrashort laser pulses photoelectric effect thermionic electrons
原文传递
Efficient surface and interface passivation for perovskite submodules
14
作者 Zhi-Ying Zhao Liang Chen Can-Zhong Lu 《Chinese Journal of Structural Chemistry》 2025年第6期1-2,共2页
Organic-inorganic hybrid metal halide perovskite solar cells(PSCs)have attracted much attention due to their high photoelectric conversion efficiency(PCE)and low cost.The certificated PCE of small active area(below 0.... Organic-inorganic hybrid metal halide perovskite solar cells(PSCs)have attracted much attention due to their high photoelectric conversion efficiency(PCE)and low cost.The certificated PCE of small active area(below 0.1 cm^(2))device has reached 26.7%[1].However,when considering the scaled-up commercialization of PSCs,an obvious efficiency drop exists for the translation to large-area perovskite submodules(PSMs)with areas more than 200 cm^(2),thus limiting the practical commercialization[2].The major PCE gap between small area cells and large area modules arises the drop of open-circuit voltage(VOC)and fill factor(FF).Formamidinium lead iodide(FAPbI_(3))is now the mostly widely used and highly efficient perovskite composition.However,the photo-active black α-FAPbI_(3) phase will spontaneously transform into photo-inactive yellowδ-FAPbI_(3) phase at room temperature[3]. 展开更多
关键词 perovskite solar cells pscs photoelectric conversion efficiency fill factor PEROVSKITE organic inorganic hybrid metal halide perovskite perovskite submodules psms open circuit voltage surface interface passivation
原文传递
Facile Preparation, Characterization of Flexible Organic Solar Cells Using P3HT-MWCNTS Composite Photoactive Layer
15
作者 Tran Si Trong Khanh Nguyen Phuong Hoai Nam Nguyen Nang Dinh 《Journal of Materials Science and Chemical Engineering》 2020年第10期1-10,共10页
Multiwalled carbon nanotubes (MWCNTs) mixed in poly(3-hexylthiophene) (P3HT) were used as a photoactive layer for organic solar cells (OSC). The flexible OSCs of a structure of PET/rGO-P3HT/P3CT/PCBM/LiF-Al were prepa... Multiwalled carbon nanotubes (MWCNTs) mixed in poly(3-hexylthiophene) (P3HT) were used as a photoactive layer for organic solar cells (OSC). The flexible OSCs of a structure of PET/rGO-P3HT/P3CT/PCBM/LiF-Al were prepared by spincoating. The UV-Vis absorption spectra of the photoactive films and current-voltage characteristics of the OSCs showed the advantage of the composite devices above the pristine-polymeric ones. Under illumination of light with a 100 mW/cm<sup>2</sup>-powerdensity, the photoelectrical conversion efficiency (PCE) of the OSCs with 3.0 wt% MWNCTs embedded in the photoactive layer possess a value as large as 2.35%. The obtained results suggest further useful applications of the flexible large-area solar cells. 展开更多
关键词 P3HT-MWCNTs Composite Photovoltage UV-Vis Absorption Photoluminescence (PL) Quenching J-V Characteristics photoelectrical Conversion Efficiency (PCE)
在线阅读 下载PDF
Memristive Artificial Synapses for Neuromorphic Computing 被引量:11
16
作者 Wen Huang Xuwen Xia +6 位作者 Chen Zhu Parker Steichen Weidong Quan Weiwei Mao Jianping Yang Liang Chu Xing’ao Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期218-245,共28页
Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memri... Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memristive hardware neural networks in which synaptic devices that mimic biological synapses of the brain are the primary units.Mimicking synaptic functions with these devices is critical in neuromorphic systems.In the last decade,electrical and optical signals have been incorporated into the synaptic devices and promoted the simulation of various synaptic functions.In this review,these devices are discussed by categorizing them into electrically stimulated,optically stimulated,and photoelectric synergetic synaptic devices based on stimulation of electrical and optical signals.The working mechanisms of the devices are analyzed in detail.This is followed by a discussion of the progress in mimicking synaptic functions.In addition,existing application scenarios of various synaptic devices are outlined.Furthermore,the performances and future development of the synaptic devices that could be significant for building efficient neuromorphic systems are prospected. 展开更多
关键词 Synaptic devices Neuromorphic computing Electrical pulses Optical pulses Photoelectric synergetic effects
在线阅读 下载PDF
Optical characteristics of Ce,Eu:YAG single crystal grown by Czochralski method 被引量:4
17
作者 Jingfeng Zhang Guorui Gu +2 位作者 Xiaoxuan Di Weidong Xiang Xiaojuan Liang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第2期145-150,共6页
Eu-doped Ce:YAG single crystal(SC) was fabricated by the Czochralski method. The crystal structure,optical and photoelectric property of the constructed w-LED was investigated. The XRD and HRTEM results show that YAG ... Eu-doped Ce:YAG single crystal(SC) was fabricated by the Czochralski method. The crystal structure,optical and photoelectric property of the constructed w-LED was investigated. The XRD and HRTEM results show that YAG crystal structure has little change when Eu^(3+), Ce^(3+) are doped. Absorption spectra and photoluminescence spectra show that the Ce,Eu:YAG single crystal can effectively absorb the 460 nm blue light to form a broadband emission center at 530 nm, decay curves of the crystal show that the energy transfer between Ce^(3+) and Eu^(3+) is highly suppressed. Compared with commercial Ce:YAG phosphor, Ce,Eu:YAG exhibits better thermal stability. 展开更多
关键词 Ce Eu:YAG Thermal stability PHOTOELECTRIC parameter RARE earths
原文传递
Performance evaluation and optimization design of photoelectric pyrometer detection optical system 被引量:3
18
作者 Xue-yan Han Ke-wei Huan Shan-ju Sheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期401-407,共7页
The measurement and control of high temperature play very important roles in national defense,military,scientific experiments,industrial and agricultural production.Photoelectric pyrometer is one of the important radi... The measurement and control of high temperature play very important roles in national defense,military,scientific experiments,industrial and agricultural production.Photoelectric pyrometer is one of the important radiation thermometers for non-contact temperature measurement.It has an important application in the field of high temperature measurement,and its performance directly affects the accuracy of temperature measurement.By improving the design of the detection optical system of the photoelectric pyrometer,the imaging performance of the photoelectric pyrometer can be improved effectively,and the temperature measurement accuracy can be improved.In this paper,the temperature measurement principle of photoelectric pyrometer,the wo rking principle of the detection optical system and the composition of the system are introduced.The optical components that affect the imaging of the optical system of the photoelectric pyrometer are analyzed.The optical pyrometer detection optical system is simulated by ZEMAX software,based on the analysis results,the Modulation Transfer Function(MTF)and the spot Diagram are used as the main evaluation criteria to optimize the design of the objective lens of the photoelectric pyrometer detection optical system.The imaging performance of the photoelectric pyrometer detection optical system and the accuracy of temperature measurement of the photoelectric pyrometer are improved by optimization design of the detection optical system. 展开更多
关键词 PHOTOELECTRIC PYROMETER DETECTION optical system ZEMAX MTF Spot DIAGRAM
在线阅读 下载PDF
Photoelectric detection technology of laser seeker signals 被引量:5
19
作者 ZHU Likun JIA Fangxiu +1 位作者 JIANG Xiaodong LI Xinglong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1064-1073,共10页
The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, t... The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, the imaging model of the detector, calculation model of the position and the signal-to-noise ratio(SNR) model of the circuit are built to derive both the correlation between the resolution error of the rolling angle and the spot position, and the relation between the position resolution error and the SNR. Then the influence of each parameter on the SNR is analyzed at large,and the parameters of the circuit are determined. Meanwhile, the SNR and noise voltage of the circuit are calculated according to the SNR model and the decay model of the laser energy. Finally,the actual photoelectric detection circuit is built, whose SNR is measured to be up to 53 d B. It can fully meet the requirement of0.5° for the resolution error of the rolling angle, thereby realizing the analysis of critical technology for photoelectric detection of laser seeker signals. 展开更多
关键词 laser seeker rolling angle error of position signal-to noise ratio(SNR) photoelectric detection.
在线阅读 下载PDF
Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors 被引量:3
20
作者 Zhi-Yong Tan Wen-Jian Wan Jun-Cheng Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期59-71,共13页
As semiconductor devices,the terahertz quantum-cascade laser is a coherent source based on intersubband transitions of unipolar carriers while the terahertz quantum-well photodetector is a kind of detector which match... As semiconductor devices,the terahertz quantum-cascade laser is a coherent source based on intersubband transitions of unipolar carriers while the terahertz quantum-well photodetector is a kind of detector which matches the laser frequency.They are solid-state,electrically operated,and can be easily integrated with other components.This paper reviews the state of the art for the design,working performance,and future directions of the two devices.Their applications in photoelectric characterization and imaging are also discussed. 展开更多
关键词 TERAHERTZ semiconductor device photoelectric characterization imaging system
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部