期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
PHOTOCHARGEABLE BEHAVIOR OF HYDROGEN STORAGE ALLOY ELECTRODE MODIFIED WITH TiO_2 NANOPARTICLES
1
作者 王改田 涂江平 +3 位作者 张博 张文魁 吴建波 黄辉 《化工学报》 EI CAS CSCD 北大核心 2004年第S1期201-204,共4页
Photochargeable behavior of hydrogen storage alloy electrode modified with TiO_2 nanoparticles(MH/TiO_2) was investigated by measuring its photocharge-discharge characteristics. The results showed the MH/TiO_2 electro... Photochargeable behavior of hydrogen storage alloy electrode modified with TiO_2 nanoparticles(MH/TiO_2) was investigated by measuring its photocharge-discharge characteristics. The results showed the MH/TiO_2 electrode could store light energy photoelectrochemically when it was illuminated. The potential of the MH/TiO_2 electrode could be charged to 0.843 V.The discharge time of the MH/TiO_2 electrode increased with increasing the illuminating time, The mechanism of photochargeable behavior of the MH/T... 展开更多
关键词 photocharge TITANIA HYDROGEN STORAGE alloy metal HYDRIDE
在线阅读 下载PDF
Hybridized S cathode with N719 dye for a photo-assisted charging Li-S battery 被引量:3
2
作者 Jingfa Li Changwei Ren +4 位作者 Linbiao Zhang Wenhao Jiang Hongmin Liu Jing Su Min Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期205-209,共5页
Nowadays,huge consumption of fossil fuels brings about serious energy crisis and environmental problems,which urge researchers to explore novel sustainable energy sources and storage systems[1,2].
关键词 photocharge Intergrated battery Lithium-sulfur Hybridized cathode
在线阅读 下载PDF
Photoelectrochemical regeneration of all vanadium redox species for construction of a solar rechargeable flow cell 被引量:2
3
作者 Shichao Liao Jingying Shi +5 位作者 Chunmei Ding Mingyao Liu Fengqiang Xiong Nan Wang Jian Chen Can Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期278-282,共5页
Energy storage is pivotal for the continuous utilization of solar energy suffering from the intermittency issue. Herein, we demonstrate a solar rechargeable flow cell(SRFC) based on photoelectrochemical regeneration... Energy storage is pivotal for the continuous utilization of solar energy suffering from the intermittency issue. Herein, we demonstrate a solar rechargeable flow cell(SRFC) based on photoelectrochemical regeneration of vanadium redox species for in-situ solar energy harvest and storage. In this device, TiO_2 and MWCNT/acetylene black(MWCNT/AB) composite are served as the photoanode and the counter electrode,respectively, with all vanadium redox couples, VO_2~+/VO^(2+)and VO^(2+)/V^(3+), as solar energy storage media.Benefitting from solar energy, the cell can be photocharged under a bias as low as 0.1 V, which is much lower than the discharge voltage of ~0.5 V. Photocharged under the optimized condition, the cell delivers a discharge energy of 23.0 mWh/L with 67.4% input electric energy savings. This prototype work may inspire the rational design for cost-effective solar energy storage devices. 展开更多
关键词 Photoelectrocatalysis Vanadium species photocharge Solar energy storage
在线阅读 下载PDF
Nanostructured CdS for efficient photocatalytic H2 evolution: A review 被引量:25
4
作者 Rongchen Shen Doudou Ren +4 位作者 Yingna Ding Yatong Guan Yun Hau Ng Peng Zhang Xin Li 《Science China Materials》 SCIE EI CSCD 2020年第11期2153-2188,共36页
Cadmium sulfide(Cd S)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption,suitable band energy levels,and excellent electronic charge transportation properties.This r... Cadmium sulfide(Cd S)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption,suitable band energy levels,and excellent electronic charge transportation properties.This review focuses on the recent progress related to the design,modification,and construction of Cd S-based photocatalysts with excellent photocatalytic H2 evolution performances.First,the basic concepts and mechanisms of photocatalytic H2 evolution are briefly introduced.Thereafter,the fundamental properties,important advancements,and bottlenecks of Cd S in photocatalytic H2 generation are presented in detail to provide an overview of the potential of this material.Subsequently,various modification strategies adopted for Cd S-based photocatalysts to yield solar H2 are discussed,among which the effective approaches aim at generating more charge carriers,promoting efficient charge separation,boosting interfacial charge transfer,accelerating charge utilization,and suppressing charge-induced self-photocorrosion.The critical factors governing the performance of the photocatalyst and the feasibility of each modification strategy toward shaping future research directions are comprehensively discussed with examples.Finally,the prospects and challenges encountered in developing nanostructured Cd S and Cd S-based nanocomposites in photocatalytic H2 evolution are presented. 展开更多
关键词 solar fuel nanostructured cadmium sulfide-based photocatalysts modification strategies hydrogen production photocharge utilization
原文传递
Surface defect and lattice engineering of Bi_(5)O_(7)Br ultrathin nanosheets for efficient photocatalysis 被引量:2
5
作者 Yunjing Wang Hongchen He +5 位作者 Yunjiang Wang Meili Xie Feng Jing Xianhong Yin Feilong Hu Yan Mi 《Nano Research》 SCIE EI CSCD 2023年第1期248-255,共8页
The effective separation and migration of photogenerated charge carriers in bulk and on the surface of photocatalysts will significantly promote photocatalytic efficiency.However,the synchronous regulation of photocha... The effective separation and migration of photogenerated charge carriers in bulk and on the surface of photocatalysts will significantly promote photocatalytic efficiency.However,the synchronous regulation of photocharges on both counts is challenging.Herein,the simultaneous separation of bulk and surface photocharges is conducted to enhance photocatalytic activity by coupling the surface defects and lattice engineering of bismuth oxybromide.The depth-modulated Bi_(5)O_(7)Br ultrathin nanosheets with an abundance of bismuth in the crystal structure increased the internal electric field,which propelled the separation and migration of photocharges from bulk to the surface.Creation of oxygen vacancies(OVs)on the nanosheet surface forms local electric fields,which can stimulate the migration of charges to active sites on the catalyst surface.Therefore,the OV-assembled Bi_(5)O_(7)Br nanosheets demonstrated enhanced photocatalytic degradation efficiency under simulated solar-light illumination.This study proved the possibility of charge governing via electric field modulation based on an integrated strategy. 展开更多
关键词 lattice engineering internal electric field oxygen vacancies photocharge separation bismuth oxybromide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部