Three diamine monomers with different derivatives of imidazole heterocyclic ring, aryl ethers and electron withdrawing trifluoromethyl groups in the backbone were synthesized and used in polycodensation reaction with ...Three diamine monomers with different derivatives of imidazole heterocyclic ring, aryl ethers and electron withdrawing trifluoromethyl groups in the backbone were synthesized and used in polycodensation reaction with various aliphatic and aromatic dicarboxylic acids for preparation of a series of novel polyamides (PAs). The PAs were obtained in high yields and possessed inherent viscosities in the range of 0.26-0.75 dL/g. All of the polymers were amorphous in nature, showed outstanding solubility and could be easily dissolved in amide-type polar aprotic solvents. They showed good thermal stability with glass transition temperatures between 162-302 ℃. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 421 ℃in N2 atmospheres. All the PAs presented fluorescence upon irradiation with ultraviolet light and thus showed promise for applications in electroluminescent devices. The monomers and PAs were also screened for antibacterial activity against Gram positive and Gram negative bacteria.展开更多
Photoactive functionalized titanium-oxo clusters(TOCs)are regarded as an important model compound for dye-sensitized titanium dioxide solar cells.However,the dyes used for sensitizing TOCs are still limited.Herein,two...Photoactive functionalized titanium-oxo clusters(TOCs)are regarded as an important model compound for dye-sensitized titanium dioxide solar cells.However,the dyes used for sensitizing TOCs are still limited.Herein,two cyclic TOCs are reported,namely,[Ti_(6)(μ_(3)-O)_(2)(Oi-Pr)_(8))(LA)_(2)]·i-PrOH(S1)and[Ti_(6)(μ_(3)-O)2(Oi-Pr)_(8))(LV)_(2)]·i-PrOH(S2),which are functionalized by photoactive naphthalene diimide(NDI)chromophores.Their molecular structures and photophysical and photochemical properties were systematically studied.As shown by ultraviolet-visible(UV-vis)spectra and photocurrent study results,the band gap and the photocurrent response of S1 and S2 were derived from NDI ligands which extend the absorption edge of S1 and S2 approaching 500 nm and afford high photocurrent densities of 2.12μA/cm^(2)and 1.95μA/cm^(2)for S1 and S2,respectively,demonstrating the significance of the photoactive ligand in modulating photoresponse of TOCs.This work is expected to enrich the structural library of photoactive TOCs and provide insights into understanding the structure-property relationships of sensitized clusters.展开更多
The design and synthesis of photoactive macrocyclic molecules continue to attract attention because such species play important roles in supramolecular chemistry as well as photoelectronic applications.Donoracceptor(D...The design and synthesis of photoactive macrocyclic molecules continue to attract attention because such species play important roles in supramolecular chemistry as well as photoelectronic applications.Donoracceptor(D-A)conjugated macrocycles are an emerging class of photoactive molecules due to their D-A conjugated structural characteristics and tunable optical properties.In addition,the well-defined cavities in such D-A macrocycles endow them with versatile host-vip properties.In this review,we provide a comprehensive summary of D-A conjugated macrocycle chemistry,detailing recent progress in the area of synthetic methods,optical properties,host-vip chemistry and applications of the underlying chemistry to chemical sensors,bioimaging and photoelectronic devices.Our objective is to provide not only a review of the fundamental findings,but also to outline future research directions where D-A conjugated macrocycles and their constructs may have a role to play.展开更多
Influence of annealing temperature and thickness on the optical characteristics of the blend of poly (3-hexylthiophene) (P3HT) and Phenyl C61 butyric acid methylester (PCBM) layer has been investigated in this report....Influence of annealing temperature and thickness on the optical characteristics of the blend of poly (3-hexylthiophene) (P3HT) and Phenyl C61 butyric acid methylester (PCBM) layer has been investigated in this report. Photoactive polymer material (P3HT:PCBM) was deposited on indium tin oxide (ITO) substrate by spin-coating. The morphology of P3HT:PCBM composite layer was investigated by Atomic Force Microscope (AFM). The surface roughness was found to reduce after heat treatment. The absorption of the composite layer was found to increase with its number of layer (thickness). On the other hand, the photoluminescence (PL) quenching, which indicates efficient charge separation in the bulk heterojunction, was found higher for the thinner layer. Absorption was also found to increase with the annealing temperature. Therefore, to optimize the thickness of the P3HT:PCBM photoactive layer that will provide best absorption while providing efficient charge separation, annealing at optimized temperature might be an effective tool.展开更多
Particles of TiO2 modified with poly 3-(2-thienyl) aniline (PThA) and occluded in poly 2,2 bithiophene (PBTh), were subjected to optical, electrochemical impedance spectroscopic (EIS) and photoelectrochemical (PEC) in...Particles of TiO2 modified with poly 3-(2-thienyl) aniline (PThA) and occluded in poly 2,2 bithiophene (PBTh), were subjected to optical, electrochemical impedance spectroscopic (EIS) and photoelectrochemical (PEC) investigation in aqueous, acetate, citrate, and phosphate electrolytes. EIS studies revealed that the assembly film of TiO2/PThA/PBTh possess porous-type structure. They also confirmed the approximate value of Ef obtained from electrochemical studies. Both EIS and optical studies indicated that ac conductivity is much greater than dc conductivity. Guided by the properties of PBTh, no large changes in the energy band structure occurred due to occlusion of TiO2 in PBTh films. Occlusion of TiO2/PThA into the network structure of PBTh inhibits the energy dissipation process and impeded charge polarization process of the material. Photoelectrochemical outcome suggested possible band alignments between the organic film and TiO2 and formation of hybrid sub-bands. Inclusion of TiO2 in the thiophene-based polymers enhanced the charge separation and consequently charge transfer processes and widen the absorption in visible light range.展开更多
Evidence for the long period of a sustainable function of a thermoplastic gel electrolyte (TPGE) consists of polyethylene glycol (PEG)/I<sub>2</sub>/I<span style="color:#4f4f4f;"><sup>...Evidence for the long period of a sustainable function of a thermoplastic gel electrolyte (TPGE) consists of polyethylene glycol (PEG)/I<sub>2</sub>/I<span style="color:#4f4f4f;"><sup>-</sup></span> in propylene carbonate (PC) was recorded. The studied photoactive assembly consists of PBTH/FTO/TPGE I<sub>2</sub>/I<span style="color:#4f4f4f;"><sup>-</sup></span>/Platinized FTO. The study showed that the assembly regenerates the expected photoelectrochemical (PEC) quantities such as photocurrent, and other dielectric properties with infrequent use through an elapsed period of 18 months. The behavior of PBTh/occluded with CdS was mentored during this period and showed a similar result. PEC studies indicated the presence of p-p type hole accumulations interface, evident from the initial sharp rise in photocurrent. The change of open circuit potential (d<i>V<sub>oc</sub></i>) indicates that the shortest electron lifetime is 100 ms. The behavioral outcome of the assemblies within the period of study refracts stability of the electrode and the long life cycle of the electrolyte.展开更多
Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry,biology and materials science due to their unique and precisely tunable optoelectronic properties.The incorporation of the ...Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry,biology and materials science due to their unique and precisely tunable optoelectronic properties.The incorporation of the heteroatom boron(B)enables these materials to exhibit high luminescence quantum yields,adjustable absorption and emission wavelengths,and exceptional photostability.This review examines the molecular design and applications of tetra-coordinate boron-based photoactive molecules,highlighting their roles in fluorescence sensing,anticounterfeiting,and imaging.We outline how structural features impact their properties and discuss strategies for enhancing their performance,including ligand modification and the extension of conjugation length,among others.Additionally,future research focus in this field is also addressed including strategies for diversifying molecular structures and enhancing molecular stability,which is believed to pave the way for innovative solutions to the challenges in areas such as sensing,imaging and information security.展开更多
Photoactive complexes of nonprecious transition metals,mainly including those in the first-row and partially the second-row of the Periodic table of elements,have received increasing attention in view of their low cos...Photoactive complexes of nonprecious transition metals,mainly including those in the first-row and partially the second-row of the Periodic table of elements,have received increasing attention in view of their low cost and long-term sustainability.They are recognized as promising alternatives to noble transition metal complex congeners that have been extensively studied in optoelectronic devices,artificial photosynthesis,photocatalysis,biodiagnostics,and therapeutics,etc.This review is devoted to a comprehensive summary on the classical and recent advances on photoactive nonprecious transition metal complexes,including photoactive Zr,V,Cr,Mo,and W complexes,Mn complexes and hybrids,Fe,Co,Ni,and Cu complexes,and Zn and Cd complexes and hybrids.A particular focus is given on the molecular design,modulation of photophysical and photochemical properties,and applications of the representative and lately-developed nonprecious metal complexes.In addition,a perspective on the future development in this field is provided at the end of this review.展开更多
Highly efficient photo-assisted electrocatalysis for methanol oxidation reaction(MOR)realizes the conversion of solar and chemical energy into electric energy simultaneously.Here we report a Pt-MXene-TiO2 composite fo...Highly efficient photo-assisted electrocatalysis for methanol oxidation reaction(MOR)realizes the conversion of solar and chemical energy into electric energy simultaneously.Here we report a Pt-MXene-TiO2 composite for highly efficient MOR via a photoactive cascaded electro-catalytic process.With light(UV and visible light)irradiation,MXene-TiO2 serves as the photo active centre(photoinduced hole)to activate the methanol molecules,while Pt particles are the active centre for the following electro-catalytic oxidation of those activated methanol molecules.Pt-MXene-TiO2 catalyst exhibits a lower onset potential(0.33 V)and an impressive mass activity of 2,750.42 mA·mg^−1 Pt under light illumination.It represents the highest MOR activity ever reported for photo-assisted electrocatalysts.Pt-MXene-TiO2 also shows excellent CO tolerance ability and stability,in which,after long-term(5,000 s)reaction,still keeps a high mass activity of 1,269.81 mA·mg−1Pt(62.66%of its initial activity).The photo-electro-catalytic system proposed in this work offers novel opportunities for exploiting photo-assisted enhancement of highly efficient and stable catalysts for MOR.展开更多
Organic solar cells(OSCs)have unique advantages of light weight,low-cost solution processing,and capability to be fabricated into flexible and semitransparent devices,which are widely recognized as a promising photovo...Organic solar cells(OSCs)have unique advantages of light weight,low-cost solution processing,and capability to be fabricated into flexible and semitransparent devices,which are widely recognized as a promising photovoltaic technology.Photoactive layers of the OSCs are composed of a blend of a p-type organic semiconductor as a donor(D)and an n-type organic semiconductor as acceptor(A).The morphology of the active layer with D/A nano-scaled aggregation and face-onπconjugated packing,and D/A interpenetrating network is crucial for achieving high photovoltaic performance of the OSCs.Therefore,great efforts have been devoted to control and optimize morphology of the active layers.This perspective focuses on the morphological control by solvent/solid processing additives and the morphology optimization by postdeposition treatment with thermal annealing and/or solvent vapor annealing,which have been extensively adopted and exhibit promising positive effect in optimizing the morphology.Representative examples are given and discussed to understand the foundation of the postdeposition treatments on tuning the morphology.Insights into the role of the postdeposition treatments and additive treatments on the morphology optimization will be beneficial to further improvement in morphology optimization for practical organic photovoltaic application.展开更多
A new kind of photoactive electrodes with nanocrystalline TiO2(nano-TiO2)secondary structure is successfully prepared via a simple method of adding a small amount of TiCl4 2-propanol solution in conventional nano-TiO2...A new kind of photoactive electrodes with nanocrystalline TiO2(nano-TiO2)secondary structure is successfully prepared via a simple method of adding a small amount of TiCl4 2-propanol solution in conventional nano-TiO2 paste to form micro-sized nano-TiO2 aggregates.The benefits of this special structure include improved optical absorption,increased light scattering ability,and enhanced electron transport and collection efficiency.Dye-sensitized solar cells(DSCs)based on these photoactive electrodes show improved performance.The power conversion efficiency of the cells can be increased from 5.03%to 7.30%by substituting 6μm conventional nano-TiO2 thin film with the same thickness of as-prepared nano-TiO2 aggregates film in the photoactive electrodes.A higher power conversion efficiency of the cells can be obtained by further increasing the thickness of the nano-TiO2 aggregates film.展开更多
We reported enhanced performance of polymer solar cells, based on poly(3-hexylthiophene):[6,6]-phenylC_(61)-butyric acid methyl ester(P3HT:PC_(61)BM) and polythieno[3,4-b]-thiophene-co-benzodithiophene:[6,6]-phenylC_(...We reported enhanced performance of polymer solar cells, based on poly(3-hexylthiophene):[6,6]-phenylC_(61)-butyric acid methyl ester(P3HT:PC_(61)BM) and polythieno[3,4-b]-thiophene-co-benzodithiophene:[6,6]-phenylC_(71)-butyric acid methyl ester(PTB7:PC_(71)BM) photovoltaic systems, by a two-step dissolution treatment of photoactive blends. Optical and morphological characterization revealed that the composition of the ordered polymer and donor/acceptor phase structure in the photoactive layer can be optimized using a two-step dissolution treatment. In addition, time-resolved photoluminescence indicated that exciton dissociation efficiency could be increased using this method. Current density-voltage(J-V) measurements showed that power conversion efficiencies(PCE) of the two-step dissolution treated devices were higher than those of one-step treated devices by 24% and 8% for P3HT:PC61BM and PTB7:PC_(71)BM systems, respectively. Therefore, this two-step dissolution treatment further optimizes the performance of polymer solar cells.展开更多
In recent times,solar energy has become one of the largest available sources of renewable energy at our disposal.However,the design of highly efficient solar cells is increasingly becoming crucial as there has been a ...In recent times,solar energy has become one of the largest available sources of renewable energy at our disposal.However,the design of highly efficient solar cells is increasingly becoming crucial as there has been a surge for economically viable alternative energy sources with the lowest cost.Significant advances have been made through different routes to make photovoltaic(PV)/solar technologies economically viable,eco-friendly and consequently scalable.As a result,cellulose nanomaterials have become one of the emerging technologies in this regard because of the advantages of high-value bio-based nanostructured materials,such as their abundance and sustainability.Nanocellulose-based photoactive nanocomposite materials can be made by integrating conducting photoactive and electroconductive materials with hydrophilic biocompatible cellulose.Inorganic nanoparticles,such as graphene/reduced graphene oxide cadmium sulphide quantum dots,amongst others,can be introduced into the nanocellulose matrix and can be applied either as charge transporters or photoactive materials in different types of solar cells.Thus,in this review,we highlight the optoelectronic properties of different photoactive materials,particularly nanocellulose-based graphene nanocomposites;their efficiencies and drawbacks were X-rayed.The effect of doping each PV material on the PV performance is also discussed.It is anticipated that the novel material would result in a reduction in the cost of solar cells,jointly enhancing their efficacy in generating environmentally friendly electricity.Since the fabrication techniques and equipment play a crucial role in the development of solar cells,the fabrication techniques of bulk-heterojunction(BHJ)cells containing a nanocellulose-based graphene composite and case studies of already fabricated BHJ PV cells with nanocellulose-based graphene composite are discussed.展开更多
CONSPECTUS:This Account aims to concisely summarize recent advancements in the field of photocatalysis,with a particular focus on dimension-reduced metal−organic nanomaterials,including coordination cages and 2D struc...CONSPECTUS:This Account aims to concisely summarize recent advancements in the field of photocatalysis,with a particular focus on dimension-reduced metal−organic nanomaterials,including coordination cages and 2D structures.Metal−organic frameworks(MOFs),known for their high crystallinity,porosity,and well-determined structures,are at the forefront of this research.They offer a unique confined environment that is optimal for enhancing host−vip interactions.展开更多
Metal nanoclusters with well-defined atomic structures offer significant promise in the field of catalysis due to their sub-nanometer size and tunable organic-inorganic hybrid structural features.Herein,we successfull...Metal nanoclusters with well-defined atomic structures offer significant promise in the field of catalysis due to their sub-nanometer size and tunable organic-inorganic hybrid structural features.Herein,we successfully synthesized an 11-core copper(Ⅰ)-alkynyl nanocluster(Cu11),which is stabilized by alkynyl ligands derived from a photosensitive rhodamine dye molecule.Notably,this Cu11cluster exhibited excellent photocatalytic hydrogen evolution activity(8.13 mmol g-1h-1)even in the absence of a mediator and noble metal co-catalyst.Furthermore,when Cu11clusters were loaded onto the surface of TiO_(2)nanosheets,the resultant Cu11@TiO_(2)nanocomposites exhibited a significant enhancement in hydrogen evolution efficiency,which is 60 times higher than that of pure TiO_(2)nanosheets.The incorporation of Cu11clusters within the Cu11@TiO_(2)effectively inhibits the recombination of photogenerated electrons and holes,thereby accelerating the charge separation and migration in the composite material.This work introduces a novel perspective for designing highly active copper cluster-based photocatalysts.展开更多
Rare earth elements are highly applicable in photocatalysis due to their partially filled 4f orbitals,existing in electronic structures that facilitate the transfer of electrons during the reaction process.Among these...Rare earth elements are highly applicable in photocatalysis due to their partially filled 4f orbitals,existing in electronic structures that facilitate the transfer of electrons during the reaction process.Among these materials,CeO_(2)has a distinctive external electronic structure(4f^(1)5d^(1)6s^(2)),abundant oxygen vacancies,and strong conversion ability of Ce^(4+)/Ce^(3+),which makes it an attractive candidate in the field of photocatalysis.To broaden its practical applications in the visible region,the drawbacks of a wide band gap and a slow Ce^(4+)/Ce^(3+)cycle have been addressed through the modification of CeO_(2),thereby accelerating light absorption and self-circulation,and enhancing photocatalytic activity.This paper presents a review of the preparation of modified CeO_(2)catalysts and their application in the conversion of cerium valence state in the photocatalytic degradation of pollutants in water.Furthermore,this paper presents a summary of the most recent development and current challenges,as well as prospect for the application of modified CeO_(2)-based materials.展开更多
Photocatalyst is the most widespread method in advanced oxidation technologies,but due to the photoinduced electron combine easily with hole and the wavele ngth of adsorption is limited which will affect some practica...Photocatalyst is the most widespread method in advanced oxidation technologies,but due to the photoinduced electron combine easily with hole and the wavele ngth of adsorption is limited which will affect some practical applications.Carbon quantum dots(CQDs)is non-toxic and harmless green materials,it has the ability to improve the photocatalytic effect which is attributed to its good electrical and optical properties.Their up-conversion effect,photosensitization and electrical conductivity are assistants which help promote the photocatalytic effect in environmental applications.The key mechanisms of CQDs to improve photocatalysis can be roughly divided into three categories:1)Up-conversion effect conve rts the incident light into the emitted light with high ene rgy to solve the problem which is the light absorption range;2)CQDs act as a photosensitizer instead of valence band to provide electrons to the conduction band of semiconductor;3)CQD s can be used as the internal or external electronic conductor in materials to alleviate the trend of electron and hole separation.However,CQDs and CQDs-based photocatalysts have different views to solve environmental problems,so it is necessary to integrate different views.Therefore,this review is mainly aimed at the recent researches about the preparation processes of CQD,CQD s-based photocatalysts,and their ability to remove environmental pollutants,with a special emphasis on the mechanism for depredating pollutants.Furthermore,this paper analyzes and discusses the prospects and challenges of CQDs in the environmental field.展开更多
Discussion is presented on the use of the photoisomerization of azobenzene chromophore in the design andpreparation of novel functional materials. The two systems reviewed are azobenzene polymer-stabilized liquid crys...Discussion is presented on the use of the photoisomerization of azobenzene chromophore in the design andpreparation of novel functional materials. The two systems reviewed are azobenzene polymer-stabilized liquid crystals andazobenzene elastomers. In the first case, a polymer network containing azobenzene moieties is used to optically induce andstabilize a long-range liquid crystal orientation without the need of treating the surfaces of the substrates. This optical andrubbing-free approach was applied to nematic and ferroelectric liquid crystals. In the second case, an azobenzene side-chainliquid crystalline polymer is grafted onto a styrene-butadiene-styrene triblock copolymer to yield a photoactive thermoplasticelastomer. Coupled mechanical and optical effects make possible the formation of dimaction gratings that may be useful formechanically tunable optical devices.展开更多
A systematic interpretation of laser-induced damage in the nanosecond regime is realized with a defect distribution buried inside the redeposited layer arising from a polishing process. Under the 355-nm laser irradiat...A systematic interpretation of laser-induced damage in the nanosecond regime is realized with a defect distribution buried inside the redeposited layer arising from a polishing process. Under the 355-nm laser irradiation, the size dependence of the defect embedded in the fused silica can be illustrated through the thermal conduction model. Considering CeO2 as the major initiator, the size distribution with the power law model is determined from the damage probability statistics. To verify the accuracy of the size distribution, the ion output scaling with depth for the inclusion element is obtained with the secondary ion mass spectrometer. For CeO2 particulates in size of the depth interval with ion output satisfied in the negative exponential form, the corresponding density is consistent with that of the identical size in the calculated size distribution. This coincidence implies an alternative method for the density analysis of photoactive imperfections within optical components at the semi-quantitative level based on the laser damage tests.展开更多
Infections can hinder orthopedic implant function and retention.Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion.Sever...Infections can hinder orthopedic implant function and retention.Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion.Several emerging antimicrobial technologies that integrate a multidisciplinary combination of drug delivery systems,material science,immunology,and polymer chemistry are in development and early clinical use.This review outlines orthopedic implant antimicrobial technology,its current applications and supporting evidence,and clinically promising future directions.展开更多
基金partially financially supported by the Research Affairs Division of University of Kurdistan(UOK),Sanandaj(Iran)
文摘Three diamine monomers with different derivatives of imidazole heterocyclic ring, aryl ethers and electron withdrawing trifluoromethyl groups in the backbone were synthesized and used in polycodensation reaction with various aliphatic and aromatic dicarboxylic acids for preparation of a series of novel polyamides (PAs). The PAs were obtained in high yields and possessed inherent viscosities in the range of 0.26-0.75 dL/g. All of the polymers were amorphous in nature, showed outstanding solubility and could be easily dissolved in amide-type polar aprotic solvents. They showed good thermal stability with glass transition temperatures between 162-302 ℃. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 421 ℃in N2 atmospheres. All the PAs presented fluorescence upon irradiation with ultraviolet light and thus showed promise for applications in electroluminescent devices. The monomers and PAs were also screened for antibacterial activity against Gram positive and Gram negative bacteria.
基金National Natural Science Foundation of China(Nos.92161111,21901037 and 21901038)。
文摘Photoactive functionalized titanium-oxo clusters(TOCs)are regarded as an important model compound for dye-sensitized titanium dioxide solar cells.However,the dyes used for sensitizing TOCs are still limited.Herein,two cyclic TOCs are reported,namely,[Ti_(6)(μ_(3)-O)_(2)(Oi-Pr)_(8))(LA)_(2)]·i-PrOH(S1)and[Ti_(6)(μ_(3)-O)2(Oi-Pr)_(8))(LV)_(2)]·i-PrOH(S2),which are functionalized by photoactive naphthalene diimide(NDI)chromophores.Their molecular structures and photophysical and photochemical properties were systematically studied.As shown by ultraviolet-visible(UV-vis)spectra and photocurrent study results,the band gap and the photocurrent response of S1 and S2 were derived from NDI ligands which extend the absorption edge of S1 and S2 approaching 500 nm and afford high photocurrent densities of 2.12μA/cm^(2)and 1.95μA/cm^(2)for S1 and S2,respectively,demonstrating the significance of the photoactive ligand in modulating photoresponse of TOCs.This work is expected to enrich the structural library of photoactive TOCs and provide insights into understanding the structure-property relationships of sensitized clusters.
基金supported by the National Natural Science Foundation of China(Nos.21971041 and 22001039)Natural Science Foundation of Fujian Province(No.2020J01447).
文摘The design and synthesis of photoactive macrocyclic molecules continue to attract attention because such species play important roles in supramolecular chemistry as well as photoelectronic applications.Donoracceptor(D-A)conjugated macrocycles are an emerging class of photoactive molecules due to their D-A conjugated structural characteristics and tunable optical properties.In addition,the well-defined cavities in such D-A macrocycles endow them with versatile host-vip properties.In this review,we provide a comprehensive summary of D-A conjugated macrocycle chemistry,detailing recent progress in the area of synthetic methods,optical properties,host-vip chemistry and applications of the underlying chemistry to chemical sensors,bioimaging and photoelectronic devices.Our objective is to provide not only a review of the fundamental findings,but also to outline future research directions where D-A conjugated macrocycles and their constructs may have a role to play.
文摘Influence of annealing temperature and thickness on the optical characteristics of the blend of poly (3-hexylthiophene) (P3HT) and Phenyl C61 butyric acid methylester (PCBM) layer has been investigated in this report. Photoactive polymer material (P3HT:PCBM) was deposited on indium tin oxide (ITO) substrate by spin-coating. The morphology of P3HT:PCBM composite layer was investigated by Atomic Force Microscope (AFM). The surface roughness was found to reduce after heat treatment. The absorption of the composite layer was found to increase with its number of layer (thickness). On the other hand, the photoluminescence (PL) quenching, which indicates efficient charge separation in the bulk heterojunction, was found higher for the thinner layer. Absorption was also found to increase with the annealing temperature. Therefore, to optimize the thickness of the P3HT:PCBM photoactive layer that will provide best absorption while providing efficient charge separation, annealing at optimized temperature might be an effective tool.
文摘Particles of TiO2 modified with poly 3-(2-thienyl) aniline (PThA) and occluded in poly 2,2 bithiophene (PBTh), were subjected to optical, electrochemical impedance spectroscopic (EIS) and photoelectrochemical (PEC) investigation in aqueous, acetate, citrate, and phosphate electrolytes. EIS studies revealed that the assembly film of TiO2/PThA/PBTh possess porous-type structure. They also confirmed the approximate value of Ef obtained from electrochemical studies. Both EIS and optical studies indicated that ac conductivity is much greater than dc conductivity. Guided by the properties of PBTh, no large changes in the energy band structure occurred due to occlusion of TiO2 in PBTh films. Occlusion of TiO2/PThA into the network structure of PBTh inhibits the energy dissipation process and impeded charge polarization process of the material. Photoelectrochemical outcome suggested possible band alignments between the organic film and TiO2 and formation of hybrid sub-bands. Inclusion of TiO2 in the thiophene-based polymers enhanced the charge separation and consequently charge transfer processes and widen the absorption in visible light range.
文摘Evidence for the long period of a sustainable function of a thermoplastic gel electrolyte (TPGE) consists of polyethylene glycol (PEG)/I<sub>2</sub>/I<span style="color:#4f4f4f;"><sup>-</sup></span> in propylene carbonate (PC) was recorded. The studied photoactive assembly consists of PBTH/FTO/TPGE I<sub>2</sub>/I<span style="color:#4f4f4f;"><sup>-</sup></span>/Platinized FTO. The study showed that the assembly regenerates the expected photoelectrochemical (PEC) quantities such as photocurrent, and other dielectric properties with infrequent use through an elapsed period of 18 months. The behavior of PBTh/occluded with CdS was mentored during this period and showed a similar result. PEC studies indicated the presence of p-p type hole accumulations interface, evident from the initial sharp rise in photocurrent. The change of open circuit potential (d<i>V<sub>oc</sub></i>) indicates that the shortest electron lifetime is 100 ms. The behavioral outcome of the assemblies within the period of study refracts stability of the electrode and the long life cycle of the electrolyte.
基金support from the National Natural Science Foundation of China(22427802,22132002)the National Key Research and Development Program of China(2022YFA1205502)the 111 project(B14041)for this work.
文摘Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry,biology and materials science due to their unique and precisely tunable optoelectronic properties.The incorporation of the heteroatom boron(B)enables these materials to exhibit high luminescence quantum yields,adjustable absorption and emission wavelengths,and exceptional photostability.This review examines the molecular design and applications of tetra-coordinate boron-based photoactive molecules,highlighting their roles in fluorescence sensing,anticounterfeiting,and imaging.We outline how structural features impact their properties and discuss strategies for enhancing their performance,including ligand modification and the extension of conjugation length,among others.Additionally,future research focus in this field is also addressed including strategies for diversifying molecular structures and enhancing molecular stability,which is believed to pave the way for innovative solutions to the challenges in areas such as sensing,imaging and information security.
基金supported by the National Natural Science Foundation of China(21925112,22175181,22371063,22175191,22075027,and 22475002)。
文摘Photoactive complexes of nonprecious transition metals,mainly including those in the first-row and partially the second-row of the Periodic table of elements,have received increasing attention in view of their low cost and long-term sustainability.They are recognized as promising alternatives to noble transition metal complex congeners that have been extensively studied in optoelectronic devices,artificial photosynthesis,photocatalysis,biodiagnostics,and therapeutics,etc.This review is devoted to a comprehensive summary on the classical and recent advances on photoactive nonprecious transition metal complexes,including photoactive Zr,V,Cr,Mo,and W complexes,Mn complexes and hybrids,Fe,Co,Ni,and Cu complexes,and Zn and Cd complexes and hybrids.A particular focus is given on the molecular design,modulation of photophysical and photochemical properties,and applications of the representative and lately-developed nonprecious metal complexes.In addition,a perspective on the future development in this field is provided at the end of this review.
基金National MCF Energy R&D Program(No.2018YFE0306105)Innovative Research Group Project of the National Natural Science Foundation of China(No.51821002)+3 种基金the National Natural Science Foundation of China(Nos.51725204,21771132,51972216,and 52041202)Natural Science Foundation of Jiangsu Province(Nos.BK20190041 and BK20190828)Key-Area Research and Development Program of GuangDong Province(No.2019B010933001)Collaborative Innovation Center of Suzhou Nano Science&Technology,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and the 111 Project.
文摘Highly efficient photo-assisted electrocatalysis for methanol oxidation reaction(MOR)realizes the conversion of solar and chemical energy into electric energy simultaneously.Here we report a Pt-MXene-TiO2 composite for highly efficient MOR via a photoactive cascaded electro-catalytic process.With light(UV and visible light)irradiation,MXene-TiO2 serves as the photo active centre(photoinduced hole)to activate the methanol molecules,while Pt particles are the active centre for the following electro-catalytic oxidation of those activated methanol molecules.Pt-MXene-TiO2 catalyst exhibits a lower onset potential(0.33 V)and an impressive mass activity of 2,750.42 mA·mg^−1 Pt under light illumination.It represents the highest MOR activity ever reported for photo-assisted electrocatalysts.Pt-MXene-TiO2 also shows excellent CO tolerance ability and stability,in which,after long-term(5,000 s)reaction,still keeps a high mass activity of 1,269.81 mA·mg−1Pt(62.66%of its initial activity).The photo-electro-catalytic system proposed in this work offers novel opportunities for exploiting photo-assisted enhancement of highly efficient and stable catalysts for MOR.
基金National Natural Science Foundation of China,Grant/Award Numbers:22022509,51873140,51820105003。
文摘Organic solar cells(OSCs)have unique advantages of light weight,low-cost solution processing,and capability to be fabricated into flexible and semitransparent devices,which are widely recognized as a promising photovoltaic technology.Photoactive layers of the OSCs are composed of a blend of a p-type organic semiconductor as a donor(D)and an n-type organic semiconductor as acceptor(A).The morphology of the active layer with D/A nano-scaled aggregation and face-onπconjugated packing,and D/A interpenetrating network is crucial for achieving high photovoltaic performance of the OSCs.Therefore,great efforts have been devoted to control and optimize morphology of the active layers.This perspective focuses on the morphological control by solvent/solid processing additives and the morphology optimization by postdeposition treatment with thermal annealing and/or solvent vapor annealing,which have been extensively adopted and exhibit promising positive effect in optimizing the morphology.Representative examples are given and discussed to understand the foundation of the postdeposition treatments on tuning the morphology.Insights into the role of the postdeposition treatments and additive treatments on the morphology optimization will be beneficial to further improvement in morphology optimization for practical organic photovoltaic application.
基金supported by the National Natural Science Foundation of China (U1205112,51002053)the Key Project of the Chinese Ministry of Education (212206)+1 种基金the Programs for Prominent Young Talents and New Century Excellent Talents in Fujian Province Universitythe Promotion Program for Yong and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN- YX102)
文摘A new kind of photoactive electrodes with nanocrystalline TiO2(nano-TiO2)secondary structure is successfully prepared via a simple method of adding a small amount of TiCl4 2-propanol solution in conventional nano-TiO2 paste to form micro-sized nano-TiO2 aggregates.The benefits of this special structure include improved optical absorption,increased light scattering ability,and enhanced electron transport and collection efficiency.Dye-sensitized solar cells(DSCs)based on these photoactive electrodes show improved performance.The power conversion efficiency of the cells can be increased from 5.03%to 7.30%by substituting 6μm conventional nano-TiO2 thin film with the same thickness of as-prepared nano-TiO2 aggregates film in the photoactive electrodes.A higher power conversion efficiency of the cells can be obtained by further increasing the thickness of the nano-TiO2 aggregates film.
基金supported by the National Natural Science Foundation of China(21603020,61505018 and 51503022)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1501116 and KJ1401122)+2 种基金the Basic and Frontier Research Program of Chongqing Municipality(cstc2016jcyjA0451,cstc2015jcyjA90020 and cstc2016jcyjA0140)the Introduction of Talent Projects of Chongqing University of Arts and Sciences(R2014CJ05 and R2012CH09)The study was also supported by NPRP grant#NPRP7227-1-034 from Qatar National Research Fund
文摘We reported enhanced performance of polymer solar cells, based on poly(3-hexylthiophene):[6,6]-phenylC_(61)-butyric acid methyl ester(P3HT:PC_(61)BM) and polythieno[3,4-b]-thiophene-co-benzodithiophene:[6,6]-phenylC_(71)-butyric acid methyl ester(PTB7:PC_(71)BM) photovoltaic systems, by a two-step dissolution treatment of photoactive blends. Optical and morphological characterization revealed that the composition of the ordered polymer and donor/acceptor phase structure in the photoactive layer can be optimized using a two-step dissolution treatment. In addition, time-resolved photoluminescence indicated that exciton dissociation efficiency could be increased using this method. Current density-voltage(J-V) measurements showed that power conversion efficiencies(PCE) of the two-step dissolution treated devices were higher than those of one-step treated devices by 24% and 8% for P3HT:PC61BM and PTB7:PC_(71)BM systems, respectively. Therefore, this two-step dissolution treatment further optimizes the performance of polymer solar cells.
文摘In recent times,solar energy has become one of the largest available sources of renewable energy at our disposal.However,the design of highly efficient solar cells is increasingly becoming crucial as there has been a surge for economically viable alternative energy sources with the lowest cost.Significant advances have been made through different routes to make photovoltaic(PV)/solar technologies economically viable,eco-friendly and consequently scalable.As a result,cellulose nanomaterials have become one of the emerging technologies in this regard because of the advantages of high-value bio-based nanostructured materials,such as their abundance and sustainability.Nanocellulose-based photoactive nanocomposite materials can be made by integrating conducting photoactive and electroconductive materials with hydrophilic biocompatible cellulose.Inorganic nanoparticles,such as graphene/reduced graphene oxide cadmium sulphide quantum dots,amongst others,can be introduced into the nanocellulose matrix and can be applied either as charge transporters or photoactive materials in different types of solar cells.Thus,in this review,we highlight the optoelectronic properties of different photoactive materials,particularly nanocellulose-based graphene nanocomposites;their efficiencies and drawbacks were X-rayed.The effect of doping each PV material on the PV performance is also discussed.It is anticipated that the novel material would result in a reduction in the cost of solar cells,jointly enhancing their efficacy in generating environmentally friendly electricity.Since the fabrication techniques and equipment play a crucial role in the development of solar cells,the fabrication techniques of bulk-heterojunction(BHJ)cells containing a nanocellulose-based graphene composite and case studies of already fabricated BHJ PV cells with nanocellulose-based graphene composite are discussed.
基金supported by the Robert A.Welch Foundation through a Welch Endowed Chair to H.-C.Z.(A0030).
文摘CONSPECTUS:This Account aims to concisely summarize recent advancements in the field of photocatalysis,with a particular focus on dimension-reduced metal−organic nanomaterials,including coordination cages and 2D structures.Metal−organic frameworks(MOFs),known for their high crystallinity,porosity,and well-determined structures,are at the forefront of this research.They offer a unique confined environment that is optimal for enhancing host−vip interactions.
基金supported by the National Natural Science Foundation of China(Nos.22371263 and U2004193)Natural Science Foundation of Henan Province(No.232300421225)。
文摘Metal nanoclusters with well-defined atomic structures offer significant promise in the field of catalysis due to their sub-nanometer size and tunable organic-inorganic hybrid structural features.Herein,we successfully synthesized an 11-core copper(Ⅰ)-alkynyl nanocluster(Cu11),which is stabilized by alkynyl ligands derived from a photosensitive rhodamine dye molecule.Notably,this Cu11cluster exhibited excellent photocatalytic hydrogen evolution activity(8.13 mmol g-1h-1)even in the absence of a mediator and noble metal co-catalyst.Furthermore,when Cu11clusters were loaded onto the surface of TiO_(2)nanosheets,the resultant Cu11@TiO_(2)nanocomposites exhibited a significant enhancement in hydrogen evolution efficiency,which is 60 times higher than that of pure TiO_(2)nanosheets.The incorporation of Cu11clusters within the Cu11@TiO_(2)effectively inhibits the recombination of photogenerated electrons and holes,thereby accelerating the charge separation and migration in the composite material.This work introduces a novel perspective for designing highly active copper cluster-based photocatalysts.
基金Project supported by National Key Research and Development Program of China(2022YFB3504100,2021YFB3500600)National Natural Science Foundation of China(22208170)+4 种基金Basic Scientific Research Expenses Program of Universities directly under Inner Mongolia Autonomous Region(JY20220286)Cooperation Foundation for the Chunhui Plan Program of Ministry of Education of China(202200554)Open Project Program of Key Laboratory of Opticelectric Sensing and Analytical Chemistry for Life Science,MOE(M2024-7)Open Project Program of Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental RemediatiSon(PSMER2023008)the Open Foundation of State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control(SEMPC2023004)。
文摘Rare earth elements are highly applicable in photocatalysis due to their partially filled 4f orbitals,existing in electronic structures that facilitate the transfer of electrons during the reaction process.Among these materials,CeO_(2)has a distinctive external electronic structure(4f^(1)5d^(1)6s^(2)),abundant oxygen vacancies,and strong conversion ability of Ce^(4+)/Ce^(3+),which makes it an attractive candidate in the field of photocatalysis.To broaden its practical applications in the visible region,the drawbacks of a wide band gap and a slow Ce^(4+)/Ce^(3+)cycle have been addressed through the modification of CeO_(2),thereby accelerating light absorption and self-circulation,and enhancing photocatalytic activity.This paper presents a review of the preparation of modified CeO_(2)catalysts and their application in the conversion of cerium valence state in the photocatalytic degradation of pollutants in water.Furthermore,this paper presents a summary of the most recent development and current challenges,as well as prospect for the application of modified CeO_(2)-based materials.
基金the National Natural Science Foundation of China(No.51978201)the State Key Laboratory of Urban Water Resource and Environment(No.2020DX08)。
文摘Photocatalyst is the most widespread method in advanced oxidation technologies,but due to the photoinduced electron combine easily with hole and the wavele ngth of adsorption is limited which will affect some practical applications.Carbon quantum dots(CQDs)is non-toxic and harmless green materials,it has the ability to improve the photocatalytic effect which is attributed to its good electrical and optical properties.Their up-conversion effect,photosensitization and electrical conductivity are assistants which help promote the photocatalytic effect in environmental applications.The key mechanisms of CQDs to improve photocatalysis can be roughly divided into three categories:1)Up-conversion effect conve rts the incident light into the emitted light with high ene rgy to solve the problem which is the light absorption range;2)CQDs act as a photosensitizer instead of valence band to provide electrons to the conduction band of semiconductor;3)CQD s can be used as the internal or external electronic conductor in materials to alleviate the trend of electron and hole separation.However,CQDs and CQDs-based photocatalysts have different views to solve environmental problems,so it is necessary to integrate different views.Therefore,this review is mainly aimed at the recent researches about the preparation processes of CQD,CQD s-based photocatalysts,and their ability to remove environmental pollutants,with a special emphasis on the mechanism for depredating pollutants.Furthermore,this paper analyzes and discusses the prospects and challenges of CQDs in the environmental field.
文摘Discussion is presented on the use of the photoisomerization of azobenzene chromophore in the design andpreparation of novel functional materials. The two systems reviewed are azobenzene polymer-stabilized liquid crystals andazobenzene elastomers. In the first case, a polymer network containing azobenzene moieties is used to optically induce andstabilize a long-range liquid crystal orientation without the need of treating the surfaces of the substrates. This optical andrubbing-free approach was applied to nematic and ferroelectric liquid crystals. In the second case, an azobenzene side-chainliquid crystalline polymer is grafted onto a styrene-butadiene-styrene triblock copolymer to yield a photoactive thermoplasticelastomer. Coupled mechanical and optical effects make possible the formation of dimaction gratings that may be useful formechanically tunable optical devices.
文摘A systematic interpretation of laser-induced damage in the nanosecond regime is realized with a defect distribution buried inside the redeposited layer arising from a polishing process. Under the 355-nm laser irradiation, the size dependence of the defect embedded in the fused silica can be illustrated through the thermal conduction model. Considering CeO2 as the major initiator, the size distribution with the power law model is determined from the damage probability statistics. To verify the accuracy of the size distribution, the ion output scaling with depth for the inclusion element is obtained with the secondary ion mass spectrometer. For CeO2 particulates in size of the depth interval with ion output satisfied in the negative exponential form, the corresponding density is consistent with that of the identical size in the calculated size distribution. This coincidence implies an alternative method for the density analysis of photoactive imperfections within optical components at the semi-quantitative level based on the laser damage tests.
文摘Infections can hinder orthopedic implant function and retention.Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion.Several emerging antimicrobial technologies that integrate a multidisciplinary combination of drug delivery systems,material science,immunology,and polymer chemistry are in development and early clinical use.This review outlines orthopedic implant antimicrobial technology,its current applications and supporting evidence,and clinically promising future directions.