期刊文献+
共找到301,520篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanism of enhancing NH_(3)-SCR performance of Mn-Ce/AC catalyst by the structure regulation of activated carbon with calcite in coal
1
作者 NIU Jian LI Yuhang +4 位作者 BAI Baofeng WEN Chaolu LI Linbo ZHANG Huirong GUO Shaoqing 《燃料化学学报(中英文)》 北大核心 2026年第1期69-79,共11页
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ... To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced. 展开更多
关键词 CALCITE activated carbon structure Mn-Ce/AC catalyst NH_(3)-SCR performance
在线阅读 下载PDF
From microstructure to performance optimization:Innovative applications of computer vision in materials science
2
作者 Chunyu Guo Xiangyu Tang +10 位作者 Yu’e Chen Changyou Gao Qinglin Shan Heyi Wei Xusheng Liu Chuncheng Lu Meixia Fu Enhui Wang Xinhong Liu Xinmei Hou Yanglong Hou 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期94-115,共22页
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear... The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects. 展开更多
关键词 MICROSTRUCTURE deep learning computer vision performance prediction image generation
在线阅读 下载PDF
Effect of Al-Li alloy with various Li content on the energy and combustion performance of HTPB propellant
3
作者 Weiqiang Xiong Yunjie Liu +3 位作者 Tianfu Zhang Dawen Zeng Xiang Guo Aimin Pang 《Defence Technology(防务技术)》 2026年第1期30-39,共10页
In composite solid propellants with high aluminum(Al)content and low burning rate,incomplete combustion of the Al powder may occur.In this study,varying lithium(Li)content in Al-Li alloy powder was utilized instead of... In composite solid propellants with high aluminum(Al)content and low burning rate,incomplete combustion of the Al powder may occur.In this study,varying lithium(Li)content in Al-Li alloy powder was utilized instead of pure aluminum particles to mitigate agglomeration and enhance the combustion efficiency of solid propellants(Combustion efficiency herein refers to the completeness of metallic fuel oxidation,quantified as the ratio of actual-to-theoretical energy released during combustion)with high Al content and low burning rates.The impact of Al-Li alloy with different Li contents on combustion and agglomeration of solid propellant was investigated using explosion heat,combustion heat,differential thermal analysis(DTA),thermos-gravimetric analysis(TG),dynamic high-pressure combustion test,ignition experiment of small solid rocket motor(SRM)tests,condensation combustion product collection,and X-ray diffraction techniques(XRD).Compared with pure Al,Al-Li alloys exhibit higher combustion heat,which contributes to improved combustion efficiency in Al-Li alloy-containing propellants.DTA and TG analyses demonstrated higher reactivity and lower ignition temperatures for Al-Li alloys.High-pressure combustion experiments at 5 MPa showed that Al-Li alloy fuel significantly decreases combustion agglomeration.The results from theφ75 mm andφ165 mm SRM and XRD tests further support this finding.This study provides novel insights into the combustion and agglomeration behaviors of high-Al,low-burning-rate composite solid propellants and supports the potential application of Al-Li alloys in advanced propellant formulations. 展开更多
关键词 Al-Li alloy Combustion and energy performance AGGLOMERATION
在线阅读 下载PDF
Interfacial engineering of Al-NH_(4)CoF_(3)@P(VDF-HFP)core-shell energetic composites via electrostatic spraying:Enhanced stability and combustion performance
4
作者 Xiandie Zhang Zhijie Fan +4 位作者 Heng Xu Jinbin Zou Chongqing Deng Xiang Zhou Xiaode Guo 《Defence Technology(防务技术)》 2026年第1期210-223,共14页
Al/NH_(4)CoF_(3)-Φ(Φ=0.5,1.0,1.5,2.0,and 3.0)binary composites and Al-NH_(4)CoF_(3)@P(VDF-HFP)ternary composites are fabricated via ultrasonication-assisted blending and electrostatic spraying.The effect of equivale... Al/NH_(4)CoF_(3)-Φ(Φ=0.5,1.0,1.5,2.0,and 3.0)binary composites and Al-NH_(4)CoF_(3)@P(VDF-HFP)ternary composites are fabricated via ultrasonication-assisted blending and electrostatic spraying.The effect of equivalence ratio(Φ)on the reaction properties is systematically investigated in the binary Al/NH_(4)CoF_(3)system.For ternary systems,electrostatic spraying allows both components to be efficiently encapsulated by P(VDF-HFP)and to achieve structural stabilization and enhanced reactivity through synergistic interfacial interactions.Morphological analysis using SEM/TEM revealed that P(VDF-HFP)formed a protective layer on Al and NH_(4)CoF_(3)particles,improving dispersion,hydrophobicity(water contact angle increased by 80.5%compared to physically mixed composites),and corrosion resistance.Thermal decomposition of NH_(4)CoF_(3)occurred at 265℃,releasing NH_(3)and HF,which triggered exothermic reactions with Al.The ternary composites exhibited a narrowed main reaction temperature range and concentrated heat release,attributed to improved interfacial contact and polymer decomposition.Combustion tests demonstrated that Al-NH_(4)CoF_(3)@P(VDF-HFP)achieved self-sustaining combustion.In addition,a simple validation was done by replacing the Al component in the aluminium-containing propellant,demonstrating its potential application in the propellant field.This work establishes a novel strategy for designing stable,high-energy composites with potential applications in advanced propulsion systems. 展开更多
关键词 Anti-aging properties Low-temperature reaction Electrostatic spraying Gas generation Combustion performance
在线阅读 下载PDF
Influences of muzzle jets of aircraft guns on aerodynamic performance of wings
5
作者 Zijie Li Hao Wang 《Defence Technology(防务技术)》 2026年第1期52-63,共12页
The core components of an aircraft and the source of its lift are its wings,but lift generation is disrupted by the high temperature and pressure generated on the wing surface when an aircraft gun is fired.Here,to inv... The core components of an aircraft and the source of its lift are its wings,but lift generation is disrupted by the high temperature and pressure generated on the wing surface when an aircraft gun is fired.Here,to investigate how this process influences the aerodynamic parameters of aircraft wings,the k-ωshearstress-transport turbulence model and the nested dynamic grid technique are used to analyze numerically the transient process of the muzzle jet of a 30-mm small-caliber aircraft gun in highaltitude(10 km)flight with an incoming Mach number of Ma=0.8.For comparison,two other models are established,one with no projectile and the other with no wing.The results indicate that when the aircraft gun is fired,the muzzle jet acts on the wing,creating a pressure field thereon.The uneven distribution of high pressure greatly reduces the lift of the aircraft,causing oscillations in its drag and disrupting its dynamic balance,thereby affecting its flight speed and attitude.Meanwhile,the muzzle jet is obstructed by the wing,and its flow field is distorted and deformed,developing upward toward the wing.Because of the influence of the incoming flow,the shockwave front of the projectile changes from a smooth spherical shape to an irregular one,and the motion parameters of the projectile are also greatly affected by oscillations.The present results provide an important theoretical basis for how the guns of fighter aircraft influence the aerodynamic performance of the wings. 展开更多
关键词 Aircraft gun WING Muzzle jet Aerodynamic performance Nested moving mesh
在线阅读 下载PDF
A high-energy powder with excellent combustion reaction performance:Surface modification strategy of boron powder based on non-thermal plasma
6
作者 Kangkang Li Jianyong Xu +9 位作者 Xiaoting Lei Mengzhe Yang Jing Liu Luqi Guo Pengfei Cui Dihua Ouyang Chunpei Yu He Cheng Jiahai Ye Wenchao Zhang 《Defence Technology(防务技术)》 2026年第1期289-300,共12页
The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative conti... The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites. 展开更多
关键词 Oxide film materials Surface modification Boron powder Non-thermal plasma Combustion performance
在线阅读 下载PDF
Effect of Thermoelectric Cooler Arrangements on Thermal Performance and Energy Saving in Electronic Applications:An Experimental Study
7
作者 M.N.Abd-Al Ameer Iman S.Kareem Ali A.Ismaeel 《Energy Engineering》 2026年第1期511-526,共16页
Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forc... Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management. 展开更多
关键词 Energy consumption mono ethylene glycol Peltier effect performance factor(COP)
在线阅读 下载PDF
An effective strategy to enhance the cathodic performance of low-temperature solid oxide fuel cells through Mo-doping
8
作者 Juanjuan Tu Shanshan Jiang +7 位作者 Yujia Wang Weitao Hu Lingyan Cheng Jingjing Jiang Huangang Shi Beibei Xiao Chao Su Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期322-334,共13页
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0... This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells. 展开更多
关键词 molybdenum doping cathodic performance oxygen reduction reaction low-temperature solid oxide fuel cells
在线阅读 下载PDF
“Proton‑Iodine” Regulation of Protonated Polyaniline Catalyst for High‑Performance Electrolytic Zn‑I_(2) Batteries
9
作者 Mengyao Liu Kovan Khasraw Abdalla +8 位作者 Meng Xu Xueqian Li Runze Wang Qi Li Xiaoru Zhang Yanan Lv Yueyang Wang Xiaoming Sun Yi Zhao 《Nano-Micro Letters》 2026年第3期196-209,共14页
Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capabi... Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries. 展开更多
关键词 Electrolytic Zn-I_(2)battery Proton-iodine regulation Direct I0/I−reaction conversion Limited polyiodide shuttling High performance
在线阅读 下载PDF
Impact of Oxygen Vacancy on Performance of Amorphous InGaZnO Based Schottky Barrier Diode 被引量:1
10
作者 JIA Bin TONG Xiaowen +3 位作者 HAN Zikang QIN Ming WANG Lifeng HUANG Xiaodong 《发光学报》 北大核心 2025年第3期412-420,共9页
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin... Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes. 展开更多
关键词 INGAZNO Schottky barrier diode oxygen vacancy rectifying performance
在线阅读 下载PDF
Research of NOx Sensors Performance Test 被引量:1
11
作者 Zhengang Zhang Zhonggang Tang +3 位作者 Wei Gao Li Liu Cong Wang Hourui Sun 《Journal of Materials Science and Chemical Engineering》 2025年第2期23-30,共8页
NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a nec... NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly. 展开更多
关键词 NOx Sensors FUNCTION performance Test Basic Principle
在线阅读 下载PDF
Study on the seismic performance of buckling-restrained SPSW structure with butterfly-shaped links on the lateral sides 被引量:1
12
作者 ZHOU Guangru LIU Han +3 位作者 LI Xiangmin CUI Shaoxian LENG Yubing HAN Chongqing 《Journal of Southeast University(English Edition)》 2025年第2期190-198,共9页
A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-spa... A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-span two-story concrete-filled steel tube(CFT)column frame specimen equipped with lateral-side butterfly-shaped linked BRSPSWs(LBL-BRSPSWs)is evaluated under low-cycle reversed loading.A finite element(FE)model is developed and validated based on the test results.This FE model accurately simulates the failure modes and load-dis-placement curves.Parametric analyses are conducted on the butterfly-shaped links.The results show that the interactions between the CFT column frame and LBL-BRSPSWs are sig-nificantly influenced by the width ratio of the butterfly-shaped links,while the taper ratio and aspect ratio have relatively minor influences.Compared with traditional steel shear walls with four-sided connections,LBL-BRSPSWs reduce the additional axial forces and bending moments in the frame columns by 28%to 73%and 17%to 87%,respectively,with only a 9%to 30%decrease in the lateral resistance.The experimental and parametric analysis results indicate that setting butterfly-shaped links on the lateral sides of BRSPSWs can significantly enhance their cooperative performance with the boundary frame.The butterfly-shaped link width ratio has a linear relationship with the lateral-resistance performance of the specimens and the additional internal forces in the frame columns.To ensure that LBL-BRSPSW fails prior to the column frames,the link width ratio should be optimized. 展开更多
关键词 steel plate shear wall structure seismic performance performance cooperative performance buckling-restrained steel plate shear wall butterfly-shaped link
在线阅读 下载PDF
Functionalized Separators Boosting Electrochemical Performances for Lithium Batteries 被引量:2
13
作者 Zixin Fan Xiaoyu Chen +5 位作者 Jingjing Shi Hui Nie Xiaoming Zhang Xingping Zhou Xiaolin Xie Zhigang Xue 《Nano-Micro Letters》 2025年第6期55-92,共38页
The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separat... The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries. 展开更多
关键词 SEPARATORS Polymer electrolytes Lithium batteries Electrochemical performances FUNCTIONALIZATION
在线阅读 下载PDF
Improvement of Cold Recycled Mixture Performance Based on Improved Density Test Method and RAP Characteristics
14
作者 HAN Zhanchuang PANG Yafeng LIN Hongwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期79-87,共9页
The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were... The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM. 展开更多
关键词 RAP volume parameters high-temperature performance low-temperature performance water stability
原文传递
Electrochemical behavior and discharge performance of as-rolled precipitate-free Mg-Sn alloy as anode for Mg-air batteries 被引量:2
15
作者 Xu LI Wei-li CHENG +7 位作者 Jian LI Fei-er SHANGGUAN Hui YU Li-fei WANG Hang LI Hong-xia WANG Jin-hui WANG Hua HOU 《Transactions of Nonferrous Metals Society of China》 2025年第3期832-848,共17页
A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anod... A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture. 展开更多
关键词 Mg-air battery Mg-Sn anode grain structure electrochemical behavior discharge performance
在线阅读 下载PDF
From Static and Dynamic Perspectives:A Survey on Historical Data Benchmarks of Control Performance Monitoring 被引量:1
16
作者 Pengyu Song Jie Wang +1 位作者 Chunhui Zhao Biao Huang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期300-316,共17页
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be... In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research. 展开更多
关键词 Control performance monitoring(CPM) datadriven method historical data benchmark(HIS) industrial process performance index static and dynamic analysis.
在线阅读 下载PDF
Machine learning approaches for predicting impact sensitivity and detonation performances of energetic materials 被引量:2
17
作者 Wei-Hong Liu Qi-Jun Liu +1 位作者 Fu-Sheng Liu Zheng-Tang Liu 《Journal of Energy Chemistry》 2025年第3期161-171,共11页
Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as ... Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity. 展开更多
关键词 Energetic materials Machine learning Impact sensitivity Detonation performances Feature descriptors Balancing strategy
在线阅读 下载PDF
Insights into the effect of Y substitution on superlattice structure and electrochemical performance of A_(5)B_(19)-type La-Mg-Ni-based hydrogen storage alloy for nickel metal hydride battery 被引量:5
18
作者 Yanan Guo Wenfeng Wang +5 位作者 Huanhuan Su Hang Lu Yuan Li Qiuming Peng Shumin Han Lu Zhang 《Journal of Materials Science & Technology》 2025年第4期60-69,共10页
La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation pr... La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation properties.However,the cycling stability is not currently satisfactory enough which plagues its application.Herein,a strategy of partially substituting La with the Y element is proposed to boost the capacity durability of La-Mg-Ni-based alloys.Furthermore,phase structure regulation is implemented simultaneously to obtain the A5 B19-type alloy with good crystal stability specifically.It is found that Y promotes the phase formation of the Pr5 Co19-type phase after annealing at 985℃.The alloy containing Y contributes to the superior rate capability resulting from the promoted hydrogen diffusion rate.Notably,Y substitution enables strengthening the anti-pulverization ability of the alloy in terms of increasing the volume match between[A_(2)B_(4)]and[AB5]subunits,and effectively enhances the anti-corrosion ability of the alloy due to high electronegativity,realizing improved long-term cycling stability of the alloy from 74.2%to 78.5%after cycling 300 times.The work is expected to shed light on the composition and structure design of the La-Mg-Ni-based hydrogen storage alloy for Ni-MH batteries. 展开更多
关键词 Nickel metal hydride battery Y element La-Mg-Ni-based alloy A5 B19-type superlattice structure Electrochemical performance
原文传递
The sow vaginal and gut microbiota associated with longevity and reproductive performance 被引量:1
19
作者 Ziyu Liu Tsungcheng Tsai +5 位作者 Bin Zuo Samantha Howe Jason EFarrar Christopher ERandolph Charles VMaxwell Jiangchao Zhao 《Journal of Animal Science and Biotechnology》 2025年第2期577-595,共19页
Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between... Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between the microbiome and sows with longevity in reproduction.Results In this study,we collected and sequenced rectal and vaginal swabs from 48 sows,nine of which completed up to four parities(U4P group),exhibiting reproductive longevity.We first identified predictors of sow longevity in the rectum(e.g.,Akkermansia)and vagina(e.g.,Lactobacillus)of the U4P group using RandomForest in the early breeding stage of the first parity.Interestingly,these bacteria in the U4P group showed decreased predicted KEGG gene abundance involved in the biosynthesis of amino acids.Then,we tracked the longitudinal changes of the micro-biome over four parities in the U4P sows.LEfSe analysis revealed parity-associated bacteria that existed in both the rectum and vagina(e.g.,Streptococcus in Parity 1,Lactobacillus in Parity 2,Veillonella in Parity 4).We also identi-fied patterns of bacterial change between the early breeding stage(d 0)and d 110,such as Streptococcus,which was decreased in all four parties.Furthermore,sows in the U4P group with longevity potential also showed better reproductive performance.Finally,we discovered bacterial predictors(e.g.,Prevotellaceae NK3B31 group)for the total number of piglets born throughout the four parities in both the rectum and vagina.Conclusions This study highlights how the rectal and vaginal microbiome in sows with longevity in reproduc-tion changes within four parities.The identification of parity-associated,pregnancy-related,and reproductive performance-correlated bacteria provides the foundation for targeted microbiome modulation to improve animal production. 展开更多
关键词 LONGEVITY Parity Rectal microbiome Reproductive performance SOWS Vaginal microbiome
在线阅读 下载PDF
Performance Enhancement of Aquivion-based Ionic Polymer Metal Composites for Cylindrical Actuators 被引量:1
20
作者 Xiaojie Tong Min Yu +3 位作者 Guoxiao Yin Yuwei Wu Chengbo Tian Gengying Wang 《Journal of Bionic Engineering》 2025年第1期1-11,共11页
As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine... As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine,soft robots,etc.However,the displacement and blocking force of the traditional sheet-type Nafion-IPMC need to be improved,and it has the limitation of unidirectional actuation.In this paper,a new type of short side chain Aquivion material is used as the polymer in the IPMC.The cylindrical IPMC is prepared by extrusion technology to improve its actuation performance and realize multi-degree-of-freedom motion.In comparison to the traditional Nafion-IPMC,the ion exchange capacity,specific capacitance,and conductivity of Aquivion-IPMC are improved by 28%,27%,and 32%,respectively,and the displacement and blocking force are improved by 57%and 25%,respectively.The cylindrical actuators can be deflected in eight directions.This indicates that Aquivion,as a polymer membrane for IPMC,holds significant application potential.By designing a cylindrical IPMC electrode distribution,the multi-degree-of-freedom deflection of IPMC can be realized. 展开更多
关键词 Ionic polymer-metal composite Equivalent weight Aquivion NAFION Actuation performance
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部