Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging ...Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging and discharging overpotentials,and unstable cycle life lead to low energy efficiency,thus limiting their commercial application.The rational design and synthesis of photocathode materials are effective ways to solve the above existing problems of photo-assisted LOB systems.Herein,the recent advances in the design and preparation of photocathode materials for photo-assisted LOBs were summarized in this review.First,we summarize the basic principles and comprehension of the reaction mechanism for photo-assisted LOBs.The second part introduces the latest research progress on photocathode materials.The third section describes the relationship between the structureproperties and electrochemistry of different photocathodes.In addition,attempts to construct efficient photocathode materials for photo-assisted LOBs through vacancy engineering,localized surface plasmon resonance(LSPR),and heterojunction engineering are mainly discussed.Finally,a discussion of attempts to construct efficient photocathode materials using other approaches is also presented.This work will motivate the preparation of stable and efficient photocathode materials for photo-assisted LOBs and aims to promote the commercial application of rechargeable photo-assisted LOBs energy storage.展开更多
Electrocatalysis for nitrate(NO_(3^(–)))removal from wastewater faces the challenge of merging efficient reduction and high selectivity to nitrogen(N2)with economic viability in a durable catalyst.In this study,bimet...Electrocatalysis for nitrate(NO_(3^(–)))removal from wastewater faces the challenge of merging efficient reduction and high selectivity to nitrogen(N2)with economic viability in a durable catalyst.In this study,bimetallic PdCu/TiO_(x)composite catalysts were synthesized with varying Pd and Cu ratios through electrochemical deposition on defective TiOxnanotube arrays.Denitrification experiments demonstrated that the Pd_(1)Cu_(1)/TiO_(x)catalyst exhibited the highest(NO_(3^(–)))removal rate(81.2%)and N_(2)selectivity(67.2%)among all tested catalysts.Leveraging the exceptional light-responsive property of TiO_(x),the introduction of light energy as an assisting factor in electrocatalysis further augmented the(NO_(3^(–)))treatment rate,resulting in a higher(NO_(3^(–)))removal rate of 95.1%and N_(2)selectivity of approximately 90%.Compared to individual electrocatalysis and photocatalysis systems,the overpotential for the catalytic interface active*H formation in the photo-assisted electrocatalysis system was remarkably reduced,thus accelerating electron migration and promoting(NO_(3^(–)))reduction kinetics.Economic analysis revealed an energy consumption of 2.74 k Wh/mol and a corresponding energy consumption per order(EEO)of 0.79 k Wh/m^(3)for the Pd_(1)Cu_(1)/TiOxcatalyst to reduce 25.2 mg/L of(NO_(3^(–)))-N in water to N_(2),showcasing remarkable competitiveness and economic advantages over other water treatment technologies.This study developed the PdCu/TiOxelectrocatalysts with high(NO_(3^(–)))removal rates and N_(2)selectivity,particularly when combined with light energy,the efficiency and selectivity were significantly enhanced,offering a competitive and economically viable solution for wastewater treatment.展开更多
In this study,we developed a tandem photo-assisted electrochemical(PA-EC)chemical strategy for both energy-saving ammonia/fertilizer synthesis and comprehensive nitrogen-and phosphorus-rich wastewater treatment,in whi...In this study,we developed a tandem photo-assisted electrochemical(PA-EC)chemical strategy for both energy-saving ammonia/fertilizer synthesis and comprehensive nitrogen-and phosphorus-rich wastewater treatment,in which synchronous hypophosphite ion(H_(2)PO_(2)^(-))oxidation to phosphate ion(PO_(4)^(3–))(POR)and nitrate reduction(NO_(3)RR)to ammonia(NH_(3))occur,followed by cascade chemical precipitation to generate struvite.Herein,a bifunctional Cu_(2)O@NiFe_(2)O_(4)Z-scheme heterojunction with a yolk/shell structure and oxygen vacancies(OVs)was designed and developed to optimize the NO_(3)RR/POR.Serving as a key component,the established PA-EC system consisted of a Janus Cu_(2)O@NiFe_(2)O_(4)/NF self-supporting integrated photocathode and a Cu_(2)O@NiFe_(2)O_(4)/NF photocathode with efficient struvite PA-EC synthesis performance under a low cell voltage of 1.6 V vs NHE.Specifically,Janus Cu_(2)O@NiFe_(2)O_(4)/NF photocathode exhibits superior performance with a high NH3 yield of 38.06 mmol L^(-1)and a faradaic efficiency(FE)of 92.31%at 1.6 V vs.NHE and enables ammonia FE over 60%in a broad NO_(3)–concentration window of 0.005–0.5 mol L^(-1).The photoassisted electrochemical catalytic mechanism and reaction pathway for struvite synthesis on Cu_(2)O@NiFe_(2)O_(4)were investigated through a series of experiments and theoretical calculations.The results demonstrated the critical roles of the interfacial electric field,void confinement,and oxygen vacancies in promoting the overall catalytic efficiency.These encouraging results warrant further studies on combined P and N recovery for efficient production of valuable fertilizers.展开更多
The lithium-oxygen battery(LOB)is a promising source of green energy due to its energy density.However,the development of this technology is limited by the insoluble discharge product it produces.In this work,a cathod...The lithium-oxygen battery(LOB)is a promising source of green energy due to its energy density.However,the development of this technology is limited by the insoluble discharge product it produces.In this work,a cathode material with a p-n heterostructure of polyaniline(PANI)/ZnS is prepared to trap visible light,utilizing a ZnS quantum dot(ZnS QD)network to form a large number of photogenerated electron–hole pairs,thus promoting the generation and decomposition of Li_(2)O_(2).The prepared PANI/ZnS has an ultra-low overpotential of 0.06 V under illumination.Furthermore,density functional theory theoretical calculation has demonstrated the ability of the heterostructures to adsorb oxygen-containing intermediates,which not only facilitates the growth of Li_(2)O_(2),but also reduces the reaction energy required to decompose Li_(2)O_(2).The present work provides a solution to the problem of insolubility of discharge products in photo-assisted LOB.展开更多
Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional ca...Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional catalyst of amorphous MoS_(x)(a-MoS_(x))with 3D layer-by-layer superstructure was synthesized by assembling basic active units[Mo_(3)S_(13)]^(2-)of MoS_(2).The large interlayer spacing and high exposure of active sites render a-MoS_(x)to have excellent synergy of adsorption and photo-assisted PMS activation for tetracycline(TC)degradation.Experiments and DFT calculation show that TC can be efficiently enriched on a-MoS_(x)by pore filling,π-πinteraction,hydrogen bonding and high adsorption energy.Subsequently,PMS can be quickly activated through electron transfer with a-MoS_(x),resulting in high TC degradation efficiency of 96.6%within 20 min.In addition,the synergistic mechanism of adsorption and photo-assisted PMS activation was explored,and the degradation pathway of TC was expounded.This work is inspirational for constructing bifunctional catalysts with superior synergistic adsorption and catalytic capabilities to remove refractory organic pollutants in water.展开更多
Photo-assisted rechargeable energy storage devices are a promising strategy to achieve sustainable development by simultaneously integrating solar energy conversion and supercapacitor storage.Herein,we fabricated a li...Photo-assisted rechargeable energy storage devices are a promising strategy to achieve sustainable development by simultaneously integrating solar energy conversion and supercapacitor storage.Herein,we fabricated a light-sensitive macroporous film based on carbon nanotube(CNT),intercalated with Co_(2)V_(2)O_(7),and then modified by black phosphorus quantum dots(BPQD).Physico-chemical characterization and density functional theory are employed to investigate the improved photo-assisted charge storage capability and the underlying mechanism.It is demonstrated that photo-generated carriers can be separated efficiently,and the formed abundant interfaces could modulate the electronic structure of the electrode,effectively im proving the conductivity.Under visible light,the electrode displays an ultra-high capacity of 138.4 mA h g^(-1)(197.9 mA h cm^(-3))at 1 A g^(-1).Besides,the CNT@Co_(2)V_(2)O_(7)/BPQD supercapacitor shows a maximum energy density of 44.4 Wh kg^(-1)(60.0 Wh L^(-1))at a power density of 800 W kg^(-1)(960 W L^(-1))and excellent cyclic stability of 104.8% after 13,000 charge/discharge cycles.The above improvements are attributed to the reactivity and kinetics of electrochemically active components.This study reveals the synergistic effects of multi-interface on“light,photo-generated charge,and energy storage”and provides new possibilities in the controllable design of novel photo-assisted energy storage devices.展开更多
Electrochemical detection is an efficient method for the detection of Bisphenol A(BPA).Herein,a sensitive photo-electrochemical sensor based on two-dimensional(2 D)TiO_(2)(001)nanosheets was fabricated and then used f...Electrochemical detection is an efficient method for the detection of Bisphenol A(BPA).Herein,a sensitive photo-electrochemical sensor based on two-dimensional(2 D)TiO_(2)(001)nanosheets was fabricated and then used for BPA electrochemical detection.Upon light irradiation,the 2 D TiO_(2)(001)nanosheets electrode provided a lower detection limit of BPA detection compared with an ambient electrochemical determination.The low detection limit is^5.37 nmol/L(S/N=3).Furthermore,profiting from the photoelectric characteristics,the 2 D TiO_(2)(001)nanosheets electrode exhibits a nice regeneration prope rty.After 45 min of light irradiation,the electrochemical signal was regenerated from14.7%to 82.9%of the original signal at the 6th cycle.This is attributed to the non-selective·OH mediation produced by the 2 D TiO_(2)(001)nanosheets mineralizing anodic polymeric products and resuming surface reactive sites.This investigation indicates that photo-assistance is an efficient method to improve the electrochemical sensor for detecting BPA in water environments.展开更多
Solar cells hold a function of photovoltaic conversion,while rechargeable metal batteries have an advantage of high energy storage.The conventional charge mode of batteries is made based on complete utilization of ele...Solar cells hold a function of photovoltaic conversion,while rechargeable metal batteries have an advantage of high energy storage.The conventional charge mode of batteries is made based on complete utilization of electric energy.The combination of solar cells and rechargeable metal batteries brings a new opportunity for the development of photo-assisted rechargeable batteries,in which the solar energy can be utilized to partially achieve photo-charging with or without external electrical bias.This review highlights the working mechanism and structure design of photo-assisted rechargeable metal batteries according to the characteristics of rechargeable metal batteries and advantage of the photovoltaic technology.In particular,the recent advances are introduced for photo-assisted rechargeable batteries based on light-weight metal anodes,including metal lithium,metal sodium,and metal zinc.The working features of the integrated devices are also discussed for energy saving under photo-assisted charging mode.Finally,a future outlook is provided for further improving the performance of photoassisted rechargeable metal batteries.展开更多
Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnS...Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy.展开更多
ZrO_2 nanodots are successfully prepared on LaAlO_3(LAO)(100) substrates by photo-assisted metal-organic chemical vapor deposition(MOCVD). It is indicated that the sizes and densities of ZrO_2 nanodots are contr...ZrO_2 nanodots are successfully prepared on LaAlO_3(LAO)(100) substrates by photo-assisted metal-organic chemical vapor deposition(MOCVD). It is indicated that the sizes and densities of ZrO_2 nanodots are controllable by modulating the growth temperature, oxygen partial pressure, and growth time. Meanwhile, the microwires are observed on the surfaces of substrates. It is found that there is an obvious competitive relationship between the nanodots and the microwires. In a growth temperature range from 500℃ to 660℃, the microwires turn longest and widest at 600℃, but in contrast, the nanodots grow into the smallest diameter at 600℃. This phenomenon could be illustrated by the energy barrier, decomposition rate of Zr(tmhd)_4, and mobility of atoms. In addition, growth time or oxygen partial pressure also affects the competitive relationship between the nanodots and the microwires. With increasing oxygen partial pressure from 451 Pa to 75_2 Pa,the microwires gradually grow larger while the nanodots become smaller. To further achieve the controllable growth, the coarsening effect of ZrO_2 is modified by varying the growth time, and the experimental results show that the coarsening effect of microwires is higher than that of nanodots by increasing the growth time to quickly minimize ZrO_2 energy density.展开更多
A series of experiments were conducted to systematically study the effects of etching conditions on GaN by a con-venient photo-assisted chemical (PAC) etching method. The solution concentration has an evident influe...A series of experiments were conducted to systematically study the effects of etching conditions on GaN by a con-venient photo-assisted chemical (PAC) etching method. The solution concentration has an evident influence on the surface morphology of GaN and the optimal solution concentrations for GaN hexagonal pyramids have been identified. GaN with hexagonal pyramids have higher crystal quality and tensile strain relaxation compared with as-grown GaN. A detailed anal- ysis about evolution of the size, density and optical property of GaN hexagonal pyramids is described as a function of light intensity. The intensity of photoluminescence spectra of GaN etched with hexagonal pyramids significantly increases compared to that of as-grown GaN due to multiple scattering events, high quality GaN with pyramids and the Bragg effect.展开更多
The planarization of silicon carbide(SiC),which is crucial for manufacturing power devices resilient to harsh working environments,has garnered significant attention.The utilization of titanium dioxide(TiO_(2))-based ...The planarization of silicon carbide(SiC),which is crucial for manufacturing power devices resilient to harsh working environments,has garnered significant attention.The utilization of titanium dioxide(TiO_(2))-based heterogeneous photocatalysts offers a promising avenue for achieving efficient polishing of SiC surfaces through photo-assisted chemical mechanical polishing(P-CMP)in an environmentally friendly manner.In this study,we employed nanodiamonds(NDs)and graphene oxide(GO)to fabricate a composite of TiO_(2)/ND/GO abrasives.Subsequently,the P-CMP performance of TiO_(2)/NDs/GO on the Si face of SiC was systematically investigated.High-resolution transmission electron microscopy(TEM)revealed the heterostructure between TiO_(2) and the NDs.Furthermore,the P-CMP results indicate that the heterostructure significantly enhances the polishing rate of the composite abrasives on SiC,achieving the highest material removal rate(MRR)of 600 nm/h and reducing the average surface roughness(S_(a))to 1.1705 nm.Additionally,owing to the lubricating and dispersing effects of GO,the occurrence of ND aggregation is avoided,preventing scratching on SiC.The measurement of the·OH concentration indicates that an increase in the·OH concentration is the primary factor contributing to the improvement in the MRR.The results from wetting angle and friction coefficient tests revealed that the polishing slurry containing TiO_(2)/NDs/GO exhibited excellent wettability and provided sufficient frictional force on the SiC surface.X-ray photoelectron spectroscopy(XPS)characterization demonstrated that TiO_(2)/NDs/GO enhanced the degree of oxidation of the SiC surface,leading to the formation of a softer oxide layer.Finally,on the basis of the experimental and characterization results,a comprehensive analysis of TiO_(2)/NDs/GO and P-CMP was conducted.展开更多
Li-O_(2)batteries with an ultrahigh theoretical energy density of up to 3500 W·h/kg have drawn extensive attention as future energy storage technologies.However,large discharge/charge overpotentials(>1 V)and u...Li-O_(2)batteries with an ultrahigh theoretical energy density of up to 3500 W·h/kg have drawn extensive attention as future energy storage technologies.However,large discharge/charge overpotentials(>1 V)and unsatisfactory cycling performance are the main obstacles for practical applications.Recently,integrating photocatalysis into Li-O_(2)batteries has emerged as a promising method to mitigate overpotentials,but the rational design of photocathodes with excellent photoelectrochemical activity and stability remains challenging.This review focuses on recent research progress on the reaction mechanisms in photo-assisted Li-O_(2)batteries and the development of photocathodes.We present several strategies for tailoring catalytic materials from the perspectives of material selection and its catalytic performance optimization,aiming to provide a fundamental understanding and insights into the design of efficient photocathodes.The key challenges in constructing highperformance photocathodes and potential strategies were also discussed,offering insights for the development and application of efficient photocathodes in photo-assisted Li-O_(2)batteries.展开更多
Photo-assisted capacitors are attractive devices for solar energy conversion and storage,while the behavior of photoelectrodes limits their performance.In this work,MoS_(2)photoelectrodes were modified by g-C_(3)N_(4)...Photo-assisted capacitors are attractive devices for solar energy conversion and storage,while the behavior of photoelectrodes limits their performance.In this work,MoS_(2)photoelectrodes were modified by g-C_(3)N_(4),exhibiting enhanced photo-rechargeable properties.Our results show that the introduction of g-C_(3)N_(4)increases the surface area of MoS_(2)photoelectrodes and promotes the transport of charge carriers,which can boost the specific capacity and cycle stability of capacitors.The as-prepared zinc-ion capacitors with g-C_(3)N_(4)/MoS_(2)photoelectrodes show a specific capacity of 380.93 F/g at 1 A/g under AM 1.5 G illumination.Remarkably,after 3000 cycles at 10 A/g,the capacity of the photo-assisted zinc-ion capacitor retains above 99%.展开更多
Establishing supply chains for future ammonia energy systems requires the development of efficient materials and processes for ammonia production under mild conditions.Recent researches disclose unique functionalities...Establishing supply chains for future ammonia energy systems requires the development of efficient materials and processes for ammonia production under mild conditions.Recent researches disclose unique functionalities of binary alkali and alkaline earth metal hydrides in mediating ammonia synthesis.Thanks to the rich compositional and structural properties of the metalhydrogen system,we herein report that LiBaH_(3),as a narrow band gap perovskite hydride,exhibits a strong response to visible light illumination.Specifically,hydridic hydrogen undergoes reductive elimination of producing H_(2)and creates an electron-rich surface.Such an environment favors dinitrogen fixation to form N-H bonds.Based on this chemical property,a chemical looping ammonia synthesis process mediated by LiBaH_(3)and driven by both photo and thermal energies was proposed and evaluated.This work demonstrates that hydride perovskites are promising candidates for mediating photo-assisted nitrogen fixation reactions.展开更多
Exploiting the intelligent photocatalysts capable of phase separation provides a promising solution to the removal of uranium,which is expected to solve the difficulty in separation and the poor selectivity of traditi...Exploiting the intelligent photocatalysts capable of phase separation provides a promising solution to the removal of uranium,which is expected to solve the difficulty in separation and the poor selectivity of traditional photocatalysts in carbonate-containing uranium wastewater.In this paper,theγ-FeOOH/konjac glucomannan grafted with phenolic hydroxyl groups/poly-N-isopropylacrylamide(γ-FeOOH/KGM(Ga)/PNIPAM)thermosensitive hydrogel is proposed as the photocatalysts for extracting uranium from carbonate-containing uranium wastewater.The dynamic phase transformation is demonstrated to confirm the arbitrary transition ofγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel from a dispersed state with a high specific surface area at low temperatures to a stable aggregated state at high temperatures.Notably,theγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel achieves a remarkably high rate of 92.3%in the removal of uranium from the wastewater containing carbonates and maintains the efficiency of uranium removal from uranium mine wastewater at over 90%.Relying on electron spin resonance and free radical capture experiment,we reveal the adsorption-reduction-nucleation-crystalliza tion mechanism of uranium onγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel.Overall,this strategy provides a promising solution to treating uranium-contaminated wastewater,showing a massive potential in water purification.展开更多
Developing new catalysts to decorate photoelectrodes has been widely used to enhance the performance of photoelectrochemical(PEC)cells.However,the high cost,complex synthesis,and poor stability of catalyst decoration ...Developing new catalysts to decorate photoelectrodes has been widely used to enhance the performance of photoelectrochemical(PEC)cells.However,the high cost,complex synthesis,and poor stability of catalyst decoration strongly hinder its practical application.Here,we report a facile and low-cost decoration of Ag-Pt nanoparticles(Ag-Pt NPs)on Si photocathodes with TiO_(2)/Ti sacrificial overlayers.Such a decoration does not rely on any metallic-ion precursor solution since it is formed automatically via galvanic replacement reactions during PEC measurements;that is,Ti is displaced by Ag^(+)and Pt^(2+)ions,which are from the employed reference and counter electrodes,respectively.The as-decorated Ag-Pt NPs are verified to significantly enhance the hydrogen evolution reduction kinetics without substantially degrading the optical performance of Si photocathodes.Owing to optoelectronic advantages,the overpotential required to maintain a photocurrent density of 10 mA cm(under AM1.5 G illumination)is reduced from-0.8 V_(RHE)(for the bare planar Si photocathode)to-0.1 V_(RHE)(for the planar Si photocathode with Ag-Pt NP decoration).Moreover,a further anodic shift(to 0 V_(RHE))is visible for the Si nanowire array photocathode with Ag-Pt NP decoration,along with high long-term stability of the PEC response in acidic and neutral electrolytes.This study opens a new opportunity for the photo-assisted decoration of various alloy NPs on the morphology-varying photoelectrodes with different applications.展开更多
Transition metal sulfide-based hydrogen evolution electrocatalysts still lag in catalytic activity due to the zero-deviated free energy of*H adsorption.Plasmonic metals bridge the gap between light utilization and pla...Transition metal sulfide-based hydrogen evolution electrocatalysts still lag in catalytic activity due to the zero-deviated free energy of*H adsorption.Plasmonic metals bridge the gap between light utilization and plasmon-mediated redox reactions for substantially enhanced electrocatalytic activity.In this work,a strategic broadband light utilization heterostructure,composed of two distinct Ag nanostructures(discontinuous Ag nanorods and monodispersed nanoparticles),is achieved through in situ sulfurization and metal leaching.The heterostructure benefits the electrocatalytic hydrogen evolution reactivity thanks to the localized surface plasmon resonance induced hot electrons injection and inter-gap electric fields revealed by the finite-difference time-domain simulation.Experimentally,the prudent heterostructured catalyst exhibits a significantly improved overpotential(at 10 mA cm−2)from 151 to 95 mV along with a Tafel slope from 74 to 45 mV dec−1 toward hydrogen evolution.Significantly,this instructional study sheds light on the design of hybrid photo-assisted electrocatalysts with cooperative effect of solar energy toward sustainable electrocatalysis.展开更多
Photo-assisted deposited method is often employed in the metal-organic chemical vapor deposition whose ion source is organic compounds. It has been proved to increase the deposition rate and improve the crystallinity ...Photo-assisted deposited method is often employed in the metal-organic chemical vapor deposition whose ion source is organic compounds. It has been proved to increase the deposition rate and improve the crystallinity of the films. We demonstrate a photo-assisted sputtering deposited method which is used to prepare high quality TiO_(2) films. The crystallinity of the films is improved by the photo assistance without changing the morphology. And the structural and optical properties remain the same. The photo-assisted deposited TiO_(2) film shows a H_(2) evolution rate of 1.62 μmol·cm^(-2)·h^(-1) that is about twice more than that of the pristine TiO_(2) film. It is found the Mott-Schottky effect responds for the photocatalytic activity. Photo-assisted deposited films show an enhanced photocatalytic activity due to the reduction of interface recombination and the high efficiency in the transferring of photo-generated carriers.展开更多
It is important to develop green and sustainable approaches to enhance electrochemical charge storage efficiencies.Herein,a two-step in-situ growth process was developed to fabricate carbon fiber paper-supported CeO_(...It is important to develop green and sustainable approaches to enhance electrochemical charge storage efficiencies.Herein,a two-step in-situ growth process was developed to fabricate carbon fiber paper-supported CeO_(2)/MnO_(2) composite(CeO_(2)/MnO_(2)–CFP)as a binder-free photoelectrode for the photo-assisted electrochemical charge storage.The formation of CeO_(2)/MnO_(2) type II heterojunction largely enhanced the separation efficiency of photo-generated charge carriers,resulting in a substantially enhanced photo-assisted charging capability of~20%.Furthermore,it retained a large part of its photo-enhanced capacitance(~56%)in dark even after the illumination was off for 12 h,which could be attributed to its slow release of stored photo-generated electrons from its specific band structure to avoid their reaction with O_(2) in dark.This study proposed the design principles for supercapacitors with both the photo-assisted charging capability and its long-lasting retainment in dark,which may be readily applied to other pseudocapacitive materials to better utilize solar energy.展开更多
文摘Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging and discharging overpotentials,and unstable cycle life lead to low energy efficiency,thus limiting their commercial application.The rational design and synthesis of photocathode materials are effective ways to solve the above existing problems of photo-assisted LOB systems.Herein,the recent advances in the design and preparation of photocathode materials for photo-assisted LOBs were summarized in this review.First,we summarize the basic principles and comprehension of the reaction mechanism for photo-assisted LOBs.The second part introduces the latest research progress on photocathode materials.The third section describes the relationship between the structureproperties and electrochemistry of different photocathodes.In addition,attempts to construct efficient photocathode materials for photo-assisted LOBs through vacancy engineering,localized surface plasmon resonance(LSPR),and heterojunction engineering are mainly discussed.Finally,a discussion of attempts to construct efficient photocathode materials using other approaches is also presented.This work will motivate the preparation of stable and efficient photocathode materials for photo-assisted LOBs and aims to promote the commercial application of rechargeable photo-assisted LOBs energy storage.
基金the National Natural Science Foundation of China(No.52300084)China Postdoctoral Science Foundation(No.2023M741151)the Fundamental Research Funds for the Central Universities(No.2024MS063)。
文摘Electrocatalysis for nitrate(NO_(3^(–)))removal from wastewater faces the challenge of merging efficient reduction and high selectivity to nitrogen(N2)with economic viability in a durable catalyst.In this study,bimetallic PdCu/TiO_(x)composite catalysts were synthesized with varying Pd and Cu ratios through electrochemical deposition on defective TiOxnanotube arrays.Denitrification experiments demonstrated that the Pd_(1)Cu_(1)/TiO_(x)catalyst exhibited the highest(NO_(3^(–)))removal rate(81.2%)and N_(2)selectivity(67.2%)among all tested catalysts.Leveraging the exceptional light-responsive property of TiO_(x),the introduction of light energy as an assisting factor in electrocatalysis further augmented the(NO_(3^(–)))treatment rate,resulting in a higher(NO_(3^(–)))removal rate of 95.1%and N_(2)selectivity of approximately 90%.Compared to individual electrocatalysis and photocatalysis systems,the overpotential for the catalytic interface active*H formation in the photo-assisted electrocatalysis system was remarkably reduced,thus accelerating electron migration and promoting(NO_(3^(–)))reduction kinetics.Economic analysis revealed an energy consumption of 2.74 k Wh/mol and a corresponding energy consumption per order(EEO)of 0.79 k Wh/m^(3)for the Pd_(1)Cu_(1)/TiOxcatalyst to reduce 25.2 mg/L of(NO_(3^(–)))-N in water to N_(2),showcasing remarkable competitiveness and economic advantages over other water treatment technologies.This study developed the PdCu/TiOxelectrocatalysts with high(NO_(3^(–)))removal rates and N_(2)selectivity,particularly when combined with light energy,the efficiency and selectivity were significantly enhanced,offering a competitive and economically viable solution for wastewater treatment.
文摘In this study,we developed a tandem photo-assisted electrochemical(PA-EC)chemical strategy for both energy-saving ammonia/fertilizer synthesis and comprehensive nitrogen-and phosphorus-rich wastewater treatment,in which synchronous hypophosphite ion(H_(2)PO_(2)^(-))oxidation to phosphate ion(PO_(4)^(3–))(POR)and nitrate reduction(NO_(3)RR)to ammonia(NH_(3))occur,followed by cascade chemical precipitation to generate struvite.Herein,a bifunctional Cu_(2)O@NiFe_(2)O_(4)Z-scheme heterojunction with a yolk/shell structure and oxygen vacancies(OVs)was designed and developed to optimize the NO_(3)RR/POR.Serving as a key component,the established PA-EC system consisted of a Janus Cu_(2)O@NiFe_(2)O_(4)/NF self-supporting integrated photocathode and a Cu_(2)O@NiFe_(2)O_(4)/NF photocathode with efficient struvite PA-EC synthesis performance under a low cell voltage of 1.6 V vs NHE.Specifically,Janus Cu_(2)O@NiFe_(2)O_(4)/NF photocathode exhibits superior performance with a high NH3 yield of 38.06 mmol L^(-1)and a faradaic efficiency(FE)of 92.31%at 1.6 V vs.NHE and enables ammonia FE over 60%in a broad NO_(3)–concentration window of 0.005–0.5 mol L^(-1).The photoassisted electrochemical catalytic mechanism and reaction pathway for struvite synthesis on Cu_(2)O@NiFe_(2)O_(4)were investigated through a series of experiments and theoretical calculations.The results demonstrated the critical roles of the interfacial electric field,void confinement,and oxygen vacancies in promoting the overall catalytic efficiency.These encouraging results warrant further studies on combined P and N recovery for efficient production of valuable fertilizers.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.52171206 and52271209)Key Project of Hebei Natural Science Foundation(Nos.F2024201031 and E20202201030)+4 种基金Beijing-Tianjin-Hebei Collaborative Innovation Community Construction Project(No.21344301D)the Second Batch of Young Talent of Hebei Province(Nos.70280016160250 and 70280011808)Key Fund in Hebei Province Department of Education China(No.ZD2021014)the Central Government Guide Local Funding Projects for Scientific and Technological Development(Nos.216Z4404G and 206Z4402G)Interdisciplinary Research Program of Natural Science of Hebei University(No.DXK202107)。
文摘The lithium-oxygen battery(LOB)is a promising source of green energy due to its energy density.However,the development of this technology is limited by the insoluble discharge product it produces.In this work,a cathode material with a p-n heterostructure of polyaniline(PANI)/ZnS is prepared to trap visible light,utilizing a ZnS quantum dot(ZnS QD)network to form a large number of photogenerated electron–hole pairs,thus promoting the generation and decomposition of Li_(2)O_(2).The prepared PANI/ZnS has an ultra-low overpotential of 0.06 V under illumination.Furthermore,density functional theory theoretical calculation has demonstrated the ability of the heterostructures to adsorb oxygen-containing intermediates,which not only facilitates the growth of Li_(2)O_(2),but also reduces the reaction energy required to decompose Li_(2)O_(2).The present work provides a solution to the problem of insolubility of discharge products in photo-assisted LOB.
基金supported by the National Natural Science Foundation of China(Nos.52370073,12274115)Program for Science and Technology Innovation Team in Universities of Henan Province(No.24IRTSTHN017)+3 种基金Natural Science Foundation of Henan Province(No.212300410336)Program for Science and Technology Innovation Talent in Universities of Henan Province(No.23HASTIT027)Key Scientific and Technological Project of Henan Province(No.222102320188)Key Project of Science and Technology Research of Henan Provincial Department of Education(No.21A430008)。
文摘Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional catalyst of amorphous MoS_(x)(a-MoS_(x))with 3D layer-by-layer superstructure was synthesized by assembling basic active units[Mo_(3)S_(13)]^(2-)of MoS_(2).The large interlayer spacing and high exposure of active sites render a-MoS_(x)to have excellent synergy of adsorption and photo-assisted PMS activation for tetracycline(TC)degradation.Experiments and DFT calculation show that TC can be efficiently enriched on a-MoS_(x)by pore filling,π-πinteraction,hydrogen bonding and high adsorption energy.Subsequently,PMS can be quickly activated through electron transfer with a-MoS_(x),resulting in high TC degradation efficiency of 96.6%within 20 min.In addition,the synergistic mechanism of adsorption and photo-assisted PMS activation was explored,and the degradation pathway of TC was expounded.This work is inspirational for constructing bifunctional catalysts with superior synergistic adsorption and catalytic capabilities to remove refractory organic pollutants in water.
基金supported by the National Natural Science Foundation of China(No.22225808)the Industry Prospect and Key Core Technology(Competition Project)of Jiangsu Province(No.BE2019093)the Sino-German Cooperation Group Project(No.GZ1579).
文摘Photo-assisted rechargeable energy storage devices are a promising strategy to achieve sustainable development by simultaneously integrating solar energy conversion and supercapacitor storage.Herein,we fabricated a light-sensitive macroporous film based on carbon nanotube(CNT),intercalated with Co_(2)V_(2)O_(7),and then modified by black phosphorus quantum dots(BPQD).Physico-chemical characterization and density functional theory are employed to investigate the improved photo-assisted charge storage capability and the underlying mechanism.It is demonstrated that photo-generated carriers can be separated efficiently,and the formed abundant interfaces could modulate the electronic structure of the electrode,effectively im proving the conductivity.Under visible light,the electrode displays an ultra-high capacity of 138.4 mA h g^(-1)(197.9 mA h cm^(-3))at 1 A g^(-1).Besides,the CNT@Co_(2)V_(2)O_(7)/BPQD supercapacitor shows a maximum energy density of 44.4 Wh kg^(-1)(60.0 Wh L^(-1))at a power density of 800 W kg^(-1)(960 W L^(-1))and excellent cyclic stability of 104.8% after 13,000 charge/discharge cycles.The above improvements are attributed to the reactivity and kinetics of electrochemically active components.This study reveals the synergistic effects of multi-interface on“light,photo-generated charge,and energy storage”and provides new possibilities in the controllable design of novel photo-assisted energy storage devices.
基金the Applied Basic Research Programs of Yunnan Science and Technology Department(No.2017FD085)the Program of Introducing Talents of Kunming University(Nos.YJL16003 and YJL18008)+4 种基金National Nature Science Foundation of China(No.61904073)Science Foundation of Yunnan Provincial Education Department(No.2018JS392)Projects of Science and Technology Plans of Kunming(No.20191-C-25318000002189)“Thousand Talents Program”of Yunnan Province for Young TalentsSpring City Plan-Special Program for Young Talents。
文摘Electrochemical detection is an efficient method for the detection of Bisphenol A(BPA).Herein,a sensitive photo-electrochemical sensor based on two-dimensional(2 D)TiO_(2)(001)nanosheets was fabricated and then used for BPA electrochemical detection.Upon light irradiation,the 2 D TiO_(2)(001)nanosheets electrode provided a lower detection limit of BPA detection compared with an ambient electrochemical determination.The low detection limit is^5.37 nmol/L(S/N=3).Furthermore,profiting from the photoelectric characteristics,the 2 D TiO_(2)(001)nanosheets electrode exhibits a nice regeneration prope rty.After 45 min of light irradiation,the electrochemical signal was regenerated from14.7%to 82.9%of the original signal at the 6th cycle.This is attributed to the non-selective·OH mediation produced by the 2 D TiO_(2)(001)nanosheets mineralizing anodic polymeric products and resuming surface reactive sites.This investigation indicates that photo-assistance is an efficient method to improve the electrochemical sensor for detecting BPA in water environments.
基金Financial supports from National Natural Science Foundation(21875123)of Chinathe project of Jiangxi Academy of Sciences(2020-YZD-3)are gratefully acknowledged.
文摘Solar cells hold a function of photovoltaic conversion,while rechargeable metal batteries have an advantage of high energy storage.The conventional charge mode of batteries is made based on complete utilization of electric energy.The combination of solar cells and rechargeable metal batteries brings a new opportunity for the development of photo-assisted rechargeable batteries,in which the solar energy can be utilized to partially achieve photo-charging with or without external electrical bias.This review highlights the working mechanism and structure design of photo-assisted rechargeable metal batteries according to the characteristics of rechargeable metal batteries and advantage of the photovoltaic technology.In particular,the recent advances are introduced for photo-assisted rechargeable batteries based on light-weight metal anodes,including metal lithium,metal sodium,and metal zinc.The working features of the integrated devices are also discussed for energy saving under photo-assisted charging mode.Finally,a future outlook is provided for further improving the performance of photoassisted rechargeable metal batteries.
基金the National Natural Science Foundation of China(No.41807213)the Hydrogeo-logical Survey Project of Huangshui River(No.DD20190331).
文摘Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy.
基金Project supported by the National Natural Science Foundation of China(Grant No.51002063)the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City,China(Grant No.12ZX68)
文摘ZrO_2 nanodots are successfully prepared on LaAlO_3(LAO)(100) substrates by photo-assisted metal-organic chemical vapor deposition(MOCVD). It is indicated that the sizes and densities of ZrO_2 nanodots are controllable by modulating the growth temperature, oxygen partial pressure, and growth time. Meanwhile, the microwires are observed on the surfaces of substrates. It is found that there is an obvious competitive relationship between the nanodots and the microwires. In a growth temperature range from 500℃ to 660℃, the microwires turn longest and widest at 600℃, but in contrast, the nanodots grow into the smallest diameter at 600℃. This phenomenon could be illustrated by the energy barrier, decomposition rate of Zr(tmhd)_4, and mobility of atoms. In addition, growth time or oxygen partial pressure also affects the competitive relationship between the nanodots and the microwires. With increasing oxygen partial pressure from 451 Pa to 75_2 Pa,the microwires gradually grow larger while the nanodots become smaller. To further achieve the controllable growth, the coarsening effect of ZrO_2 is modified by varying the growth time, and the experimental results show that the coarsening effect of microwires is higher than that of nanodots by increasing the growth time to quickly minimize ZrO_2 energy density.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CB301900,2012CB619304,and 2010CB327504)the National High Technology Research and Development Program of China(Grant No.2011AA03A103)+1 种基金the National Nature Science Foundation of China(Grant Nos.60990311,60906025,60936004,and 61176063)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2011010 and BK2009255)
文摘A series of experiments were conducted to systematically study the effects of etching conditions on GaN by a con-venient photo-assisted chemical (PAC) etching method. The solution concentration has an evident influence on the surface morphology of GaN and the optimal solution concentrations for GaN hexagonal pyramids have been identified. GaN with hexagonal pyramids have higher crystal quality and tensile strain relaxation compared with as-grown GaN. A detailed anal- ysis about evolution of the size, density and optical property of GaN hexagonal pyramids is described as a function of light intensity. The intensity of photoluminescence spectra of GaN etched with hexagonal pyramids significantly increases compared to that of as-grown GaN due to multiple scattering events, high quality GaN with pyramids and the Bragg effect.
基金supported by the National Natural Science Foundation of China(No.52475204)Science and Technology Major Project of Inner Mongolia Autonomous Region in China(No.2021ZD0028)Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials.
文摘The planarization of silicon carbide(SiC),which is crucial for manufacturing power devices resilient to harsh working environments,has garnered significant attention.The utilization of titanium dioxide(TiO_(2))-based heterogeneous photocatalysts offers a promising avenue for achieving efficient polishing of SiC surfaces through photo-assisted chemical mechanical polishing(P-CMP)in an environmentally friendly manner.In this study,we employed nanodiamonds(NDs)and graphene oxide(GO)to fabricate a composite of TiO_(2)/ND/GO abrasives.Subsequently,the P-CMP performance of TiO_(2)/NDs/GO on the Si face of SiC was systematically investigated.High-resolution transmission electron microscopy(TEM)revealed the heterostructure between TiO_(2) and the NDs.Furthermore,the P-CMP results indicate that the heterostructure significantly enhances the polishing rate of the composite abrasives on SiC,achieving the highest material removal rate(MRR)of 600 nm/h and reducing the average surface roughness(S_(a))to 1.1705 nm.Additionally,owing to the lubricating and dispersing effects of GO,the occurrence of ND aggregation is avoided,preventing scratching on SiC.The measurement of the·OH concentration indicates that an increase in the·OH concentration is the primary factor contributing to the improvement in the MRR.The results from wetting angle and friction coefficient tests revealed that the polishing slurry containing TiO_(2)/NDs/GO exhibited excellent wettability and provided sufficient frictional force on the SiC surface.X-ray photoelectron spectroscopy(XPS)characterization demonstrated that TiO_(2)/NDs/GO enhanced the degree of oxidation of the SiC surface,leading to the formation of a softer oxide layer.Finally,on the basis of the experimental and characterization results,a comprehensive analysis of TiO_(2)/NDs/GO and P-CMP was conducted.
基金supported by Singapore Ministry of Education under its AcRF Tier 2(MOE-T2EP10123-0001)Singapore National Research Foundation Investigatorship(NRF-NRFI08-2022-0009).
文摘Li-O_(2)batteries with an ultrahigh theoretical energy density of up to 3500 W·h/kg have drawn extensive attention as future energy storage technologies.However,large discharge/charge overpotentials(>1 V)and unsatisfactory cycling performance are the main obstacles for practical applications.Recently,integrating photocatalysis into Li-O_(2)batteries has emerged as a promising method to mitigate overpotentials,but the rational design of photocathodes with excellent photoelectrochemical activity and stability remains challenging.This review focuses on recent research progress on the reaction mechanisms in photo-assisted Li-O_(2)batteries and the development of photocathodes.We present several strategies for tailoring catalytic materials from the perspectives of material selection and its catalytic performance optimization,aiming to provide a fundamental understanding and insights into the design of efficient photocathodes.The key challenges in constructing highperformance photocathodes and potential strategies were also discussed,offering insights for the development and application of efficient photocathodes in photo-assisted Li-O_(2)batteries.
基金upported partially by the National Natural Science Foundation of China(52302250 and 52272200)the Hebei Natural Science Foundation(B2024502013)+4 种基金the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(LAPS21004 and LAPS202114)the Beijing Natural Science Foundation(2222076)the 2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education,the China Postdoctoral Science Foundation(2022M721129)the Fundamental Research Funds for the Central Universities(2022MS030 and 2021MS028)the NCEPU"Double First-Class"Program。
文摘Photo-assisted capacitors are attractive devices for solar energy conversion and storage,while the behavior of photoelectrodes limits their performance.In this work,MoS_(2)photoelectrodes were modified by g-C_(3)N_(4),exhibiting enhanced photo-rechargeable properties.Our results show that the introduction of g-C_(3)N_(4)increases the surface area of MoS_(2)photoelectrodes and promotes the transport of charge carriers,which can boost the specific capacity and cycle stability of capacitors.The as-prepared zinc-ion capacitors with g-C_(3)N_(4)/MoS_(2)photoelectrodes show a specific capacity of 380.93 F/g at 1 A/g under AM 1.5 G illumination.Remarkably,after 3000 cycles at 10 A/g,the capacity of the photo-assisted zinc-ion capacitor retains above 99%.
基金supported by the National Key R&D Program of China (2021YFB4000400)the National Natural Science Foundation of China (21988101,22402200)+1 种基金the Youth Innovation Promotion Association CAS (Y2022060)the Liaoning Distinguished Scholars (2024JH3/50100007)。
文摘Establishing supply chains for future ammonia energy systems requires the development of efficient materials and processes for ammonia production under mild conditions.Recent researches disclose unique functionalities of binary alkali and alkaline earth metal hydrides in mediating ammonia synthesis.Thanks to the rich compositional and structural properties of the metalhydrogen system,we herein report that LiBaH_(3),as a narrow band gap perovskite hydride,exhibits a strong response to visible light illumination.Specifically,hydridic hydrogen undergoes reductive elimination of producing H_(2)and creates an electron-rich surface.Such an environment favors dinitrogen fixation to form N-H bonds.Based on this chemical property,a chemical looping ammonia synthesis process mediated by LiBaH_(3)and driven by both photo and thermal energies was proposed and evaluated.This work demonstrates that hydride perovskites are promising candidates for mediating photo-assisted nitrogen fixation reactions.
基金supported by the National Natural Science Foundation of China(21976147,U2267224,and 22106126)the Sichuan Science and Technology Program(2021YFG0096,2024NSFSC1148,2022YFG0371,and 2024NSFTD0012)+2 种基金the Project of State Key Laboratory of Environmentfriendly Energy Materials in Southwest University of Science and Technology(21fksy22)the Research Fund of Southwest University of Science and Technology for PhD(23zx7103)the Open Fund of China National Nuclear Corporation Key Laboratory for Uranium Extraction from Seawater(KLUES202201).
文摘Exploiting the intelligent photocatalysts capable of phase separation provides a promising solution to the removal of uranium,which is expected to solve the difficulty in separation and the poor selectivity of traditional photocatalysts in carbonate-containing uranium wastewater.In this paper,theγ-FeOOH/konjac glucomannan grafted with phenolic hydroxyl groups/poly-N-isopropylacrylamide(γ-FeOOH/KGM(Ga)/PNIPAM)thermosensitive hydrogel is proposed as the photocatalysts for extracting uranium from carbonate-containing uranium wastewater.The dynamic phase transformation is demonstrated to confirm the arbitrary transition ofγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel from a dispersed state with a high specific surface area at low temperatures to a stable aggregated state at high temperatures.Notably,theγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel achieves a remarkably high rate of 92.3%in the removal of uranium from the wastewater containing carbonates and maintains the efficiency of uranium removal from uranium mine wastewater at over 90%.Relying on electron spin resonance and free radical capture experiment,we reveal the adsorption-reduction-nucleation-crystalliza tion mechanism of uranium onγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel.Overall,this strategy provides a promising solution to treating uranium-contaminated wastewater,showing a massive potential in water purification.
基金supported by the National Natural Science Foundation of China(62075146 and 61875143)the Natural Science Foundation of Jiangsu Province(BK20181169)+3 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions(20KJA510003)Qinglan Project of Jiangsu Provincethe Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutionsthe Natural Science Research of Jiangsu Higher Education Institutions。
文摘Developing new catalysts to decorate photoelectrodes has been widely used to enhance the performance of photoelectrochemical(PEC)cells.However,the high cost,complex synthesis,and poor stability of catalyst decoration strongly hinder its practical application.Here,we report a facile and low-cost decoration of Ag-Pt nanoparticles(Ag-Pt NPs)on Si photocathodes with TiO_(2)/Ti sacrificial overlayers.Such a decoration does not rely on any metallic-ion precursor solution since it is formed automatically via galvanic replacement reactions during PEC measurements;that is,Ti is displaced by Ag^(+)and Pt^(2+)ions,which are from the employed reference and counter electrodes,respectively.The as-decorated Ag-Pt NPs are verified to significantly enhance the hydrogen evolution reduction kinetics without substantially degrading the optical performance of Si photocathodes.Owing to optoelectronic advantages,the overpotential required to maintain a photocurrent density of 10 mA cm(under AM1.5 G illumination)is reduced from-0.8 V_(RHE)(for the bare planar Si photocathode)to-0.1 V_(RHE)(for the planar Si photocathode with Ag-Pt NP decoration).Moreover,a further anodic shift(to 0 V_(RHE))is visible for the Si nanowire array photocathode with Ag-Pt NP decoration,along with high long-term stability of the PEC response in acidic and neutral electrolytes.This study opens a new opportunity for the photo-assisted decoration of various alloy NPs on the morphology-varying photoelectrodes with different applications.
基金supported by the start-up grant of Central South University(No.202045001)the Huxiang Assembly Program for High-level Talents(Hunan Province,No.2018RS3018)the Innovation-Driven Program of Central South University(No.2019CX028).
文摘Transition metal sulfide-based hydrogen evolution electrocatalysts still lag in catalytic activity due to the zero-deviated free energy of*H adsorption.Plasmonic metals bridge the gap between light utilization and plasmon-mediated redox reactions for substantially enhanced electrocatalytic activity.In this work,a strategic broadband light utilization heterostructure,composed of two distinct Ag nanostructures(discontinuous Ag nanorods and monodispersed nanoparticles),is achieved through in situ sulfurization and metal leaching.The heterostructure benefits the electrocatalytic hydrogen evolution reactivity thanks to the localized surface plasmon resonance induced hot electrons injection and inter-gap electric fields revealed by the finite-difference time-domain simulation.Experimentally,the prudent heterostructured catalyst exhibits a significantly improved overpotential(at 10 mA cm−2)from 151 to 95 mV along with a Tafel slope from 74 to 45 mV dec−1 toward hydrogen evolution.Significantly,this instructional study sheds light on the design of hybrid photo-assisted electrocatalysts with cooperative effect of solar energy toward sustainable electrocatalysis.
基金the National Natural Science Foundation of China(61306075)。
文摘Photo-assisted deposited method is often employed in the metal-organic chemical vapor deposition whose ion source is organic compounds. It has been proved to increase the deposition rate and improve the crystallinity of the films. We demonstrate a photo-assisted sputtering deposited method which is used to prepare high quality TiO_(2) films. The crystallinity of the films is improved by the photo assistance without changing the morphology. And the structural and optical properties remain the same. The photo-assisted deposited TiO_(2) film shows a H_(2) evolution rate of 1.62 μmol·cm^(-2)·h^(-1) that is about twice more than that of the pristine TiO_(2) film. It is found the Mott-Schottky effect responds for the photocatalytic activity. Photo-assisted deposited films show an enhanced photocatalytic activity due to the reduction of interface recombination and the high efficiency in the transferring of photo-generated carriers.
基金supported by the National Natural Science Foundation of China(Grant No.51902271)the Fundamental Research Funds for the Central Universities(Grant Nos.2682021CX116,2682020CX07,and 2682020CX08)Sichuan Science and Technology Program(Grant Nos.2020YJ0259,2020YJ0072,and 2021YFH0163).
文摘It is important to develop green and sustainable approaches to enhance electrochemical charge storage efficiencies.Herein,a two-step in-situ growth process was developed to fabricate carbon fiber paper-supported CeO_(2)/MnO_(2) composite(CeO_(2)/MnO_(2)–CFP)as a binder-free photoelectrode for the photo-assisted electrochemical charge storage.The formation of CeO_(2)/MnO_(2) type II heterojunction largely enhanced the separation efficiency of photo-generated charge carriers,resulting in a substantially enhanced photo-assisted charging capability of~20%.Furthermore,it retained a large part of its photo-enhanced capacitance(~56%)in dark even after the illumination was off for 12 h,which could be attributed to its slow release of stored photo-generated electrons from its specific band structure to avoid their reaction with O_(2) in dark.This study proposed the design principles for supercapacitors with both the photo-assisted charging capability and its long-lasting retainment in dark,which may be readily applied to other pseudocapacitive materials to better utilize solar energy.