Soil phosphorus(P) fractionation, adsorption, and desorption isotherm, and rice yield and P uptake were investigated in flooded tropical rice(Oryza sativa L.) following 42-year fertilizer and manure application. The t...Soil phosphorus(P) fractionation, adsorption, and desorption isotherm, and rice yield and P uptake were investigated in flooded tropical rice(Oryza sativa L.) following 42-year fertilizer and manure application. The treatments included low-input [unfertilized control without N, P, or K(C0N0)], farmyard manure(FYM)(C1N0), NP(C0NP), NPK(C0NPK), FYM + NP(C1NP), and high-input treatment, FYM + NPK(C1NPK). Grain yield was increased significantly by 74%over the control under the combined application of FYM + NPK. However, under low- and high-input treatments, yield as well as P uptake was maintained at constant levels for 35 years.During the same period, high yield levels and P uptake were maintained under the C0 NP, C0 NPK,and C1 NPK treatments. These are unique characteristics of a tropical flooded ecosystem, which is a self-sustaining system for rice production. The Fe–P fraction was highest compared to the Ca–P and Al–P fractions after 42 years of fertilizer application and was significantly higher under FYM + NPK treatment. The P adsorption capacity of soil was highest under the low-input treatment and lowest under long-term balanced fertilization(FYM + NPK). In contrast, P desorption capacity was highest under NPK and lowest in the control treatment. Long-term balanced fertilization in the form of FYM + NPK for 42 years lowered the bonding energy and adsorption capacity for P in soil but increased its desorption potential, increasing P availability to the plant and leading to higher P uptake and yield maintenance.展开更多
OsPho1 in Zhonghua 11(ZH11)was edited using the clustered regularly interspaced short palindromic repeatsassociated endonuclease 9(CRISPR/Cas9)system.Two homozygous T1 mutants(cr-pho1-34 and cr-pho1-37)displayed a cha...OsPho1 in Zhonghua 11(ZH11)was edited using the clustered regularly interspaced short palindromic repeatsassociated endonuclease 9(CRISPR/Cas9)system.Two homozygous T1 mutants(cr-pho1-34 and cr-pho1-37)displayed a chalky endosperm with a white core,which significantly decreased 1000-grain weight.In addition,many rounded starch granules and abnormal amyloplasts were present in the central region of mutant endosperm cells with increased amylose and lipid contents,decreased total protein content,and altered physicochemical properties of starch.The OsPho1 protein is localized in chloroplasts,and quantitative real-time PCR(qRT-PCR)andβ-glucuronidase(GUS)staining indicated that OsPho1 was highly expressed in seeds at 5 d after fertilization(DAF).OsPho1 mutations displayed close relationships with plastidial phosphoglucomutase and ADPGlc pyrophosphorylase based onα-D-glucose-1P at different temperatures.Moreover,the expressions of starch metabolismrelated genes were also altered in the mutant,and the overexpression of OsPho1 may cause grain chalkiness.展开更多
On May 7th an accident of phosphorus trichlo-ride leakage happened in Hebei Xinfeng Pesti-cide & Chemical Stock Co.,Ltd.located in Tiexi Chemical Industry Zone northwest of Handan,Hebei province.Great quantities o...On May 7th an accident of phosphorus trichlo-ride leakage happened in Hebei Xinfeng Pesti-cide & Chemical Stock Co.,Ltd.located in Tiexi Chemical Industry Zone northwest of Handan,Hebei province.Great quantities of the toxicgas were spread to residential areas close by.Forty four persons were poisoned andhospitalized.The accident was caused by valvedamage in the gas storage tank and展开更多
Imagine a cold morning in Hanoi,where the steam from a bowl of Vietnamese Pho rises,inviting you in for a warm meal.Pho is more than just a soup;it's a hug in a bowl,full of life and tradition.This tasty dish star...Imagine a cold morning in Hanoi,where the steam from a bowl of Vietnamese Pho rises,inviting you in for a warm meal.Pho is more than just a soup;it's a hug in a bowl,full of life and tradition.This tasty dish started in the north of Vietnam and has spread all over the world.It's made with a tasty broth(肉汤)that takes hours to cook.展开更多
The mouse model of oxygen induced retinopathy is suitable for the study of various retinal neovascularization diseases,including retinopathy of prematurity.The maternally expressed gene 3(MEG3)has been demonstrated to...The mouse model of oxygen induced retinopathy is suitable for the study of various retinal neovascularization diseases,including retinopathy of prematurity.The maternally expressed gene 3(MEG3)has been demonstrated to have an inhibitory effect on diabetic retinopathy.In this study,we investigated the role of MEG3 overexpression in oxygen-induced retinopathy in mice.The results showed that MEG3 overexpression effectively inhibited the production of retinal neovascularization in oxygen-induced retinopathy mice.It acts by down-regulating the expression of phosphoinositide 3-kinase,serine/threonine kinase,and vascular endothelial growth factor and pro-inflammatory factors.MEG3 overexpression lentivirus has a future as a new method for the clinical treatment of retinopathy of prematurity.The animal experiments were approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University,China(approval No.2016PS074K)on February 25,2016.展开更多
Although the phosphate 1(PHO1)gene family has been implicated in inorganic phosphate transport and homeostasis,the underlying mechanism of this gene in the strawberry has not yet been revealed.In the present study,w...Although the phosphate 1(PHO1)gene family has been implicated in inorganic phosphate transport and homeostasis,the underlying mechanism of this gene in the strawberry has not yet been revealed.In the present study,we analyzed the expression of the PHO1;H9 gene in the strawberry(Fragaria×ananassa),revealing the involvement of this gene in the regulation of phosphorus(P)content.The coding sequence(CDS)of the PHO1;H9 gene,was isolated from the cultivated strawberry‘Sachinoka’and named as Fa PHO1;H9.The full-length CDS of this gene was 2 292 bp,encoding 763 amino acids,and the protein contained both SYG1/Pho81/XPR1(SPX)and ERD1/XPR1/SYG1(EXS)domains,which were involved in phosphate(Pi)signaling.Real-time reverse transcription-polymerase chain reaction(RT-PCR)data suggested that the level of Fa PHO1;H9 expression was consistent with the P content in different organs,except for the petiole.Particularly,its expression level was also correlated with P content in fruits of different developmental stages.The expression of Fa PHO1;H9 was also consistent with P content in leaves under different concentrations of P fertilizer application.Furthermore,transgenic Arabidopsis lines were generated,and the P content in Arabidopsis plants over-expressing Fa PHO1;H9was significantly higher than that in wild-type plants.Therefore,we proposed that Fa PHO1;H9 functions in P transport.展开更多
Peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α) is a transcriptional co-activator involved in mitochondrial biogenesis, respiratory capacity, and oxidative phosphorylation(OXPHOS). PGC-1α p...Peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α) is a transcriptional co-activator involved in mitochondrial biogenesis, respiratory capacity, and oxidative phosphorylation(OXPHOS). PGC-1α plays an important role in cellular metabolism and is associated with tumorigenesis, suggesting an involvement in cell cycle progression. However, the underlying mechanisms mediating its involvement in these processes remain unclear. To elucidate the signaling pathways involved in PGC-1α function, we established a cell line, CH1 PGC-1α, which stably overexpresses PGC-1α. Using this cell line, we found that over-expression of PGC-1α stimulated extra adenosine triphosphate(ATP) and reduced reactive oxygen species(ROS) production. These effects were accompanied by up-regulation of the cell cycle checkpoint regulators Cyclin D1 and Cyclin B1. We hypothesized that ATP and ROS function as cellular signals to regulate cyclins and control cell cycle progression. Indeed, we found that reduction of ATP levels down-regulated Cyclin D1 but not Cyclin B1, whereas elevation of ROS levels down-regulated Cyclin B1 but not Cyclin D1. Furthermore, both low ATP levels and elevated ROS levels inhibited cell growth, but PGC-1α was maintained at a constant level. Together, these results demonstrate that PGC-1α regulates cell cycle progression through modulation of Cyclin D1 and Cyclin B1 by ATP and ROS. These findings suggest that PGC-1α potentially coordinates energy metabolism together with the cell cycle.展开更多
文摘Soil phosphorus(P) fractionation, adsorption, and desorption isotherm, and rice yield and P uptake were investigated in flooded tropical rice(Oryza sativa L.) following 42-year fertilizer and manure application. The treatments included low-input [unfertilized control without N, P, or K(C0N0)], farmyard manure(FYM)(C1N0), NP(C0NP), NPK(C0NPK), FYM + NP(C1NP), and high-input treatment, FYM + NPK(C1NPK). Grain yield was increased significantly by 74%over the control under the combined application of FYM + NPK. However, under low- and high-input treatments, yield as well as P uptake was maintained at constant levels for 35 years.During the same period, high yield levels and P uptake were maintained under the C0 NP, C0 NPK,and C1 NPK treatments. These are unique characteristics of a tropical flooded ecosystem, which is a self-sustaining system for rice production. The Fe–P fraction was highest compared to the Ca–P and Al–P fractions after 42 years of fertilizer application and was significantly higher under FYM + NPK treatment. The P adsorption capacity of soil was highest under the low-input treatment and lowest under long-term balanced fertilization(FYM + NPK). In contrast, P desorption capacity was highest under NPK and lowest in the control treatment. Long-term balanced fertilization in the form of FYM + NPK for 42 years lowered the bonding energy and adsorption capacity for P in soil but increased its desorption potential, increasing P availability to the plant and leading to higher P uptake and yield maintenance.
基金supported by the National Science Foundation of China(Grant No.3197150429).
文摘OsPho1 in Zhonghua 11(ZH11)was edited using the clustered regularly interspaced short palindromic repeatsassociated endonuclease 9(CRISPR/Cas9)system.Two homozygous T1 mutants(cr-pho1-34 and cr-pho1-37)displayed a chalky endosperm with a white core,which significantly decreased 1000-grain weight.In addition,many rounded starch granules and abnormal amyloplasts were present in the central region of mutant endosperm cells with increased amylose and lipid contents,decreased total protein content,and altered physicochemical properties of starch.The OsPho1 protein is localized in chloroplasts,and quantitative real-time PCR(qRT-PCR)andβ-glucuronidase(GUS)staining indicated that OsPho1 was highly expressed in seeds at 5 d after fertilization(DAF).OsPho1 mutations displayed close relationships with plastidial phosphoglucomutase and ADPGlc pyrophosphorylase based onα-D-glucose-1P at different temperatures.Moreover,the expressions of starch metabolismrelated genes were also altered in the mutant,and the overexpression of OsPho1 may cause grain chalkiness.
文摘On May 7th an accident of phosphorus trichlo-ride leakage happened in Hebei Xinfeng Pesti-cide & Chemical Stock Co.,Ltd.located in Tiexi Chemical Industry Zone northwest of Handan,Hebei province.Great quantities of the toxicgas were spread to residential areas close by.Forty four persons were poisoned andhospitalized.The accident was caused by valvedamage in the gas storage tank and
文摘Imagine a cold morning in Hanoi,where the steam from a bowl of Vietnamese Pho rises,inviting you in for a warm meal.Pho is more than just a soup;it's a hug in a bowl,full of life and tradition.This tasty dish started in the north of Vietnam and has spread all over the world.It's made with a tasty broth(肉汤)that takes hours to cook.
基金the National Natural Science Foundation of China,No.81600747(to YD)a grant from Liaoning Department of Education,No.QNZR2020010(to YD)a grant from 345 Talent Project of Shengjing Hospital(to YD).
文摘The mouse model of oxygen induced retinopathy is suitable for the study of various retinal neovascularization diseases,including retinopathy of prematurity.The maternally expressed gene 3(MEG3)has been demonstrated to have an inhibitory effect on diabetic retinopathy.In this study,we investigated the role of MEG3 overexpression in oxygen-induced retinopathy in mice.The results showed that MEG3 overexpression effectively inhibited the production of retinal neovascularization in oxygen-induced retinopathy mice.It acts by down-regulating the expression of phosphoinositide 3-kinase,serine/threonine kinase,and vascular endothelial growth factor and pro-inflammatory factors.MEG3 overexpression lentivirus has a future as a new method for the clinical treatment of retinopathy of prematurity.The animal experiments were approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University,China(approval No.2016PS074K)on February 25,2016.
基金financially supported by the National Natural Science Foundation of China (31372037)the Program for Excellent Talents in University of Liaoning Province, China (LJQ2014069)
文摘Although the phosphate 1(PHO1)gene family has been implicated in inorganic phosphate transport and homeostasis,the underlying mechanism of this gene in the strawberry has not yet been revealed.In the present study,we analyzed the expression of the PHO1;H9 gene in the strawberry(Fragaria×ananassa),revealing the involvement of this gene in the regulation of phosphorus(P)content.The coding sequence(CDS)of the PHO1;H9 gene,was isolated from the cultivated strawberry‘Sachinoka’and named as Fa PHO1;H9.The full-length CDS of this gene was 2 292 bp,encoding 763 amino acids,and the protein contained both SYG1/Pho81/XPR1(SPX)and ERD1/XPR1/SYG1(EXS)domains,which were involved in phosphate(Pi)signaling.Real-time reverse transcription-polymerase chain reaction(RT-PCR)data suggested that the level of Fa PHO1;H9 expression was consistent with the P content in different organs,except for the petiole.Particularly,its expression level was also correlated with P content in fruits of different developmental stages.The expression of Fa PHO1;H9 was also consistent with P content in leaves under different concentrations of P fertilizer application.Furthermore,transgenic Arabidopsis lines were generated,and the P content in Arabidopsis plants over-expressing Fa PHO1;H9was significantly higher than that in wild-type plants.Therefore,we proposed that Fa PHO1;H9 functions in P transport.
基金supported by the National Natural Science Foundation of China(Nos.31160237 and 81360310)the Graduate Student Research Innovation Project of Yunnan University(No.YNUY201455),China
文摘Peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α) is a transcriptional co-activator involved in mitochondrial biogenesis, respiratory capacity, and oxidative phosphorylation(OXPHOS). PGC-1α plays an important role in cellular metabolism and is associated with tumorigenesis, suggesting an involvement in cell cycle progression. However, the underlying mechanisms mediating its involvement in these processes remain unclear. To elucidate the signaling pathways involved in PGC-1α function, we established a cell line, CH1 PGC-1α, which stably overexpresses PGC-1α. Using this cell line, we found that over-expression of PGC-1α stimulated extra adenosine triphosphate(ATP) and reduced reactive oxygen species(ROS) production. These effects were accompanied by up-regulation of the cell cycle checkpoint regulators Cyclin D1 and Cyclin B1. We hypothesized that ATP and ROS function as cellular signals to regulate cyclins and control cell cycle progression. Indeed, we found that reduction of ATP levels down-regulated Cyclin D1 but not Cyclin B1, whereas elevation of ROS levels down-regulated Cyclin B1 but not Cyclin D1. Furthermore, both low ATP levels and elevated ROS levels inhibited cell growth, but PGC-1α was maintained at a constant level. Together, these results demonstrate that PGC-1α regulates cell cycle progression through modulation of Cyclin D1 and Cyclin B1 by ATP and ROS. These findings suggest that PGC-1α potentially coordinates energy metabolism together with the cell cycle.