期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于心动周期估计的心音分割及异常心音筛查算法 被引量:6
1
作者 赵湛 张旭茹 +3 位作者 方震 陈贤祥 杜利东 李田昌 《电子与信息学报》 EI CSCD 北大核心 2017年第11期2677-2683,共7页
心脏疾病是全球发病率和死亡率最高的疾病,心音听诊可以获取心脏的机械特性及结构特征,与超声心动图、核磁共振等无创诊断技术相比具有快速、低成本和操作简单的优势。心音信号成分复杂,容易受到各种噪声和干扰的影响,听诊诊断结果容易... 心脏疾病是全球发病率和死亡率最高的疾病,心音听诊可以获取心脏的机械特性及结构特征,与超声心动图、核磁共振等无创诊断技术相比具有快速、低成本和操作简单的优势。心音信号成分复杂,容易受到各种噪声和干扰的影响,听诊诊断结果容易受到医生主观性的影响,极大限制了心音听诊的应用。该文提出一种基于心动周期估计的心音分割及异常心音筛查算法,预先估计了心音的心动周期,存在随机干扰的情况下也可以正确识别信号中80%以上的心动周期,提高了算法的稳定性。同时提出了区分度良好的时域和频域特征指标,利用支持向量机建模,对异常心音的识别率可达92%。算法可辅助医生诊断,或用于家用便携式心音监护设备。 展开更多
关键词 心音分割 异常心音筛查 支持向量机
在线阅读 下载PDF
基于Bi-LSTM与状态约束的心音分割算法 被引量:4
2
作者 王幸之 杨宏波 +3 位作者 宗容 潘家华 王威廉 谭贺飞 《计算机应用与软件》 北大核心 2024年第10期269-275,303,共8页
心音分割是进行准确心音分类的前提。针对心音分割,提出一种基于双向长短时记忆网络(Bi-LSTM)与状态约束的算法。该文通过网格法确定Bi-LSTM网络中的最佳参数,并训练出心音状态识别模型;统计Bi-LSTM预测的心音状态持续时间,并计算自相... 心音分割是进行准确心音分类的前提。针对心音分割,提出一种基于双向长短时记忆网络(Bi-LSTM)与状态约束的算法。该文通过网格法确定Bi-LSTM网络中的最佳参数,并训练出心音状态识别模型;统计Bi-LSTM预测的心音状态持续时间,并计算自相关参数;利用自相关参数和心音固有状态转移规则对预测的心音状态进行约束处理。使用五折交叉验证法在PhysioNet/CinC 2016数据集上进行测试,该算法与同类算法相比,整体性能更佳。 展开更多
关键词 心音图 心音分割 Bi-LSTM网络 状态约束 自相关
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部