The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid a...The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60?) C for 1h and then was heated to (85?) C for 1h. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.展开更多
Wood of Chinese fir and poplar were liquefied in phenol at 150℃ and atmospheric pressure. The liquefied wood were reacted with formaldehyde to synthesize the liquefied wood-based resin. The factors affecting the resi...Wood of Chinese fir and poplar were liquefied in phenol at 150℃ and atmospheric pressure. The liquefied wood were reacted with formaldehyde to synthesize the liquefied wood-based resin. The factors affecting the resinification and the properties of new resin were investigated. The results show that the formaldehyde/liquefied wood molar ratio, reaction temperature, reaction time and sodium hydroxide/liquefied wood molar ratio have important influence on the resin characteristics. With the increase of formaldehyde/liquefied wood molar ratio, the yield of resin increases, and the flee phenol content of resins decreases, showing that the resinification of liquefied wood is more complete at higher formaldehyde/liquefied wood molar ratios. The reaction temperature on the viscosity of the liquefied resin has considerable effect; the viscosity of resin increased with increasing reaction temperature, and the amount of liquefied poplar resin increased more quickly than that of liquefied Chinese fir resin. The resinification time also has obvious influence on the viscosity of resin; the viscosity of liquefied poplar resin is more sensitive to resinification time compared with that of liquefied Chinese fir. The amount of sodium hydroxide can improve the water miscibility of liquefied wood resin. The optimum sodium hydroxide/liquefied wood molar ratio for preparation of liquefied wood-based resins exceeds 0.4.展开更多
Due to the endocrine toxicity,neurotoxic,and reproductive toxicity to organisms,the sources and risks of brominated organic pollutants have attracted widespread attention.However,knowledge gaps remain in the brominati...Due to the endocrine toxicity,neurotoxic,and reproductive toxicity to organisms,the sources and risks of brominated organic pollutants have attracted widespread attention.However,knowledge gaps remain in the bromination processes of emerging phenolic pollutants in plants,whichmay increase the potential health risk associated with food exposure.Our study discovered that light induced generation and accumulation of more toxic brominated organic compounds(Br-org)in lettuce leaves under the stress of acetaminophen(ACE)than that without light,as evidenced by an increase in C-Br bond intensity in FTIR analysis.This result can be explained by the oxidation of bromide ions(Br^(-))by reactive species(ROS and ^(3)Chl*)of chloroplast into reactive bromine species(RBS).The main mechanism is that the redox of Br^(-)reduced the oxidative damage of ACE to the structure and function of chloroplasts,providing good conditions for light energy uptake and utilization and promoting the increase of pigments and active species.Compared with the dark group exposed to 5 mg/L Br^(-),the pigment content,H_(2)O_(2) and ^(1)O_(2) level of the light group increased by 56%,84% and 69%,respectively.On the other hand,RBS attacks certain electrophilic organic compounds in leaves to generate Br^(-)org.Triple excited state of chlorophyll(^(3)Chl^(*))was the dominant species for the transformation of ACE,while RBS is a key factor in the generation of Br-org in the Br^(-)/light/chlorophyll system.A total of six transformation products were identified by HPLC-MS/MS,which were involved in three transformation pathways:methylation,hydroxyl oxidation and hydroxylation followed by bromination.This is the first report that Br^(-)could enter the chloroplast and improved chloroplast structure under ACE stress,and elucidated the bromination mechanism of organics in terrestrial plant involving of biophotochemical bromination in chloroplast besides enzyme-catalyzed bromination.This study is beneficial for risk assessment and prevention of emerging phenolic pollutants.展开更多
Silica gel column chromatography(CC),Sephadex LH-20 CC and high performance liquid chromatography(HPLC)were used to study the chemical constituents of the fruits of the medicine-food plant Rubus idaeus Linnaeus.A new ...Silica gel column chromatography(CC),Sephadex LH-20 CC and high performance liquid chromatography(HPLC)were used to study the chemical constituents of the fruits of the medicine-food plant Rubus idaeus Linnaeus.A new tetrahydrogenated naphthol syringic acid ester,named rubusnolicester(1),two new phenolic glycoside derivatives,4-chloro-2,6-dimethoxylphenol-1-O-β-D-glucopyranoside(2)and salicylic acid-2-O-(6'-O-acetyl)-β-D-glucopyranoside(3),together with one known salicylic acid glycoside derivative(4)and three known flavonoids derivatives(5~7),were isolated.Their structures were elucidated by HRESI-MS,NMR spectroscopy,and a comparison of optical rotation(OR).Compounds 1~7 were evaluated the inhibitory activities against the nitric oxide(NO)production induced by lipopolysaccharide(LPS)in mouse macrophage RAW264.7 cells in vitro.Compound 1 exhibited inhibitory effect with the IC50 value of(12.28±1.25)μmol/L.展开更多
The efficient mineralization of phenol and its derivatives in wastewater remains a great challenge.In this study,the bimetallic CuCeO_(2)-BTC was screened from a series of MOFs-derived MCeO_(2)-BTC(M=La,Cu,Co,Fe,and M...The efficient mineralization of phenol and its derivatives in wastewater remains a great challenge.In this study,the bimetallic CuCeO_(2)-BTC was screened from a series of MOFs-derived MCeO_(2)-BTC(M=La,Cu,Co,Fe,and Mn)catalysts,and the influence of the Cu/Ce ratio on phenol removal by catalytic ozonation was carefully examined.The results indicate that Cu_(2)Ce_(1)O_(y)-BTC was the best among the Cu_(x)Ce_(1)O_(y)-BTC(x=0,1,2,and 3)catalysts,with a phenol mineralization efficiency reaching close to 100%within 200 min,approximately 30.1%higher than CeO_(2)-BTC/O_(3)and 70.3%higher than O_(3)alone.The order of mineralization efficiency of phenol was Cu_(2)Ce_(1)O_(y)-BTC>Cu_(3)Ce_(1)O_(y)-BTC>Cu_(1)Ce_(1)O_(y)-BTC>CeO_(2)-BTC.CeO_(2)-BTC exhibited a broccoli-like morphology,and Cu_(x)Ce_(1)O_(y)-BTC(x=1,2,and 3)exhibited an urchin-like morphology.Compared with Cu_(x)Ce_(1)O_(y)-BTC(x=0,1,and 3),Cu_(2)Ce_(1)O_(y)-BTC exhibited a larger specific surface area and pore volume.This characteristic contributed to the availability of more active sites for phenol degradation.The redox ability was greatly enhanced as well.Besides,the surface of Cu_(2)Ce_(1)O_(y)-BTC exhibited a higher concentration of Ce^(3+)species and hydroxyl groups,which facilitated the dissociation of ozone and the generation of active radicals.Based on the results of radical quenching experiments and the intermediates detected by LC-MS,a potential mechanism for phenol degradation in the Cu_(2)Ce_(1)O_(y)-BTC/O_(3)system was postulated.This study offers novel perspectives on the advancement of MOFs-derived catalysts for achieving the complete mineralization of phenol in wastewater through catalytic ozonation.展开更多
This study aims to determine the phytochemical composition and antioxidant activity(AA)of different plant parts(bulbs,stalk,leaves and flowers)of wild rosy garlic(Allium roseum)from Montenegro.The flower exhibited the...This study aims to determine the phytochemical composition and antioxidant activity(AA)of different plant parts(bulbs,stalk,leaves and flowers)of wild rosy garlic(Allium roseum)from Montenegro.The flower exhibited the highest concentration of total phenols(55.7 GAE/g d.e.),followed by the leaf(25.6mg GAE/g d.e.).The leaf displayed the highest concentration of total flavonoids(41.48 mg RE/g d.e.),followed by the flower(36.26 mg RE/g d.e.)and top part of the stalk(26.80 mg RE/g d.e.).The AA of different parts of A.roseum after 60 min of incubation decreased in the following order:flower(0.15mg/cm^(3))>upper stalk(0.32mg/cm^(3))>leaf(0.36mg/cm^(3))>basal stalk(0.80mg/cm^(3))>bulb(1.53 mg/cm^(3)).The flowers exhibited the lowest EC_(50) values,indicating the highest antioxidant potential throughout the entire incubation period.Among all plant parts analyzed,the flowers demonstrated the highest ferric reducing antioxidant power(FRAP),reaching 24.99 mg Fe^(2+)/g,thereby indicating their superior antioxidant potential.Given their edibility,pleasant flavor,and high nutritional value,A.roseum flowers may be considered a promising natural additive for functional food products or culinary applications,including dish enhancement and decoration.展开更多
SAPO-5 zeolite supported RuMn was a highly efficient catalyst for the aqueous-phase selective hydrodeoxygenation of guaiacol to cyclohexanol.The optimal catalyst achieved a high cyclohexanol yield of 93.7%at full guai...SAPO-5 zeolite supported RuMn was a highly efficient catalyst for the aqueous-phase selective hydrodeoxygenation of guaiacol to cyclohexanol.The optimal catalyst achieved a high cyclohexanol yield of 93.7%at full guaiacol conversion under mild conditions,with a high TOF of 920 h^(-1).Moreover,the catalyst displayed remarkable performance for the hydrogenation of phenol to cyclohexanol,where a 100%yield of cyclohexanol was obtained at a phenol-to-Ru molar ratio of about 17900.In particular,the catalyst exhibited excellent recyclability and could be recycled for 20 times without obvious activity loss.The as-prepared RuMn/SAPO-5 catalyst exhibited higher performance than most of the reported Rubased catalysts.展开更多
Bio-oil is a renewable fuel that can be obtained from biomass waste,such as empty palm fruit bunches,sugarcane bagasse,and rice husks.Within a biorefinery framework,bio-oil had not met the standards as a fuel due to t...Bio-oil is a renewable fuel that can be obtained from biomass waste,such as empty palm fruit bunches,sugarcane bagasse,and rice husks.Within a biorefinery framework,bio-oil had not met the standards as a fuel due to the presence of impurities like corrosive phenol.Therefore,the separation of phenol from bio-oil is essential and can be achieved using the extraction method.In this study,biomass wastes(empty fruit bunches of oil palm,sugarcane bagasse,and rice husk)were pyrolyzed in a biorefinery framework to produce bio-oil,which was then refined through liquid-liquid extraction with a methanol-chloroform and ethyl acetate solvents to remove its phenolic compound.The extraction with methanol-chloroform solvent was carried out for 1 h at 50℃.Meanwhile,extraction with ethyl acetate solvent was carried out for 3 h at 70℃.Both extractions used the same variations,i.e.,bio-oil:solvent ratio at 1:1,1:2,1:3,and 1:4,and stirring speeds of 150 rpm,200 rpm,250 rpm,and 300 rpm.The bio-oil obtained from this study contained complex chemical compounds and had characteristics such as a pH of 5,a density of 1.116 g/mL,and a viscosity of 29.57 cSt.Theoptimization results using response surface methodology(RSM)showed that the best yield formethanolchloroform was 72.98%at a stirring speed of 250 rpm and a ratio of 1:3.As for ethyl acetate solvent,the highest yield obtained was 71.78%at a stirring speed of 237.145 rpm and a ratio of 1:2.展开更多
A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regiosel...A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regioselective access to unprecedented polyarene-fused ten-membered lactams bearing a bridged aryl-aryl-indole scaffold in moderate to good yields.This protocol demonstrates a broad substrate scope,good compatibility with substituents and complete regioselectivity,providing an organocatalytic modular synthetic strategy for creating medium-sized lactams.展开更多
Prolonged lack of rain and high-temperature lead to soil water deficits,inhibiting cereal crop growth in early ontogenesis and reducing grain quality and yield.Rye(Secale cereale L.)is a key grain crop,particularly in...Prolonged lack of rain and high-temperature lead to soil water deficits,inhibiting cereal crop growth in early ontogenesis and reducing grain quality and yield.Rye(Secale cereale L.)is a key grain crop,particularly in regions where wheat cultivation is challenging or unfeasible.To clarify its drought adaptation mechanisms,we analyzed the effects of moderate soil drought on growth,hormonal homeostasis,and the dynamics and distribution of free amino acids and phenolic compounds in rye at early vegetative stages and post-recovery.Drought triggered both general and organ-specific changes in endogenous phytohormones.A nonspecific response involved the accumulation of stress hormones abscisic acid(ABA)and salicylic acid(SA),alongside the suppression of growth hormones indole-3-acetic acid(IAA)and gibberellins.However,hormone dynamics and localization varied across plant organs.ABA and SA levels significantly increased in shoots of drought-stressed and recovered plants,corresponding with inhibited growth.Prolonged drought further enhanced ABA accumulation in both shoots and roots of recovered plants,while SA levels declined in roots but remained elevated in shoots.Drought also caused a substantial reduction in IAA,particularly in shoots,while gibberellins(GA_(3)+GA_(4))significantly decreased in roots.GA_(3)was predominant in most samples,except in the shoots of 2-day-old control plants.Post-recovery,IAA levels increased but remained below control values,while GA_(4)accumulation in roots led to a rise in total gibberellin levels.In contrast,shoot GA_(3)+GA_(4)levels declined,primarily due to GA_(3)reduction.The dominant free amino acids:aspartic acid,glutamic acid,glycine,alanine,and leucinedecreased significantly,underscoring their key role in stress adaptation.Increased flavonoid accumulation,especially in roots,suggests their involvement in antioxidant defense against oxidative stress.A significant increase in ABA and SA levels,along with a marked reduction in IAA and GA content in stressed rye plants occurred alongside a reduction in free amino acid content,accumulation of phenolic compounds,and an increase in flavonoid levels.These findings indicate distinct adaptation strategies in rye shoots and roots undermoderate soil drought.They provide a foundation for further research on drought resistance mechanisms in cereals and the development of strategies to enhance their adaptive potential.展开更多
1 Plant SecondaryMetabolism and Functional Biology Progress Plants have long been recognized as biochemical powerhouses,producing a vast array of compounds through their secondary metabolic pathways[1].Although histor...1 Plant SecondaryMetabolism and Functional Biology Progress Plants have long been recognized as biochemical powerhouses,producing a vast array of compounds through their secondary metabolic pathways[1].Although historically referred to as‘secondary’due to their perceived non-essential role in basic plant survival,it is now understood that these metabolites are integral to plant growth,development and adaptation to environmental challenges.Secondary metabolites,such as alkaloids,terpenoids,phenolics and flavonoids,serve as critical mediators of plant-environment interactions,conferring resistance to biotic and abiotic stressors[2].Beyond their ecological functions,these compounds are invaluable to humans,supporting industries ranging from pharmaceuticals and nutrition to agrochemicals and chemical additives.展开更多
Phenol is extensively utilized in various industries involving paints,rubber,textiles,explosives,plastics,etc.Compared to the conventional distillation or extraction technologies,pervaporation(PV)membrane process can ...Phenol is extensively utilized in various industries involving paints,rubber,textiles,explosives,plastics,etc.Compared to the conventional distillation or extraction technologies,pervaporation(PV)membrane process can be operated at a low temperature and has a low energy consumption as well as a high separation efficiency for phenol recovery.Thus,to meet the high demand for phenol recovery,the application of PV has been encouraged,and reached a new level.The PV process is governed by the properties of the membrane materials that significantly influence the energy costs associated with the separation unit,and the membrane types include polymer membranes,inorganic membranes,and mixed matrix membranes.Although recent literatures show that PV membranes have been continuously updated,no review has reported the latest development about it.In this work,the material types,separation properties and preparation methods of hydrophobic PV membranes for phenol recovery are summarized.Furthermore,the key preparation methods and application challenges associated with membranes are summarized,along with an overview of the opportunities and challenges posed by hydrophobic PV membranes for phenol recovery.展开更多
Chrysanthemum morifolium Ramat.is an important industrial crop with a high medicinal value,whose capitulum consists of ray and disc florets containing numerous bioactive components,such as flavonoids and phenolic acid...Chrysanthemum morifolium Ramat.is an important industrial crop with a high medicinal value,whose capitulum consists of ray and disc florets containing numerous bioactive components,such as flavonoids and phenolic acids.However,the distribution and accumulations of the bioactive metabolites in florets of Chrysanthemum morifolium were unclear.Herein,the ray and disc florets of Chrysanthemum morifolium were separated for comparing the bioactive metabolites.The contents of phenolic compounds and antioxidant activities were significantly different between the two florets.The metabolomic analysis identified 203 and 241 differential metabolites between ray and disc florets at two flowering stages.The derivatives of quercetin,isorhamnetin,tricin,and caffeoylquinic acid were enriched in the disc florets,while apigenin,kaempferol,acacetin,and their glycosides mainly accumulated in the ray florets.Besides,the results of transcriptome and qRT-PCR suggested that the F3H,F3'H,and FLS genes highly expressed in disc florets,while the FNS gene was well expressed in ray florets,which explained the different distribution of phenolic compounds between ray and disc florets.Furthermore,the expression of CmCYC2 genes was found to be significantly related to the distribution of flavones by correlation analysis.It was proved by the luciferase reporter assay that CmCYC2a and CmCYC2d factors could bind and activate the CmFNS promoter to regulate the flavones biosynthesis in ray florets.These results revealed the significant difference of metabolite contents and gene expression profile between ray and disc floret in Chrysanthemum morifolium and demonstrated that the quality of Chrysanthemum morifolium‘Hangju'was closely relevant to its flower morphology.展开更多
Moringa oleifera Lam.is a Moringa genus in the Moringaceae family that is high in nutrients and has a wide range of applications.Phenolic compounds are widely found in plants and have various health benefits for the h...Moringa oleifera Lam.is a Moringa genus in the Moringaceae family that is high in nutrients and has a wide range of applications.Phenolic compounds are widely found in plants and have various health benefits for the human body.With its high content and wide variety of phenolic compounds,M.oleifera Lam.has been widely studied for its health benefits.The phenolic compounds in M.oleifera Lam.(MOPCs)can be a potential source of functional food ingredients in pharmaceutical and industrial applications.Numerous studies have shown that MOPCs have antioxidant,anti-obesity,anti-diabetic,and antibacterial effects.Although the research on MOPCs has been gradually increasing,the extraction,isolation,identification,biological activities,and comprehensive application of MOPCs need a more systematic summary and generalization.Therefore,this paper reviews the isolation and extraction methods,structure identification,biological activities,and comprehensive applications to provide a further reference for the research and application of MOPCs.展开更多
Synthetic phenolic antioxidants(SPAs)are widely used in diverse industries due to their exceptional antioxidant characteristics.However,human exposure to SPAs may cause health problems.In this study,226 dust samples w...Synthetic phenolic antioxidants(SPAs)are widely used in diverse industries due to their exceptional antioxidant characteristics.However,human exposure to SPAs may cause health problems.In this study,226 dust samples were collected from 10 provinces in China,and six SPAs(three parent SPAs and their three transformation products)were analyzed.The concentrations of6SPAs(the sum of six target compounds)ranged from 15.4 to 3210 ng/g(geometric mean(GM):169 ng/g).The highest concentration of6SPAswas found in Sichuan Province(GM:349 ng/g),which was approximately 4 times higher than that in Hubei Province(81.6 ng/g)(p<0.05).The concentrations of butylated hydroxytoluene(BHT),2,2'-methylene bis(4-methyl-6–tert-butylphenol)(AO2246),2,6-di–tert–butyl–1,4-benzoquinone(BHT-Q),2,6-di–tert–butyl–4-(hydroxymethyl)phenol(BHT-OH),and ∑_(p)-SPAs were substantially higher in dust from urban areas than rural areas(p<0.05).AO2246 concentration in dust from homes(GM:0.400 ng/g)was about 4 times higher than that in workplaces(0.116 ng/g)(p<0.01).Significantly higherp-SPAs concentrations were found in dust from homes(GM:17.5 ng/g)than workplaces(11.4 ng/g)(p<0.01).The estimated daily intakes(EDIs)of ∑_(6)SPAs exposed through dust ingestion were 0.582,0.342,0.197,0.076,and 0.080 ng/kg bw/day in different age groups,and exposed through dermal contact was 0.358,0.252,0.174,0.167,and 0.177 ng/kg bw/day.EDIs showed that the exposure risks of SPAs decreased with age.This is the first work to determine SPAs in dust from10 provinces in China and investigate the spatial distribution of SPAs in those regions.展开更多
Sound contains mechanical signals that can promote physiological and biochemical changes in plants.Insects produce different sounds in the environment,which may be relevant to plant behavior.Thus,we evaluated whether ...Sound contains mechanical signals that can promote physiological and biochemical changes in plants.Insects produce different sounds in the environment,which may be relevant to plant behavior.Thus,we evaluated whether signaling cascades are regulated differently by ecological sounds and whether they trigger molecular responses following those produced by herbivorous insects.Soybean plants were treated with two different sounds:chewing herbivore and forest ambient.The responses were markedly distinct,indicating that sound signals may also trigger specific cascades.Enzymes involved in oxidative metabolism were responsive to both sounds,while salicylic acid(SA)was responsive only to the chewing sound.In contrast,lipoxygenase(LOX)activity and jasmonic acid(JA)did not change.Soybean Kunitz trypsin inhibitor gene(SKTI)and Bowman-Birk(BBI)genes,encoding for protease inhibitors,were induced by chewing sound.Chewing sound-induced high expression of the pathogenesis-related protein(PR1)gene,confirming the activation of SA-dependent cascades.In contrast,the sound treatments promoted modifications in different branches of the phenylpropanoid pathway,highlighting a tendency for increased flavonols for plants under chewing sounds.Accordingly,chewing sounds induced pathogenesis-related protein(PR10/Bet v-1)and gmFLS1 flavonol synthase(FLS1)genes involved in flavonoid biosynthesis and flavonols.Finally,our results propose that plants may recognize herbivores by their chewing sound and that different ecological sounds can trigger distinct signaling cascades.展开更多
The surface of MoSi2-SiB6/phenolic resin matrix composites was modified by mica,and the thermal oxidation behavior of the composites and the mechanical properties of the pyrolysis products were studied.The results sho...The surface of MoSi2-SiB6/phenolic resin matrix composites was modified by mica,and the thermal oxidation behavior of the composites and the mechanical properties of the pyrolysis products were studied.The results showed that the mica improved the thermal properties of the composites,the thermal expansion coefficient decreased,and the liquid phase formation caused the composites to shrink and increase the density.The flexural strength of mica surface modified composites not only increased to 78.64MPa after thermal treatment at 800-1200℃,but reached 83.02 MPa after high temperature treatment at1400℃.The improvement of the mechanical properties of the residual product benefits from the formation of high temperature ceramic phases such as Mo_(2)C and MoB,and the improvement of the shear strength of the composites by the mica.The shear strength of MBm5-2 at room temperature reached 33.08 MPa,indicating that the improvement of the interlayer properties of the composites further improved its mechanical properties.展开更多
In thermal protection structures,controlling and optimizing the surface roughness of carbon/phenolic(C/Ph)composites can effectively improve thermal protection performance and ensure the safe operation of carriers in ...In thermal protection structures,controlling and optimizing the surface roughness of carbon/phenolic(C/Ph)composites can effectively improve thermal protection performance and ensure the safe operation of carriers in high-temperature environments.This paper introduces a machine learning(ML)framework to forecast the surface roughness of carbon-phenolic composites under various thermal conditions by employing an ML algorithm derived from historical experimental datasets.Firstly,ablation experiments and collection of surface roughness height data of C/Ph composites under different thermal environments were conducted in an electric arc wind tunnel.Then,an ML model based on Ridge regression is developed for surface roughness prediction.The model involves incorporating feature engineering to choose the most concise and pertinent features,as well as developing an ML model.The ML model considers thermal environment parameters and feature screened by feature engineering as inputs,and predicts the surface height as the output.The results demonstrate that the suggested ML framework effectively anticipates the surface shape and associated surface roughness parameters in various heat flow conditions.Compared with the conventional 3D confocal microscope scanning,the method can obtain the surface topography information of the same area in a much shorter time,thus significantly saving time and cost.展开更多
[Objectives]To analyze the chemical components of Meconopsis integrifolia(Maxim.)Franch total flavonoids(MITF).[Methods]The chemical components of MITF were identified by UPLC-Q-Exactive Orbitrap MS.The column was per...[Objectives]To analyze the chemical components of Meconopsis integrifolia(Maxim.)Franch total flavonoids(MITF).[Methods]The chemical components of MITF were identified by UPLC-Q-Exactive Orbitrap MS.The column was performed using ACQUITY UPLC HSS T3(100 mm×2.1 mm,1.8μm)with 0.1%formic acid water(A)-acetonitrile(B)with gradient elution at 30℃,injection volume of 2μL,and flow rate of 0.3 mL/min.Electrospray ion source adopted positive and negative ion detection mode with scanning range m/z 100-1000.[Results]A total of 93 compounds were identified from MITF,including 57 flavonoids,25 phenolic acids,9 alkaloids and 2 others.Among them,dimethoxytaxifolin was identified as a possible new compound by SciFinder search,and 67 compounds were first identified in M.integrifolia.[Conclusions]This study provides a scientific foundation for clarifying the material basis of the efficacy of M.integrifolia and improving the quality standards.展开更多
Carbon fiber/phenolic resin composites have great potential application in the field of electronic information,where excellent structural-functional integration is required.In this work,the establishment of interfacia...Carbon fiber/phenolic resin composites have great potential application in the field of electronic information,where excellent structural-functional integration is required.In this work,the establishment of interfacial structures consisting of carbon nanotubes with different morphologies at the fiber/matrix interface is conducive to the further modulation of the mechanical,tribological,electromagnetic interference(EMI)shielding and thermal conductivity properties of carbon fiber/phenolic resin composites.Specially,array carbon nanotubes can deep into the resin matrix,effectively hindering crack extension,and constructing an electrically and thermally conductive network.Compared with the carbon fiber/phenolic composites,the tensile strength and modulus of elasticity(163.86±9.60 MPa,5.06±0.25 GPa)of the array carbon nanotubes reinforced carbon fiber/phenolic composites were enhanced by 57.09%and 22.22%.The average friction coefficient and wear rate(0.20±0.02,1.11×10^(-13)±0.13×10^(-13)m^(3)N^(−1)m^(−1))were reduced by 39.39%and 74.31%.EMI shielding effectiveness up to 40 dB in the X-band at 0.4 mm sample thickness,diffusion coefficient(0.39±0.003 mm^(2)/s)and thermal conductivity(0.54±0.004 W/(m K))were enhanced by up to 14.37%and 50.42%.This study reveals the beneficial effects of morphological changes of carbon nanotubes on the design of interfacial structure,proposes the reinforcement mechanism of array carbon nanotubes,and opens up the prospect of carbon fiber/phenolic composites for electronic applications.展开更多
文摘The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60?) C for 1h and then was heated to (85?) C for 1h. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.
基金Supported by the Key Research Program Foundation, Ministry of Education of China (Grant No. 02021)and the National Science Foundation of China (Grant No. 30471351)
文摘Wood of Chinese fir and poplar were liquefied in phenol at 150℃ and atmospheric pressure. The liquefied wood were reacted with formaldehyde to synthesize the liquefied wood-based resin. The factors affecting the resinification and the properties of new resin were investigated. The results show that the formaldehyde/liquefied wood molar ratio, reaction temperature, reaction time and sodium hydroxide/liquefied wood molar ratio have important influence on the resin characteristics. With the increase of formaldehyde/liquefied wood molar ratio, the yield of resin increases, and the flee phenol content of resins decreases, showing that the resinification of liquefied wood is more complete at higher formaldehyde/liquefied wood molar ratios. The reaction temperature on the viscosity of the liquefied resin has considerable effect; the viscosity of resin increased with increasing reaction temperature, and the amount of liquefied poplar resin increased more quickly than that of liquefied Chinese fir resin. The resinification time also has obvious influence on the viscosity of resin; the viscosity of liquefied poplar resin is more sensitive to resinification time compared with that of liquefied Chinese fir. The amount of sodium hydroxide can improve the water miscibility of liquefied wood resin. The optimum sodium hydroxide/liquefied wood molar ratio for preparation of liquefied wood-based resins exceeds 0.4.
基金supported by the National Natural Science Foundation of China(Nos.42377428 and 42077391)the National Key Research&Developmental Program of China(No.2022YFC3701301)+1 种基金the Shandong Provincial Natural Science Foundation,China(Nos.ZR2020ZD34 and ZR2023YQ031)the Instrument Improvement Funds of Shandong University Public Technology Platform(No.ts20230108).
文摘Due to the endocrine toxicity,neurotoxic,and reproductive toxicity to organisms,the sources and risks of brominated organic pollutants have attracted widespread attention.However,knowledge gaps remain in the bromination processes of emerging phenolic pollutants in plants,whichmay increase the potential health risk associated with food exposure.Our study discovered that light induced generation and accumulation of more toxic brominated organic compounds(Br-org)in lettuce leaves under the stress of acetaminophen(ACE)than that without light,as evidenced by an increase in C-Br bond intensity in FTIR analysis.This result can be explained by the oxidation of bromide ions(Br^(-))by reactive species(ROS and ^(3)Chl*)of chloroplast into reactive bromine species(RBS).The main mechanism is that the redox of Br^(-)reduced the oxidative damage of ACE to the structure and function of chloroplasts,providing good conditions for light energy uptake and utilization and promoting the increase of pigments and active species.Compared with the dark group exposed to 5 mg/L Br^(-),the pigment content,H_(2)O_(2) and ^(1)O_(2) level of the light group increased by 56%,84% and 69%,respectively.On the other hand,RBS attacks certain electrophilic organic compounds in leaves to generate Br^(-)org.Triple excited state of chlorophyll(^(3)Chl^(*))was the dominant species for the transformation of ACE,while RBS is a key factor in the generation of Br-org in the Br^(-)/light/chlorophyll system.A total of six transformation products were identified by HPLC-MS/MS,which were involved in three transformation pathways:methylation,hydroxyl oxidation and hydroxylation followed by bromination.This is the first report that Br^(-)could enter the chloroplast and improved chloroplast structure under ACE stress,and elucidated the bromination mechanism of organics in terrestrial plant involving of biophotochemical bromination in chloroplast besides enzyme-catalyzed bromination.This study is beneficial for risk assessment and prevention of emerging phenolic pollutants.
文摘Silica gel column chromatography(CC),Sephadex LH-20 CC and high performance liquid chromatography(HPLC)were used to study the chemical constituents of the fruits of the medicine-food plant Rubus idaeus Linnaeus.A new tetrahydrogenated naphthol syringic acid ester,named rubusnolicester(1),two new phenolic glycoside derivatives,4-chloro-2,6-dimethoxylphenol-1-O-β-D-glucopyranoside(2)and salicylic acid-2-O-(6'-O-acetyl)-β-D-glucopyranoside(3),together with one known salicylic acid glycoside derivative(4)and three known flavonoids derivatives(5~7),were isolated.Their structures were elucidated by HRESI-MS,NMR spectroscopy,and a comparison of optical rotation(OR).Compounds 1~7 were evaluated the inhibitory activities against the nitric oxide(NO)production induced by lipopolysaccharide(LPS)in mouse macrophage RAW264.7 cells in vitro.Compound 1 exhibited inhibitory effect with the IC50 value of(12.28±1.25)μmol/L.
基金supported by the National Natural Science Foundation of China(No.22206013).
文摘The efficient mineralization of phenol and its derivatives in wastewater remains a great challenge.In this study,the bimetallic CuCeO_(2)-BTC was screened from a series of MOFs-derived MCeO_(2)-BTC(M=La,Cu,Co,Fe,and Mn)catalysts,and the influence of the Cu/Ce ratio on phenol removal by catalytic ozonation was carefully examined.The results indicate that Cu_(2)Ce_(1)O_(y)-BTC was the best among the Cu_(x)Ce_(1)O_(y)-BTC(x=0,1,2,and 3)catalysts,with a phenol mineralization efficiency reaching close to 100%within 200 min,approximately 30.1%higher than CeO_(2)-BTC/O_(3)and 70.3%higher than O_(3)alone.The order of mineralization efficiency of phenol was Cu_(2)Ce_(1)O_(y)-BTC>Cu_(3)Ce_(1)O_(y)-BTC>Cu_(1)Ce_(1)O_(y)-BTC>CeO_(2)-BTC.CeO_(2)-BTC exhibited a broccoli-like morphology,and Cu_(x)Ce_(1)O_(y)-BTC(x=1,2,and 3)exhibited an urchin-like morphology.Compared with Cu_(x)Ce_(1)O_(y)-BTC(x=0,1,and 3),Cu_(2)Ce_(1)O_(y)-BTC exhibited a larger specific surface area and pore volume.This characteristic contributed to the availability of more active sites for phenol degradation.The redox ability was greatly enhanced as well.Besides,the surface of Cu_(2)Ce_(1)O_(y)-BTC exhibited a higher concentration of Ce^(3+)species and hydroxyl groups,which facilitated the dissociation of ozone and the generation of active radicals.Based on the results of radical quenching experiments and the intermediates detected by LC-MS,a potential mechanism for phenol degradation in the Cu_(2)Ce_(1)O_(y)-BTC/O_(3)system was postulated.This study offers novel perspectives on the advancement of MOFs-derived catalysts for achieving the complete mineralization of phenol in wastewater through catalytic ozonation.
基金funded by the Ministry of Education Science and Technological Development of the Republic of Serbia with grant numbers 451-03-47/2025-01/200133 and 451-34403-47/2025-01/200189.
文摘This study aims to determine the phytochemical composition and antioxidant activity(AA)of different plant parts(bulbs,stalk,leaves and flowers)of wild rosy garlic(Allium roseum)from Montenegro.The flower exhibited the highest concentration of total phenols(55.7 GAE/g d.e.),followed by the leaf(25.6mg GAE/g d.e.).The leaf displayed the highest concentration of total flavonoids(41.48 mg RE/g d.e.),followed by the flower(36.26 mg RE/g d.e.)and top part of the stalk(26.80 mg RE/g d.e.).The AA of different parts of A.roseum after 60 min of incubation decreased in the following order:flower(0.15mg/cm^(3))>upper stalk(0.32mg/cm^(3))>leaf(0.36mg/cm^(3))>basal stalk(0.80mg/cm^(3))>bulb(1.53 mg/cm^(3)).The flowers exhibited the lowest EC_(50) values,indicating the highest antioxidant potential throughout the entire incubation period.Among all plant parts analyzed,the flowers demonstrated the highest ferric reducing antioxidant power(FRAP),reaching 24.99 mg Fe^(2+)/g,thereby indicating their superior antioxidant potential.Given their edibility,pleasant flavor,and high nutritional value,A.roseum flowers may be considered a promising natural additive for functional food products or culinary applications,including dish enhancement and decoration.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY23B060006 and LY18B060016).
文摘SAPO-5 zeolite supported RuMn was a highly efficient catalyst for the aqueous-phase selective hydrodeoxygenation of guaiacol to cyclohexanol.The optimal catalyst achieved a high cyclohexanol yield of 93.7%at full guaiacol conversion under mild conditions,with a high TOF of 920 h^(-1).Moreover,the catalyst displayed remarkable performance for the hydrogenation of phenol to cyclohexanol,where a 100%yield of cyclohexanol was obtained at a phenol-to-Ru molar ratio of about 17900.In particular,the catalyst exhibited excellent recyclability and could be recycled for 20 times without obvious activity loss.The as-prepared RuMn/SAPO-5 catalyst exhibited higher performance than most of the reported Rubased catalysts.
基金supported by theUniversitasNegeri Semarang throughDPAUNNES 2024The grant number is No.271.26.2/UN37/PPK.10/2024.
文摘Bio-oil is a renewable fuel that can be obtained from biomass waste,such as empty palm fruit bunches,sugarcane bagasse,and rice husks.Within a biorefinery framework,bio-oil had not met the standards as a fuel due to the presence of impurities like corrosive phenol.Therefore,the separation of phenol from bio-oil is essential and can be achieved using the extraction method.In this study,biomass wastes(empty fruit bunches of oil palm,sugarcane bagasse,and rice husk)were pyrolyzed in a biorefinery framework to produce bio-oil,which was then refined through liquid-liquid extraction with a methanol-chloroform and ethyl acetate solvents to remove its phenolic compound.The extraction with methanol-chloroform solvent was carried out for 1 h at 50℃.Meanwhile,extraction with ethyl acetate solvent was carried out for 3 h at 70℃.Both extractions used the same variations,i.e.,bio-oil:solvent ratio at 1:1,1:2,1:3,and 1:4,and stirring speeds of 150 rpm,200 rpm,250 rpm,and 300 rpm.The bio-oil obtained from this study contained complex chemical compounds and had characteristics such as a pH of 5,a density of 1.116 g/mL,and a viscosity of 29.57 cSt.Theoptimization results using response surface methodology(RSM)showed that the best yield formethanolchloroform was 72.98%at a stirring speed of 250 rpm and a ratio of 1:3.As for ethyl acetate solvent,the highest yield obtained was 71.78%at a stirring speed of 237.145 rpm and a ratio of 1:2.
基金National Natural Science Foundation of China(Nos.21971090 and 22271123)the NSF of Jiangsu Province(No.BK20230201)+1 种基金the Natural Science Foundation of Jiangsu Education Committee(No.22KJB150024)the Natural Science Foundation of Jiangsu Normal University(No.21XSRX010)。
文摘A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regioselective access to unprecedented polyarene-fused ten-membered lactams bearing a bridged aryl-aryl-indole scaffold in moderate to good yields.This protocol demonstrates a broad substrate scope,good compatibility with substituents and complete regioselectivity,providing an organocatalytic modular synthetic strategy for creating medium-sized lactams.
基金This publication presents findings from research conducted under Project No.III-99-24.489Natural Growth Regulators in the Induction of Resistance of Cereal Plants to HeavyMetals(2024-2028)funded by the NationalAcademy of Sciences of Ukraine.
文摘Prolonged lack of rain and high-temperature lead to soil water deficits,inhibiting cereal crop growth in early ontogenesis and reducing grain quality and yield.Rye(Secale cereale L.)is a key grain crop,particularly in regions where wheat cultivation is challenging or unfeasible.To clarify its drought adaptation mechanisms,we analyzed the effects of moderate soil drought on growth,hormonal homeostasis,and the dynamics and distribution of free amino acids and phenolic compounds in rye at early vegetative stages and post-recovery.Drought triggered both general and organ-specific changes in endogenous phytohormones.A nonspecific response involved the accumulation of stress hormones abscisic acid(ABA)and salicylic acid(SA),alongside the suppression of growth hormones indole-3-acetic acid(IAA)and gibberellins.However,hormone dynamics and localization varied across plant organs.ABA and SA levels significantly increased in shoots of drought-stressed and recovered plants,corresponding with inhibited growth.Prolonged drought further enhanced ABA accumulation in both shoots and roots of recovered plants,while SA levels declined in roots but remained elevated in shoots.Drought also caused a substantial reduction in IAA,particularly in shoots,while gibberellins(GA_(3)+GA_(4))significantly decreased in roots.GA_(3)was predominant in most samples,except in the shoots of 2-day-old control plants.Post-recovery,IAA levels increased but remained below control values,while GA_(4)accumulation in roots led to a rise in total gibberellin levels.In contrast,shoot GA_(3)+GA_(4)levels declined,primarily due to GA_(3)reduction.The dominant free amino acids:aspartic acid,glutamic acid,glycine,alanine,and leucinedecreased significantly,underscoring their key role in stress adaptation.Increased flavonoid accumulation,especially in roots,suggests their involvement in antioxidant defense against oxidative stress.A significant increase in ABA and SA levels,along with a marked reduction in IAA and GA content in stressed rye plants occurred alongside a reduction in free amino acid content,accumulation of phenolic compounds,and an increase in flavonoid levels.These findings indicate distinct adaptation strategies in rye shoots and roots undermoderate soil drought.They provide a foundation for further research on drought resistance mechanisms in cereals and the development of strategies to enhance their adaptive potential.
基金supported by High Level Talents Research Initiation Fund of West Anhui University(WGKQ2022025)Quality Engineering Project of Anhui Province(2024zybj032)+1 种基金Quality Engineering Project of West Anhui University(wxxy2024011)Development of Big Data Integration and Analysis Platform for Traditional Chinese Medicine Genomics(0045025050).
文摘1 Plant SecondaryMetabolism and Functional Biology Progress Plants have long been recognized as biochemical powerhouses,producing a vast array of compounds through their secondary metabolic pathways[1].Although historically referred to as‘secondary’due to their perceived non-essential role in basic plant survival,it is now understood that these metabolites are integral to plant growth,development and adaptation to environmental challenges.Secondary metabolites,such as alkaloids,terpenoids,phenolics and flavonoids,serve as critical mediators of plant-environment interactions,conferring resistance to biotic and abiotic stressors[2].Beyond their ecological functions,these compounds are invaluable to humans,supporting industries ranging from pharmaceuticals and nutrition to agrochemicals and chemical additives.
基金funded by National Natural Science Foundation of China(22278023,22208010)S&T Program of Hebei(24464301D)SINOPEC Group(24-ZS-0447).
文摘Phenol is extensively utilized in various industries involving paints,rubber,textiles,explosives,plastics,etc.Compared to the conventional distillation or extraction technologies,pervaporation(PV)membrane process can be operated at a low temperature and has a low energy consumption as well as a high separation efficiency for phenol recovery.Thus,to meet the high demand for phenol recovery,the application of PV has been encouraged,and reached a new level.The PV process is governed by the properties of the membrane materials that significantly influence the energy costs associated with the separation unit,and the membrane types include polymer membranes,inorganic membranes,and mixed matrix membranes.Although recent literatures show that PV membranes have been continuously updated,no review has reported the latest development about it.In this work,the material types,separation properties and preparation methods of hydrophobic PV membranes for phenol recovery are summarized.Furthermore,the key preparation methods and application challenges associated with membranes are summarized,along with an overview of the opportunities and challenges posed by hydrophobic PV membranes for phenol recovery.
基金financially supported by grants from the National Natural Science Foundation of China(Grant No.81503180)the Opening Project of Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine(Grant No.2021E10013)+1 种基金the Opening Project of NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine(Grant No.AHYJ-KFKT-202101)the Earmarked fund for Jiangsu Agricultural Industry Technology System(Grant No.JATS[2022]460)。
文摘Chrysanthemum morifolium Ramat.is an important industrial crop with a high medicinal value,whose capitulum consists of ray and disc florets containing numerous bioactive components,such as flavonoids and phenolic acids.However,the distribution and accumulations of the bioactive metabolites in florets of Chrysanthemum morifolium were unclear.Herein,the ray and disc florets of Chrysanthemum morifolium were separated for comparing the bioactive metabolites.The contents of phenolic compounds and antioxidant activities were significantly different between the two florets.The metabolomic analysis identified 203 and 241 differential metabolites between ray and disc florets at two flowering stages.The derivatives of quercetin,isorhamnetin,tricin,and caffeoylquinic acid were enriched in the disc florets,while apigenin,kaempferol,acacetin,and their glycosides mainly accumulated in the ray florets.Besides,the results of transcriptome and qRT-PCR suggested that the F3H,F3'H,and FLS genes highly expressed in disc florets,while the FNS gene was well expressed in ray florets,which explained the different distribution of phenolic compounds between ray and disc florets.Furthermore,the expression of CmCYC2 genes was found to be significantly related to the distribution of flavones by correlation analysis.It was proved by the luciferase reporter assay that CmCYC2a and CmCYC2d factors could bind and activate the CmFNS promoter to regulate the flavones biosynthesis in ray florets.These results revealed the significant difference of metabolite contents and gene expression profile between ray and disc floret in Chrysanthemum morifolium and demonstrated that the quality of Chrysanthemum morifolium‘Hangju'was closely relevant to its flower morphology.
基金supported by Major Project of Science and Technology Department of Yunnan Province(202002AA100005,202102AE090027-2)National Natural Science Foundation of China(82260703)+1 种基金Cassava Industrial Technology System of China(CARS11-YNTY)Yunnan Province Ten Thousand Plan Industrial Technology Talents Project(YNWR-CYJS-2020-010)。
文摘Moringa oleifera Lam.is a Moringa genus in the Moringaceae family that is high in nutrients and has a wide range of applications.Phenolic compounds are widely found in plants and have various health benefits for the human body.With its high content and wide variety of phenolic compounds,M.oleifera Lam.has been widely studied for its health benefits.The phenolic compounds in M.oleifera Lam.(MOPCs)can be a potential source of functional food ingredients in pharmaceutical and industrial applications.Numerous studies have shown that MOPCs have antioxidant,anti-obesity,anti-diabetic,and antibacterial effects.Although the research on MOPCs has been gradually increasing,the extraction,isolation,identification,biological activities,and comprehensive application of MOPCs need a more systematic summary and generalization.Therefore,this paper reviews the isolation and extraction methods,structure identification,biological activities,and comprehensive applications to provide a further reference for the research and application of MOPCs.
基金supported by the National Key Research and Development Program of China(No.2023YFC3706602)the National Natural Science Foundation of China(Nos.22225605 and 22193051)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0750200).
文摘Synthetic phenolic antioxidants(SPAs)are widely used in diverse industries due to their exceptional antioxidant characteristics.However,human exposure to SPAs may cause health problems.In this study,226 dust samples were collected from 10 provinces in China,and six SPAs(three parent SPAs and their three transformation products)were analyzed.The concentrations of6SPAs(the sum of six target compounds)ranged from 15.4 to 3210 ng/g(geometric mean(GM):169 ng/g).The highest concentration of6SPAswas found in Sichuan Province(GM:349 ng/g),which was approximately 4 times higher than that in Hubei Province(81.6 ng/g)(p<0.05).The concentrations of butylated hydroxytoluene(BHT),2,2'-methylene bis(4-methyl-6–tert-butylphenol)(AO2246),2,6-di–tert–butyl–1,4-benzoquinone(BHT-Q),2,6-di–tert–butyl–4-(hydroxymethyl)phenol(BHT-OH),and ∑_(p)-SPAs were substantially higher in dust from urban areas than rural areas(p<0.05).AO2246 concentration in dust from homes(GM:0.400 ng/g)was about 4 times higher than that in workplaces(0.116 ng/g)(p<0.01).Significantly higherp-SPAs concentrations were found in dust from homes(GM:17.5 ng/g)than workplaces(11.4 ng/g)(p<0.01).The estimated daily intakes(EDIs)of ∑_(6)SPAs exposed through dust ingestion were 0.582,0.342,0.197,0.076,and 0.080 ng/kg bw/day in different age groups,and exposed through dermal contact was 0.358,0.252,0.174,0.167,and 0.177 ng/kg bw/day.EDIs showed that the exposure risks of SPAs decreased with age.This is the first work to determine SPAs in dust from10 provinces in China and investigate the spatial distribution of SPAs in those regions.
文摘Sound contains mechanical signals that can promote physiological and biochemical changes in plants.Insects produce different sounds in the environment,which may be relevant to plant behavior.Thus,we evaluated whether signaling cascades are regulated differently by ecological sounds and whether they trigger molecular responses following those produced by herbivorous insects.Soybean plants were treated with two different sounds:chewing herbivore and forest ambient.The responses were markedly distinct,indicating that sound signals may also trigger specific cascades.Enzymes involved in oxidative metabolism were responsive to both sounds,while salicylic acid(SA)was responsive only to the chewing sound.In contrast,lipoxygenase(LOX)activity and jasmonic acid(JA)did not change.Soybean Kunitz trypsin inhibitor gene(SKTI)and Bowman-Birk(BBI)genes,encoding for protease inhibitors,were induced by chewing sound.Chewing sound-induced high expression of the pathogenesis-related protein(PR1)gene,confirming the activation of SA-dependent cascades.In contrast,the sound treatments promoted modifications in different branches of the phenylpropanoid pathway,highlighting a tendency for increased flavonols for plants under chewing sounds.Accordingly,chewing sounds induced pathogenesis-related protein(PR10/Bet v-1)and gmFLS1 flavonol synthase(FLS1)genes involved in flavonoid biosynthesis and flavonols.Finally,our results propose that plants may recognize herbivores by their chewing sound and that different ecological sounds can trigger distinct signaling cascades.
基金Funded by the National Natural Science Foundation of China(Nos.52171045,52162013,and 51932006)。
文摘The surface of MoSi2-SiB6/phenolic resin matrix composites was modified by mica,and the thermal oxidation behavior of the composites and the mechanical properties of the pyrolysis products were studied.The results showed that the mica improved the thermal properties of the composites,the thermal expansion coefficient decreased,and the liquid phase formation caused the composites to shrink and increase the density.The flexural strength of mica surface modified composites not only increased to 78.64MPa after thermal treatment at 800-1200℃,but reached 83.02 MPa after high temperature treatment at1400℃.The improvement of the mechanical properties of the residual product benefits from the formation of high temperature ceramic phases such as Mo_(2)C and MoB,and the improvement of the shear strength of the composites by the mica.The shear strength of MBm5-2 at room temperature reached 33.08 MPa,indicating that the improvement of the interlayer properties of the composites further improved its mechanical properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2241240,12172045,and 12221002).
文摘In thermal protection structures,controlling and optimizing the surface roughness of carbon/phenolic(C/Ph)composites can effectively improve thermal protection performance and ensure the safe operation of carriers in high-temperature environments.This paper introduces a machine learning(ML)framework to forecast the surface roughness of carbon-phenolic composites under various thermal conditions by employing an ML algorithm derived from historical experimental datasets.Firstly,ablation experiments and collection of surface roughness height data of C/Ph composites under different thermal environments were conducted in an electric arc wind tunnel.Then,an ML model based on Ridge regression is developed for surface roughness prediction.The model involves incorporating feature engineering to choose the most concise and pertinent features,as well as developing an ML model.The ML model considers thermal environment parameters and feature screened by feature engineering as inputs,and predicts the surface height as the output.The results demonstrate that the suggested ML framework effectively anticipates the surface shape and associated surface roughness parameters in various heat flow conditions.Compared with the conventional 3D confocal microscope scanning,the method can obtain the surface topography information of the same area in a much shorter time,thus significantly saving time and cost.
基金Supported by Natural Science Foundation of Sichuan Province(2023NS-FSC0610)the Special Fund of Natural Science for the Central Universities of Southwest Minzu University(ZYN2023071).
文摘[Objectives]To analyze the chemical components of Meconopsis integrifolia(Maxim.)Franch total flavonoids(MITF).[Methods]The chemical components of MITF were identified by UPLC-Q-Exactive Orbitrap MS.The column was performed using ACQUITY UPLC HSS T3(100 mm×2.1 mm,1.8μm)with 0.1%formic acid water(A)-acetonitrile(B)with gradient elution at 30℃,injection volume of 2μL,and flow rate of 0.3 mL/min.Electrospray ion source adopted positive and negative ion detection mode with scanning range m/z 100-1000.[Results]A total of 93 compounds were identified from MITF,including 57 flavonoids,25 phenolic acids,9 alkaloids and 2 others.Among them,dimethoxytaxifolin was identified as a possible new compound by SciFinder search,and 67 compounds were first identified in M.integrifolia.[Conclusions]This study provides a scientific foundation for clarifying the material basis of the efficacy of M.integrifolia and improving the quality standards.
基金supported by the National Natural Science Foundation of China(No.51872232)the Key Scientific and Technological Innovation Research Team of Shaanxi Province(No.2022TD-31)the Key R&D Program of Shaanxi Province(No.2021ZDLGY14-04).
文摘Carbon fiber/phenolic resin composites have great potential application in the field of electronic information,where excellent structural-functional integration is required.In this work,the establishment of interfacial structures consisting of carbon nanotubes with different morphologies at the fiber/matrix interface is conducive to the further modulation of the mechanical,tribological,electromagnetic interference(EMI)shielding and thermal conductivity properties of carbon fiber/phenolic resin composites.Specially,array carbon nanotubes can deep into the resin matrix,effectively hindering crack extension,and constructing an electrically and thermally conductive network.Compared with the carbon fiber/phenolic composites,the tensile strength and modulus of elasticity(163.86±9.60 MPa,5.06±0.25 GPa)of the array carbon nanotubes reinforced carbon fiber/phenolic composites were enhanced by 57.09%and 22.22%.The average friction coefficient and wear rate(0.20±0.02,1.11×10^(-13)±0.13×10^(-13)m^(3)N^(−1)m^(−1))were reduced by 39.39%and 74.31%.EMI shielding effectiveness up to 40 dB in the X-band at 0.4 mm sample thickness,diffusion coefficient(0.39±0.003 mm^(2)/s)and thermal conductivity(0.54±0.004 W/(m K))were enhanced by up to 14.37%and 50.42%.This study reveals the beneficial effects of morphological changes of carbon nanotubes on the design of interfacial structure,proposes the reinforcement mechanism of array carbon nanotubes,and opens up the prospect of carbon fiber/phenolic composites for electronic applications.