This study investigates the long-term thermal-oxidative stability and mechanical properties of phenolcontaining phthalonitrile monomer(PN75)and dicyanate ester of bisphenol-A(DCBA)composites reinforced with short carb...This study investigates the long-term thermal-oxidative stability and mechanical properties of phenolcontaining phthalonitrile monomer(PN75)and dicyanate ester of bisphenol-A(DCBA)composites reinforced with short carbon fibers T700SC(SCF)within a temperature range of 330375℃.The research focuses on the PN75 monomer and DCBA blend reinforced SCF composites with varying SCF content,examining mass loss and changes in flexural strength after thermal aging for 50 h(h).Results show that the SCF-reinforced composites based on the PN75/DCBA blend consistently outperform the neat blend in flexural strength,both at room temperature and after thermal aging.The introduction of the SCF significantly improves the composites'thermal stability and mechanical retention,with higher SCF content correlating to better performance.Notably,after aging at 350℃,the SCF-reinforced composites based(30%(mass)SCF)retained 88.8%of its flexural strength,compared to 61.1%for the neat blend.Morphological analysis reveals that while thermal aging causes degradation of the PN75/DCBA blend layer on SCF surfaces,the overall composite structure maintains good mechanical properties up to 350℃.At 375℃,significant degradation occurs,yet the composites still retain flexural strengths above 78 MPa.This study demonstrates the potential of the SCF-reinforced composites based on PN75/DCBA blend for high-temperature applications,establishing their upper-temperature limit for long-term use in oxidative environments.展开更多
In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditio...In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditions on the phenol removal rate were investigated. The test results showed that when the phenol concentration was 0.1 g/L, the ozone-containing air flow rate was 0.05 m3/b, the ozone concentration was 3.58 mg/L, the pH value was 7.5, and the treating time was 30 minutes, the phenol removal rate reached 99%, with the COD removal rate equating to 55%. The property of treated wastewater could comply with the first-grade effluent specified in "Comprehensive Wastewater Discharge Standard" (GB8978--1996).展开更多
Phenolic wastewater is one of the priorities in the field of wastewater treatment,which poses a serious threat to the human health and nature environment.In this paper,cationic cetyltrimethylammonium bromide(CTAB)and ...Phenolic wastewater is one of the priorities in the field of wastewater treatment,which poses a serious threat to the human health and nature environment.In this paper,cationic cetyltrimethylammonium bromide(CTAB)and anionic sodium oleate(Na OL)microemulsions were utilized to extract phenol from the wastewater.The optimal extraction factors were investigated by exploring the effects of microemulsion composition ratio and extraction conditions on the phenol extraction performance.Furthermore,the enhanced extraction mechanism of phenol by cations microemulsions is illustrated by studying the extraction process of cationic and anionic microemulsions in the extraction of phenol.The optimum components were obtained:surfactant concentration of 0.2 mol·L^(-1),isoamyl alcohol volume of 30%,internal aqueous phase concentration of CTAB microemulsion of 0.05 mol·L^(-1),and internal aqueous phase concentration of Na OL microemulsion of 0.09 mol·L^(-1).The extraction efficiencies were 96.44%and 82.0%when using CTAB and Na OL microemulsions under optimal conditions(water-emulsion ratio of 5,contact time of 9 min,extraction temperature of 298.15 K,and p H of 9),confirming the enhanced extraction of phenol by CTAB cationic microemulsion.It was analyzed that the enhanced extraction of CTAB microemulsion was due to the electrostatic adsorption of cations with phenol root ions.展开更多
基金funded by the Innovative Research Group project of the National Natural Science Foundation of China(52373003).
文摘This study investigates the long-term thermal-oxidative stability and mechanical properties of phenolcontaining phthalonitrile monomer(PN75)and dicyanate ester of bisphenol-A(DCBA)composites reinforced with short carbon fibers T700SC(SCF)within a temperature range of 330375℃.The research focuses on the PN75 monomer and DCBA blend reinforced SCF composites with varying SCF content,examining mass loss and changes in flexural strength after thermal aging for 50 h(h).Results show that the SCF-reinforced composites based on the PN75/DCBA blend consistently outperform the neat blend in flexural strength,both at room temperature and after thermal aging.The introduction of the SCF significantly improves the composites'thermal stability and mechanical retention,with higher SCF content correlating to better performance.Notably,after aging at 350℃,the SCF-reinforced composites based(30%(mass)SCF)retained 88.8%of its flexural strength,compared to 61.1%for the neat blend.Morphological analysis reveals that while thermal aging causes degradation of the PN75/DCBA blend layer on SCF surfaces,the overall composite structure maintains good mechanical properties up to 350℃.At 375℃,significant degradation occurs,yet the composites still retain flexural strengths above 78 MPa.This study demonstrates the potential of the SCF-reinforced composites based on PN75/DCBA blend for high-temperature applications,establishing their upper-temperature limit for long-term use in oxidative environments.
文摘In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditions on the phenol removal rate were investigated. The test results showed that when the phenol concentration was 0.1 g/L, the ozone-containing air flow rate was 0.05 m3/b, the ozone concentration was 3.58 mg/L, the pH value was 7.5, and the treating time was 30 minutes, the phenol removal rate reached 99%, with the COD removal rate equating to 55%. The property of treated wastewater could comply with the first-grade effluent specified in "Comprehensive Wastewater Discharge Standard" (GB8978--1996).
基金sponsored by the National Natural Science Foundation of China(22225804)Shanghai Sailing Program,China(21YF1409500)+1 种基金the National Natural Science Foundation of China(22078102)the Education and Scientific Research Projects of Shanghai,China(19DZ1208201)。
文摘Phenolic wastewater is one of the priorities in the field of wastewater treatment,which poses a serious threat to the human health and nature environment.In this paper,cationic cetyltrimethylammonium bromide(CTAB)and anionic sodium oleate(Na OL)microemulsions were utilized to extract phenol from the wastewater.The optimal extraction factors were investigated by exploring the effects of microemulsion composition ratio and extraction conditions on the phenol extraction performance.Furthermore,the enhanced extraction mechanism of phenol by cations microemulsions is illustrated by studying the extraction process of cationic and anionic microemulsions in the extraction of phenol.The optimum components were obtained:surfactant concentration of 0.2 mol·L^(-1),isoamyl alcohol volume of 30%,internal aqueous phase concentration of CTAB microemulsion of 0.05 mol·L^(-1),and internal aqueous phase concentration of Na OL microemulsion of 0.09 mol·L^(-1).The extraction efficiencies were 96.44%and 82.0%when using CTAB and Na OL microemulsions under optimal conditions(water-emulsion ratio of 5,contact time of 9 min,extraction temperature of 298.15 K,and p H of 9),confirming the enhanced extraction of phenol by CTAB cationic microemulsion.It was analyzed that the enhanced extraction of CTAB microemulsion was due to the electrostatic adsorption of cations with phenol root ions.