期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
Phase field modeling of the aspect ratio dependent functional properties of NiTi shape memory alloys with different grain sizes 被引量:1
1
作者 Bo Xu Beihai Huang +1 位作者 Chong Wang Qingyuan Wang 《Acta Mechanica Sinica》 2025年第1期22-41,共20页
It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size... It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors. 展开更多
关键词 Phase field modeling NITI Aspect ratio Grain size Functional property
原文传递
Petrology of Eclogite at Huwan,Western Dabie and Implications for Phase Equilibrium Modeling on LT-HP/UHP Eclogite
2
作者 Bin Xia Ying Cui +1 位作者 Yunfeng Shang Jingtao Shi 《Journal of Earth Science》 2025年第3期1018-1032,共15页
Phase equilibrium modeling using internally consistent thermodynamic dataset and associated activity-composition(a-x)models are very helpful for quantifying P-T evolution for eclogite,which is the basis for decipherin... Phase equilibrium modeling using internally consistent thermodynamic dataset and associated activity-composition(a-x)models are very helpful for quantifying P-T evolution for eclogite,which is the basis for deciphering the geodynamic processes in subduction zones.In this study,we apply different versions of datasets(ds55 and ds62)and associated a-x relations to a wellestablished LT-HP eclogite at Huwan in the classic western Dabie orogen to constrain its P-T evolution.The eclogite comprises garnet+omphacite+amphibole+white mica+epidote+quartz+chlorite+rutile/ilmenite/sphene.Garnet porphyroblasts show mono-variation in the end members(spessartine from 17 mol%to 0,pyrope from 2 mol%to 18 mol%,almandine from 47 mol%to 64mol%and grossular from 35 mol%to 18 mol%)from core to rim.Phase diagrams combined with compositional isopleth thermobarometry show that dataset ds62 and associated a-x relations yield P_(max)of~33 kbar at~560℃,conflicting with our petrological observations and previous studies.On the other hand,phase equilibrium modeling using dataset ds62 and a revised symmetric garnet a-x model irrespective of Fe^(3+)(O)gives P_(max)of~27 kbar at~560℃,consistent with the results using dataset ds55 and associated a-x relations.Therefore,we recommend a symmetric model for garnet involving py,alm,gr and spss,without Fe~(3+)components,instead of the asymmetric garnet a-x relations involving py,alm,gr,spss and kho by White et al.(2014),for calculating phase diagrams for LT-(U)HP eclogite when using dataset ds62.In this study,the defined P-T path is characterized by a segment of the prograde evolution showing a first moderate slope,followed by gentle then steep slopes,representing the thermal structure evolution recorded by slab surface during continental subduction.Our work combined with previous studies conclude that in western Dabie,the Huwan HP eclogite belt to the north and the Hong'an HP eclogite belt to the south belong to the same HP slice overlying the Xinxian UHP slice. 展开更多
关键词 phase equilibrium modeling LT-HP eclogite continental subduction western Dabie garnets PETROLOGY
原文传递
Efficient Prediction of Quasi-Phase Equilibrium in KKS Phase Field Model via Grey Wolf-Optimized Neural Network
3
作者 Changsheng Zhu Jintao Miao +2 位作者 Zihao Gao Shuo Liu Jingjie Li 《Computers, Materials & Continua》 2025年第9期4313-4340,共28页
As the demand for advanced material design and performance prediction continues to grow,traditional phase-field models are increasingly challenged by limitations in computational efficiency and predictive accuracy,par... As the demand for advanced material design and performance prediction continues to grow,traditional phase-field models are increasingly challenged by limitations in computational efficiency and predictive accuracy,particularly when addressing high-dimensional and complex data in multicomponent systems.To overcome these challenges,this study proposes an innovative model,LSGWO-BP,which integrates an improved Grey Wolf Optimizer(GWO)with a backpropagation neural network(BP)to enhance the accuracy and efficiency of quasi-phase equilibrium predictions within the KKS phase-field framework.Three mapping enhancement strategies were investigated–Circle-Root,Tent-Cosine,and Logistic-Sine mappings-with the Logistic mapping further improved via Sine perturbation to boost global search capability and convergence speed in large-scale,complex data scenarios.Evaluation results demonstrate that the LSGWO-BP model significantly outperforms conventional machine learning approaches in predicting quasi-phase equilibrium,achieving a 14%–28%reduction in mean absolute error(MAE).Substantial improvements were also observed in mean squared error,root mean squared error,and mean absolute percentage error,alongside a 7%–33%increase in the coefficient of determination(R2).Furthermore,the model exhibits strong potential for microstructural simulation applications.Overall,the study confirms the effectiveness of the LSGWO-BP model in materials science,especially in enhancing phase-field modeling efficiency and enabling accurate,intelligent prediction for multicomponent alloy systems,thereby offering robust support for microstructure prediction and control. 展开更多
关键词 Logistic-sine mapping LSGWO-BP model MICROSTRUCTURE quasi-phase equilibrium phase field model
在线阅读 下载PDF
A material point finite element method for thermo-hydro-mechanical modeling in poro-elastic media with brittle fracturing
4
作者 Zhaonan Wang Louis Ngai Yuen Wong 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3299-3315,共17页
In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this sche... In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this scheme seamlessly combines the material point method(MPM)for accurately tracking solid-phase deformation and heat transport,and the Eulerian finite element method(FEM)for effectively capturing fluid flow and heat advection-diffusion behavior.The proposed approach circumvents the substantial challenges posed by large nonlinear equation systems with the monolithic solution scheme.The staggered solution process strategically separates each physical field through explicit or implicit integration.The characteristic-based method is used to stabilize advection-dominated heat flows for efficient numerical implementation.Furthermore,a fractional step approach is employed to decompose fluid velocity and pressure,thereby suppressing pore pressure oscillation on the linear background grid.The fracturing initiation and propagation are simulated by a rate-dependent phase field model.Through a series of quasi-static and transient simulations,the exceptional performance and promising potential of the proposed model in addressing THM fracturing problems in poro-elastic media is demonstrated. 展开更多
关键词 Thermo-hydro-mechanical(THM)coupling Local thermal non-equilibrium(LTNE) Material point method(MPM) Characteristic-based method Phase field model
在线阅读 下载PDF
Thermodynamic consistent phase field model for sintering process with multiphase powders 被引量:1
5
作者 张瑞杰 陈忠伟 +1 位作者 方伟 曲选辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期783-789,共7页
A thermodynamic consistent phase field model is developed to describe the sintering process with multiphase powders. In this model, the interface region is assumed to be a mixture of different phases with the same che... A thermodynamic consistent phase field model is developed to describe the sintering process with multiphase powders. In this model, the interface region is assumed to be a mixture of different phases with the same chemical potential, but with different compositions. The interface diffusion and boundary diffusion are also considered in the model. As an example, the model is applied to the sintering process with Fe-Cu powders. The free energy of each phase is described by the well-developed thermodynamic models, together with the published optimized parameters. The microstructure and solute distribution during the sintering process can both be obtained quantitively. 展开更多
关键词 phase field model SINTERING multiphase powder THERMODYNAMICS
在线阅读 下载PDF
Modelling and analysis of initial icing roughness with fixed-grid enthalpy method based on DPM-VOF algorithm 被引量:4
6
作者 Jie LIU Peng KE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第7期168-178,共11页
Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process... Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process.A fixed-grid porous enthalpy method based on the improved Discrete Phase Model(DPM)and Volume of Fluid(VOF)integrated algorithm is developed to solve the multiphase heat transfer problem to give more detailed demonstration of the formation of initial ice roughness.The algorithms to determine the criterion of transformation from DPM to VOF and the allocation of source items during transformation are improved to the general DPM-VOF algorithm.Two verification cases,namely two glycerine-solution droplets impact and single droplet freeze,are conducted to verify the accuracy and reliability of the enthalpy-DPMVOF method,where the simulation results match well with experiment phenomena.Ice roughness on a NACA0012 airfoil is precisely captured and the effects on convective heat transfer characteristics are preliminarily revealed.The results illustrate that the enthalpy-DPM-VOF method could successfully capture the characteristics of motion and the phase change process of droplet,as well as balance the calculation accuracy and efficiency. 展开更多
关键词 Discrete phase model Fixed-grid porous enthalpy method Ice roughness Icing modelling Integrated algorithm Multiphase heat transfer Volume of fluid
原文传递
Phase field modeling of multiple dendrite growth of Al-Si binary alloy under isothermal solidification 被引量:6
7
作者 Sun Qiang Zhang Yutuo +1 位作者 Cui Haixia Wang Chengzhi 《China Foundry》 SCIE CAS 2008年第4期265-267,共3页
Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary ... Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited. 展开更多
关键词 phase field model multiple dendrite growth binary alloy isothermal solidification
在线阅读 下载PDF
Crack nucleation and propagation simulation in brittle two-phase perforated/particulate composites by a phase field model 被引量:5
8
作者 Xingxue Lu Yuliang Hou +2 位作者 Ying Tie Cheng Li Chuanzeng Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第2期493-512,共20页
Fracture is a very common failure mode of the composite materials,which seriously affects the reliability and service-life of composite materials.Therefore,the study of the fracture behavior of the composite materials... Fracture is a very common failure mode of the composite materials,which seriously affects the reliability and service-life of composite materials.Therefore,the study of the fracture behavior of the composite materials is of great significance and necessity,which demands an accurate and efficient numerical tool in general cases because of the complexity of the arising boundary-value or initial-boundary value problems.In this paper,a phase field model is adopted and applied for the numerical simulation of the crack nucleation and propagation in brittle linear elastic two-phase perforated/particulate composites under a quasi-static tensile loading.The phase field model can well describe the initiation,propagation and coalescence of the cracks without assuming the existence and the geometry of the initial cracks in advance.Its numerical implementation is realized within the framework of the finite element method(FEM).The accuracy and the efficiency of the present phase field model are verified by the available reference results in literature.In the numerical examples,we first study and discuss the influences of the hole/particle size on the crack propagation trajectory and the force-displacement curve.Then,the effects of the hole/particle shape on the crack initiation and propagation are investigated.Furthermore,numerical examples are presented and discussed to show the influences of the hole/particle location on the crack initiation and propagation characteristics.It will be demonstrated that the present phase field model is an efficient tool for the numerical simulation of the crack initiation and propagation problems in brittle two-phase composite materials,and the corresponding results may play an important role in predicting and preventing possible hazardous crack initiation and propagation in engineering applications. 展开更多
关键词 Brittle fracture Phase field model Perforated/particulate composites Crack nucleation and propagation Finite element method
原文传递
Phase field modeling of dendrite growth 被引量:4
9
作者 Yutuo ZHANG Chengzhi WANG +1 位作者 Dianzhong LI Yiyi LI 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第3期197-201,共5页
Single dendrite and multi-dendrite growth for Al-2 mol pct Si alloy during isothermal solidification are simulated by phase field method. In the case of single equiaxed dendrite growth, the secondary and the necking p... Single dendrite and multi-dendrite growth for Al-2 mol pct Si alloy during isothermal solidification are simulated by phase field method. In the case of single equiaxed dendrite growth, the secondary and the necking phenomenon can be observed. For multi-dendrite growth, there exists the competitive growth among the dendrites during solidification. As solidification proceeds, growing and coarsening of the primary arms occurs, together with the branching and coarsening of the secondary arms. When the diffusion fields of dendrite tips come into contact with those of the branches growing from the neighboring dendrites, the dendrites stop growing and being to ripen and thicken. 展开更多
关键词 Phase field modeling Dendrite growth Al-Si alloy Isothermal solidification
在线阅读 下载PDF
Integrated Modelling of Microstructure Evolution and Mechanical Properties Prediction for Q&P Hot Stamping Process of Ultra‑High Strength Steel 被引量:3
10
作者 Yang Chen Huizhen Zhang +2 位作者 Johnston Jackie Tang Xianhong Han Zhenshan Cui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第3期160-173,共14页
High strength steel products with good ductility can be produced via Q&P hot stamping process,while the phase transformation of the process is more complicated than common hot stamping since two-step quenching and... High strength steel products with good ductility can be produced via Q&P hot stamping process,while the phase transformation of the process is more complicated than common hot stamping since two-step quenching and one-step carbon partitioning processes are involved.In this study,an integrated model of microstructure evolution relating to Q&P hot stamping was presented with a persuasively predicted results of mechanical properties.The transformation of diffusional phase and non-diffusional phase,including original austenite grain size individually,were considered,as well as the carbon partitioning process which affects the secondary martensite transformation temperature and the subsequent phase transformations.Afterwards,the mechanical properties including hardness,strength,and elongation were calculated through a series of theoretical and empirical models in accordance with phase contents.Especially,a modified elongation prediction model was generated ultimately with higher accuracy than the existed Mileiko’s model.In the end,the unified model was applied to simulate the Q&P hot stamping process of a U-cup part based on the finite element software LS-DYNA,where the calculated outputs were coincident with the measured consequences. 展开更多
关键词 Q&P hot stamping Phase transformation model Microstructure evolution Product properties prediction
在线阅读 下载PDF
DPM simulation in an underground entry: Comparison between particle and species models 被引量:13
11
作者 Thiruvengadam Magesh Zheng Yi Tien Jerry C. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第3期487-494,共8页
The diesel particulate matter(DPM) emission from diesel powered equipment in underground mines can cause health hazards including cancer to the miners. The understanding of the DPM propagation pattern under realistic ... The diesel particulate matter(DPM) emission from diesel powered equipment in underground mines can cause health hazards including cancer to the miners. The understanding of the DPM propagation pattern under realistic mining condition is required for selecting proper DPM control strategies and to improve working practices in underground mines. In this paper, three dimensional simulations of DPM emission from the exhaust tail pipe of a load-haul-dump(LHD) vehicle and its subsequent distribution inside an isolated zone in the typical underground mine are carried out using two different solution models available in Ansys Fluent. The incoming fresh air into the isolated zone is treated as a continuous phase and DPM is treated either as a continuous phase(gas) or as a secondary discrete phase(particle). Species transport model is used when DPM is treated as gas and discrete phase model is used when DPM is assumed to behave like a particle. The distributions of DPM concentration inside the isolated zone obtained from each method are presented and compared. From the comparison results, an accurate and economical solution technique for DPM evaluation can be selected. 展开更多
关键词 CFD Dead-end DPM Discrete phase model Species transport model
在线阅读 下载PDF
Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton 被引量:3
12
作者 Jiazhen Nie Yican Liu Yang Yang 《Journal of Earth Science》 SCIE CAS CSCD 2018年第5期1236-1253,共18页
The Precambrian lower crust rocks at the southeastern margin of the North China Craton (NCC) are mainly exposed as granulite xenoliths hosted by Mesozoic dioritic porphyry and metamorphic terrains in the Xuzhou-Suzh... The Precambrian lower crust rocks at the southeastern margin of the North China Craton (NCC) are mainly exposed as granulite xenoliths hosted by Mesozoic dioritic porphyry and metamorphic terrains in the Xuzhou-Suzhou area. Garnet amphiholites and garnet granulites are two kinds of typical lower-crustal xenoliths and were selected to reconstruct different stages of the metamorphic process. In this study, in view of multistage metamorphic evolution and reworking, phase equilibria modeling was used for the first time to better constrain peak P-T conditions of the xenoliths. Some porphyroblastic garnets have a weak zonal structure in composition with homogeneous cores and were surrounded by thin rims with an increase in XMg and a decrease in X Ca (or X Mg)- Clinopyroxene contain varying amounts of Na2O and Al2O3 as well as amphibole of TiO2, while plagioclases are different in calcium contents. Peak metamorphic P-T conditions are calculated by the smallest garnet x(g) (Fe2+/(Fe2++Mg)) contours and the smallest plagioclase ca(pl) (Ca/(Ca+Na)) contours in NCFMASHTO (Na2O-CaO-FeO-MgO-Al2O3-SiO2- H20-TiO2-Fe2O3) system, which are consistent with those estimated by conventional geothermobarometry. The new results show that the peak and decompressional P-T conditions for the rocks are 850-900 ℃/ 1.4-1.6 GPa and 820-850 ℃/0.9-1.3 GPa, respectively, suggestive of high and middle-low pressure granulite-facies metamorphism. Combined with previous zircon U-Pb dating and conventional geothermobarometry data, it is indicated that the xenoliths experienced a clockwise P-T-t evolution with nearisothermal deeompressional process, suggestive of the Paleoproterozoic subduction-collision setting. In this regard, the studied region together with Jiao-Liao-Ji belt is further documented to make up a Paleopro- terozoic collisional orogen in the eastern block of the NCC. 展开更多
关键词 southeastern margin of the North China Craton mafic lower-crustal xenoliths granulite facies phase equilibria modeling P-T path.
原文传递
Improved multi-order parameter and multi-component model of polycrystalline solidification 被引量:2
13
作者 Laishan Yang Zhibo Dong +1 位作者 Lei Wang Nikolas Provatas 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期217-225,共9页
In this paper, we present an improved multi-order parameter model for multi-component model of polycrystalline solidification. We introduce an interpolation function in the phase field dynamical equation to obtain con... In this paper, we present an improved multi-order parameter model for multi-component model of polycrystalline solidification. We introduce an interpolation function in the phase field dynamical equation to obtain controllable grain boundary energy at large undercooling. The same interpolation function is also employed in the kinetics coefficient to allow for better control of grain boundary migration. Temperature dependent phase field parameters and noise terms are consistently coupled into the dynamics of a binary system in a manner that allows for quantitative simulations in the thin interface limit. The model is applied to multi-phase solidification in Al-Cu alloy, where a parabolic fitting method is employed to model the free energy of Al-Cu phases and two-phase nucleation is demonstrated in directional solidification. 展开更多
关键词 Phase field model MULTI-PHASE MULTI-COMPONENT Grain boundary Consistent nucleation
原文传递
DETERMINATION OF EFFECTIVE MODULI FOR FOAM PLASTICS BASED ON THREE PHASE SPHEROIDAL MODEL 被引量:3
14
作者 Lu, ZX Huang, ZP Wang, R 《Acta Mechanica Solida Sinica》 SCIE EI 1995年第4期294-302,共9页
The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The r... The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The results are compared with those using differential scheme. It is shown that the material properties derived from the present model normally are larger than those obtained by differential scheme for foam plastics with identical porosity. The differences in shear moduli and Young's moduli obtained by the two methods are small but they are larger for bulk moduli of incompressible matrix and Poisson's ratios. The Young's moduli of high density foam plastics derived by the present model agree better with experimental ones. 展开更多
关键词 effective moduli foam plastics three phase spheroidal model
在线阅读 下载PDF
A Phase-field Model to Simulate Recrystallization in an AZ31 Mg Alloy in Comparison of Experimental Data 被引量:2
15
作者 Mingtao WANG B.Y.Zong Gang WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第6期829-834,共6页
A model has been established to simulate the realistic spatio-temporal microstructure evolution in recrystallization of a magnesium alloy using the phase field approach. A set of rules have been proposed to decide the... A model has been established to simulate the realistic spatio-temporal microstructure evolution in recrystallization of a magnesium alloy using the phase field approach. A set of rules have been proposed to decide the real physical value of all parameters in the model. The thermodynamic software THERMOCALC is applied to determine the local chemical free energy and strain energy, which is added to the free energy density of grains before recrystallization. The Arrhenius formula is used to describe boundary mobility and the activity energy is suggested with a value of zinc segregation energy at the boundary. However, the mobility constant in the formula was found out by fitting to a group of grain size measurements during recrystallization of the alloy. The boundary range is suggested to decide the gradient parameters in addition of fitting to the experimental boundary energy value. These parameter values can be regarded as a database for other similar simulations and the fitting rules can also be applied to build up databases for any other alloy systems. The simulated results show a good agreement with reported experimental measurement of the alloy at the temperatures from 300 to 400℃ for up to 100 min but not at 250℃. This implies a mechanism variation in activity energy of the boundary mobility in the alloy at low temperature. 展开更多
关键词 Static recrystallization Phase field model Magnesium alloys MICROSTRUCTURE
在线阅读 下载PDF
Modeling the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer 被引量:11
16
作者 Han Fangwei Wang Deming +1 位作者 Jiang Jiaxing Zhu Xiaolong 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期129-135,共7页
In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the cond... In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the condition of gentle breeze and normal forced ventilation in heading face using the particle tracking technology of computational fluid dynamics(CFD).The results show that air-flowing tendency in the same section presents great comparability in the period of gentle breeze and forced ventilation,and the difference mainly embodies in the different wind velocity.The influence of ventilation on the dispersion of droplets is faint under the gentle breeze condition.The droplet can be evenly distributed around the cutting head.However,under the normal forced ventilation,a large number of droplets will drift to the return air side.At the same time,droplet clusters are predominantly presented in the lower part of windward side and the middle of the leeward side around the cutting head.In contrast,the droplet concentration in other parts around cutting head decreases a lot and the droplets are unable to form close-grained mist curtain.So the dust escape channel is formed.In addition,the simulation results also reveal that the disturbance of air flow on the droplet distribution can be effectively relieved when using ventilation duct with Coanda effect(VDCE).Field experiment results show that the dust suppression efficiency of total dust and respirable dust increases respectively by 10.5%and 9.3%when using VDCE,which proves that it can weaken the influence of airflow on droplet dispersion. 展开更多
关键词 Forced ventilation Dust suppression by water spraying Discrete phase model Particle tracing Concentration distribution Ventilatiork duct with Coanda effect
在线阅读 下载PDF
Metamorphic Evolution of Garnet Amphibolite from the Yaganbuyang Area in the South Altyn Orogen,West China:Insights from Phase Equilibria Modeling and Geochronology 被引量:1
17
作者 Xin Li Liang Liu +4 位作者 Xiaoying Liao Yongsheng Gai Tuo Ma Guojian Geng Tong Li 《Journal of Earth Science》 SCIE CAS CSCD 2023年第3期640-657,共18页
Garnet amphibolite is one of the common metabasic rocks exposed in collisional orogenic belt,the metamorphic evolution of which is associated closely with orogenic processes.The Yaganbuyang garnet amphibolites occur a... Garnet amphibolite is one of the common metabasic rocks exposed in collisional orogenic belt,the metamorphic evolution of which is associated closely with orogenic processes.The Yaganbuyang garnet amphibolites occur as blocks hosted by massive granitic gneiss,and consist mainly of hornblende,garnet,clinopyroxene,plagioclase,biotite,quartz with minor rutile/ilmenite and phengitic muscovite.These garnet amphibolites were interpreted to have experienced decompression-dominated evolution that can be divided into three generations(M1,M2,M3),based on the petrographic observations and phase equilibria modeling calculated by THERMOCALC.The assemblage of the first generation(M1)is inferred to possibly be dominated by garnet+omphacite+rutile+phengite+quartz,which is modeled to be roughly stable at P>25 kbar and T>800℃.The second generation(M2)is characterized by the local symplectites of clinopyroxene+plagioclase produced from omphacite,indicating a near-isothermal decompression from~23.8 kbar/875℃to~10 kbar/852℃.The third generation(M3)is marked by the kelyphitic rims of plagioclase+hornblende around garnet and of hornblende+ilmenite around clinopyroxene,involving the late-stage retrogression from~9.8 kbar/848℃to~5.8 kbar/645℃.Zircon U-Pb dating yielded one group metamorphic age of c.500 Ma that is interpreted to represent the timing of the peak eclogite-facies metamorphism.A combination of petrography observation,phase modeling results and geochronology data suggests that the Yaganbuyang garnet amphibolites have once undergone eclogite-facies metamorphism by continental subduction rather than crustal thickening.Therefore,the Yaganbuyang area is an eastward extension part of the South Altyn HP-UHP metamorphic belt. 展开更多
关键词 South Altyn Orogen garnet amphibolite phase equilibria modeling ZIRCON U-Pb dating GEOCHRONOLOGY
原文传递
Phase field modeling of grain stability of nanocrystalline alloys by explicitly incorporating mismatch strain 被引量:1
18
作者 Min Zhou Hong-Hui Wu +5 位作者 Yuan Wu Hui Wang Xiong-Jun Liu Sui-He Jiang Xiao-Bin Zhang Zhao-Ping Lu 《Rare Metals》 SCIE EI CAS CSCD 2024年第7期3370-3382,共13页
Ab st ra ct Nanocrystalline materials exhibit unique properties due to their extremely high grain boundary(GB) density.However,this high-density characteristic induces grain coarsening at elevated temperatures,thereby... Ab st ra ct Nanocrystalline materials exhibit unique properties due to their extremely high grain boundary(GB) density.However,this high-density characteristic induces grain coarsening at elevated temperatures,thereby limiting the widespread application of nanocrystalline materials.Recent experimental observations revealed that GB segregation and second-phase pinning effectively hinder GB migration,thereby improving the stability of nanocry stalline materials.In this study,a mouified phase-field model that integrates mismatch strain,solute segregation and precipitation was developed to evaluate the influence of lattice misfit on the thermal stability of nanocrystalline alloys.The simulation results indicated that introducing a suitable mismatch strain can effectively enhance the microstructural stability of nanocrystalline alloys.By synergizing precipitation with an appropriate lattice misfit,the formation of second-phase particles in the bulk grains can be suppressed,thereby facilitating solute segregation/precipitation at the GBs.This concentrated solute segregation and precipitation at the GBs effectively hinders grain migration,thereby preventing grain coarsening.These findings provide a new perspective on the design and regulation of nanocrystalline alloys with enhanced thermal stability. 展开更多
关键词 Phase field model Mismatch strain Second-phase precipitation Grain boundary segregation Nanocrystalline alloys
原文传递
Fracture propagation laws of staged hydraulic fracture in fractured geothermal reservoir based on phase field model 被引量:1
19
作者 Genbo Peng 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期128-138,共11页
Hydraulic fracturing is widely used in geothermal resource exploitation, and many natural fractures exist in hot dry rock reservoirs due to in-situ stress and faults. However, the infuence of natural fractures on hydr... Hydraulic fracturing is widely used in geothermal resource exploitation, and many natural fractures exist in hot dry rock reservoirs due to in-situ stress and faults. However, the infuence of natural fractures on hydraulic fracture propagation is not considered in the current study. In this paper, based on the phase feld model, a thermo-hydro-mechanical coupled hydraulic fracture propagation model was established to reveal the infuence of injection time, fracturing method, injection fow rate, and natural fracture distribution on the fracture propagation mechanism. The results show that fracture complexity increases with an increase in injection time. The stress disturbance causes the fracture initiation pressure of the second cluster signifcantly higher than that of the frst and third clusters. The zipper-type fracturing method can reduce the degree of stress disturbance and increase fracture complexity by 7.2% compared to simultaneous hydraulic fracturing. Both low and high injection fow rate lead to a decrease in fracture propagation time, which is not conducive to an increase in fracture complexity. An increase in the natural fracture angle leads to hydraulic fracture crossing natural fracture, but has a lesser efect on fracture complexity. In this paper, we analyzed the infuence of diferent factors on initiation pressure and fracture complexity, providing valuable guidance for the exploitation of geothermal resources. 展开更多
关键词 Hot dry rock Enhanced geothermal system Phase feld model Fracture propagation
在线阅读 下载PDF
Computer Simulation of Microscopic Stress Distribution in Complex Microstructure Using a Phase Field Model 被引量:1
20
作者 UEHARA Takuya 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第3期291-295,共5页
Microscopic stress distribution in a metallic material which has complex microstructure is simulated using a phase field model.The fundamental equations which take into account the coupling effects among phase transfo... Microscopic stress distribution in a metallic material which has complex microstructure is simulated using a phase field model.The fundamental equations which take into account the coupling effects among phase transformation,temperature and stress/strain are used,while thermal effects are neglected to focus on the volumetric change due to phase transformation in this paper.A two-dimensional square region is considered,and the evolution of microscopic stress and the resultant residual stress distribution are calculated using the finite element method.As the phase transformation progresses and grains grow larger,stress is generated around the growing interface.When a grain collides with another one,specifically large stress is observed.Residual stress is finally distributed in the microstructure formed,and apparently large stresses are retained along the grain boundaries. Subsequently,dependency of the stress distribution on microstructure pattern is investigated.First,variously sized square grains are tested,and it reveals that the maximum stress tends to decrease as the grain size becomes smaller.Next,the shapes of the grains are varied.As a result,the stress distribution is remarkably affected,while the maximum stress value does not change so much.More complicated grain arrangement is finally tested with eight or nine grain models.Then,it is revealed as a common feature that large stress is generated along the grain boundaries and that the stress distribution is dependent on the grain arrangement. 展开更多
关键词 phase field model MICROSTRUCTURE phase transformation residual stress computer simulation
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部