期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Time-Bin Phase-Encoding Measurement-Device-Independent Quantum Key Distribution with Four Single-Photon Detectors
1
作者 唐光召 孙仕海 +2 位作者 陈欢 李春燕 梁林梅 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期5-8,共4页
Measurement-device-independent quantum key distribution (MDI-QKD) eliminates all loopholes on detection. 3 loss in the final key for the Previous experiments of time-bin phase-encoding MDI-QKD allow a factor of inc... Measurement-device-independent quantum key distribution (MDI-QKD) eliminates all loopholes on detection. 3 loss in the final key for the Previous experiments of time-bin phase-encoding MDI-QKD allow a factor of incapability of identifying two successive detection events by a single photon detector. Here we propose a new scheme to realize the time-bin phase-encoding MDI-QKD. The polarization states are used to generate the time bins and the phase-encoding states. The factor of loss in the final key is eliminated by using four single photon detectors at the measurement site. We show the feasibility of our scheme with a proof-of-principle experimental demonstration. The phase reference frame is rotated extremely slowly with only passive stabilization measures. The quantum bit error rate can reach 0.8% in the Z-basis and 26.2% in the X-basis. 展开更多
关键词 QKD MDI of Time-Bin phase-encoding Measurement-Device-Independent Quantum Key Distribution with Four Single-Photon Detectors in QBER is with
原文传递
Information Encryption Based on Using Arbitrary Two-Step Phase-Shift Interferometry
2
作者 Chi-Ching Chang Wen-Ho Wu +3 位作者 Min-Tzung Shiu Wang-Ta Hsieh Je-Chung Wang Hon-Fai Yau 《Optics and Photonics Journal》 2011年第4期204-215,共12页
A deterministic phase-encoded encryption system is proposed. A lenticular lens array (LLA) sheet with a particular LPI (lenticular per inch) number is chosen as a modulator (key) instead of the random phase molator. T... A deterministic phase-encoded encryption system is proposed. A lenticular lens array (LLA) sheet with a particular LPI (lenticular per inch) number is chosen as a modulator (key) instead of the random phase molator. The suggested encryption scheme is based on arbitrary two-step phase-shift interferometry (PSI), using an unknown phase step. The encryption and decryption principle is based on an LLA in arbitrary unknown two-step PSI. Right key holograms can be used to theoretically show that the object wavefront is the only one left in the hologram plane and that all accompanying undesired terms are eliminated. The encrypted image can therefore be numerically and successfully decrypted with the right key in the image plane. The number of degrees of freedom of the encryption scheme increases with the distance from the object and the LLA to the CCD, and also with the unknown phase-step and the LLA LPI number. Computer simulations are performed to verify the encryption and decryption principles without a key, with the wrong key and with the right key. Optical experiments are also performed to validate them. 展开更多
关键词 DETERMINISTIC phase-encoded ENCRYPTION ARBITRARY TWO-STEP PHASE-SHIFT INTERFEROMETRY Lenticular Lens Array
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部