Maximum likelihood(ML) noncoherent block detection techniques are investigated for block-coded MPSK modulation in cooperative decode-and-forward relay systems over slow fading channels.A decision-directed iterative Vi...Maximum likelihood(ML) noncoherent block detection techniques are investigated for block-coded MPSK modulation in cooperative decode-and-forward relay systems over slow fading channels.A decision-directed iterative Viterbi algorithm(IVA) is derived for a suboptimal ML noncoherent detection.Simulation results show that the IVA can approach the error performances of the exhaustive detection method but at a lower complexity.展开更多
This paper introduces a new modulation and direct detection scheme of optical phase shift keying (PSK) which is simple and practical in fiber optical communication. A phase modulator is used to modulate a continuous w...This paper introduces a new modulation and direct detection scheme of optical phase shift keying (PSK) which is simple and practical in fiber optical communication. A phase modulator is used to modulate a continuous wave (CW) laser source and return-to-zero (RZ) signal that is changed from the initial transmitting information is used to control a phase modulator to form a optical PSK signal. In the receiver terminal, just add a signal delayed a half of one bit to itself so that the initial information can be restored.展开更多
A phase shift demodulation technique based on subtraction capable of measuring 0.03 phase degree limit between sinusoidal signals is presented in this paper. A self-gain module and a practical subtracter act the kerne...A phase shift demodulation technique based on subtraction capable of measuring 0.03 phase degree limit between sinusoidal signals is presented in this paper. A self-gain module and a practical subtracter act the kernel parts of the phase shift demodulation system. Electric signals in different phases are used to verify the performance of the system. In addition, a new designed optical source, laser fiber differential source (LFDS), capable of generating mini phase is used to further verify the system reliability. R-square of 0.99997 in electric signals and R-square of 0.99877 in LFDS are achieved, and 0.03 degree measurement limit is realized in experiments. Furthermore, the phase shift demodulation system is applied to the fluorescence phase based oxygen sensors to realize the fundamental function. The experimental results reveal that a good repetition and better than 0.02% oxygen concentration measurement accuracy are realized. In addition, the phase shift demodulation system can be easily integrated to other applications.展开更多
基金supported by the National Natural Science Foundation of China(61302095,61401165)the Natural Science Foundation of Fujian Province of China(2014J01243,2014J05076,2015J01262)the Huaqiao University Science Foundation(13Y0384)
文摘Maximum likelihood(ML) noncoherent block detection techniques are investigated for block-coded MPSK modulation in cooperative decode-and-forward relay systems over slow fading channels.A decision-directed iterative Viterbi algorithm(IVA) is derived for a suboptimal ML noncoherent detection.Simulation results show that the IVA can approach the error performances of the exhaustive detection method but at a lower complexity.
文摘This paper introduces a new modulation and direct detection scheme of optical phase shift keying (PSK) which is simple and practical in fiber optical communication. A phase modulator is used to modulate a continuous wave (CW) laser source and return-to-zero (RZ) signal that is changed from the initial transmitting information is used to control a phase modulator to form a optical PSK signal. In the receiver terminal, just add a signal delayed a half of one bit to itself so that the initial information can be restored.
基金This work was supported by the National Natural Science Foundation of China (61475085), Science and Technology Development Project of Shandong Province (2014GGX101007), and the Fundamental Research Funds of Shandong University (2014YQ011).
文摘A phase shift demodulation technique based on subtraction capable of measuring 0.03 phase degree limit between sinusoidal signals is presented in this paper. A self-gain module and a practical subtracter act the kernel parts of the phase shift demodulation system. Electric signals in different phases are used to verify the performance of the system. In addition, a new designed optical source, laser fiber differential source (LFDS), capable of generating mini phase is used to further verify the system reliability. R-square of 0.99997 in electric signals and R-square of 0.99877 in LFDS are achieved, and 0.03 degree measurement limit is realized in experiments. Furthermore, the phase shift demodulation system is applied to the fluorescence phase based oxygen sensors to realize the fundamental function. The experimental results reveal that a good repetition and better than 0.02% oxygen concentration measurement accuracy are realized. In addition, the phase shift demodulation system can be easily integrated to other applications.