期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Effect of phase decomposition on the mechanical properties of Ti-Zr-Nb-Ta-Mo multi-principal element alloys 被引量:1
1
作者 Weiji Lai Xueyang Zhao +6 位作者 Yanliang Yi Zheng Li Guodong Sun Deqiang You Wei Li Zhizhong Li Xiaojian Wang 《Journal of Materials Science & Technology》 CSCD 2024年第32期206-221,共16页
Body-centered cubic Ti-Zr-Nb-Ta-Mo multi-principal element alloys(MPEAs),boasting a yield strength ex-ceeding one gigapascal,emerge as promising candidates for demanding structural applications.However,their limited t... Body-centered cubic Ti-Zr-Nb-Ta-Mo multi-principal element alloys(MPEAs),boasting a yield strength ex-ceeding one gigapascal,emerge as promising candidates for demanding structural applications.However,their limited tensile ductility at room temperature presents a significant challenge to their processability and large-scale implementation.This study identifies phase decomposition as a critical factor influencing the plasticity of these alloys.The microscale phase decomposition in these MPEAs during solidification,driven by miscibility gaps,manifests as dendritic structures within grains.Closer examination reveals that the MPEAs with a pronounced thermodynamic propensity for phase decomposition are also suscep-tible to analogous phenomena at the atomic level.The atomic phase decomposition is characterized by the localized aggregation of some elements across nanometric domains,culminating in the establishment of short-range orderings(SROs).It is observed that phase decomposition for these MPEAs,occurring at both microscale and atomic scale,adheres to thermodynamic principles and can be predicted using the CALPHAD approach.The impact of phase decomposition on the plasticity of MPEAs fundamentally stems from the induced heterogeneities at three distinct levels:(1)Fluctuations in mechanical properties at the micron scale;(2)Variations in the strain field at the atomic scale;(3)Bond polarization and bond index fluctuations at the electronic scale.Consequently,the key to designing high-strength and high-plasticity MPEAs lies in maximizing lattice distortion while simultaneously minimizing the adverse effects of phase decomposition on the alloy’s plasticity(grain boundary cohesion).This research not only clarifies the mechanisms underpinning the ductile-to-brittle transition in high-strength Ti-Zr-Nb-Ta-Mo MPEAs but also offers crucial guidelines for developing advanced,high-performance alloys. 展开更多
关键词 Multi-principal element alloys phase decomposition Grain boundar FIRST-PRINCIPLES
原文传递
Phase decomposition behavior and its impact on mechanical properties in bulk nanostructured Cu-20 at.%Fe supersaturated solid solution
2
作者 Maowen Liu Ruixiao Zheng +3 位作者 Hongxing Li Qiuming Wei Chaoli Ma Nobuhiro Tsuji 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第18期207-220,共14页
Extended solid solution of immiscible systems,achieved by extreme processing approaches,can be trans-formed into nanostructured composites via phase decomposition,which are drawing great research atten-tion for their ... Extended solid solution of immiscible systems,achieved by extreme processing approaches,can be trans-formed into nanostructured composites via phase decomposition,which are drawing great research atten-tion for their excellent thermal stability and high strength.Here we fabricated the supersaturated solid solution of Cu-20 at.%Fe,a typical immiscible alloy,in bulk state by high pressure torsion,which pro-vides a great freedom over powders for studying the microstructure evolution and mechanical properties in the process of the phase decomposition in immiscible alloys.We found that in the Cu-Fe solid solu-tion,spinodal decomposition of the Fe phases took place at the initial stage of annealing through volume diffusion.This process gives rise to:(1)metastableγ-Fe particles in the Cu grains with coherent Fe/Cu interface,and(2)the more stableα-Fe phase at the grain boundaries.This process was accompanied by moving boundary reaction which first proceeded in the pattern of spinodal decomposition and then changed into classical nucleation-growth mode with the depletion of Fe atoms in Cu.The resultant Cu-Fe nanocomposites were jointly strengthened by the ultrafine Cu andα-Fe grains according to the rule of mixture,including grain boundary strengthening and the hardening of nanoscaleγ-Fe precipitates in the Cu grains.The effects of different strengthening mechanisms were scrutinized and their contributions to mechanical properties were quantitatively evaluated.This work sheds light onto the opportunity of designing and fabricating nanostructured composites via phase decomposition in immiscible systems. 展开更多
关键词 immiscible alloy high pressure torsion ANNEALING phase decomposition mechanical property
原文传递
Phase transition of multi-component(TiZrVNb)C ceramics—Part I:Phase decomposition induced by carbon content 被引量:1
3
作者 Qingyi Kong Rao Zhang +5 位作者 Lei Chen Sijia Huo Wenyu Lu Yujin Wang Boxin Wei Yu Zhou 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第5期679-688,共10页
Phase decomposition can effectively enhance the mechanical properties of carbide ceramics and can overcome the difficulty of enhancing the mechanical properties of single-phase multicomponent carbide ceramics.In this ... Phase decomposition can effectively enhance the mechanical properties of carbide ceramics and can overcome the difficulty of enhancing the mechanical properties of single-phase multicomponent carbide ceramics.In this work,a series of nonstoichiometric(TiZrVNb)Cx ceramics were prepared by spark plasma sintering(SPS)at different temperatures.The effects of the carbon content on the phase composition,microstructure evolution,and mechanical properties were investigated in detail.Phase decomposition occurred with decreasing carbon content.Two different solid solutions of(Ti,V)-rich and Zr-rich phases formed from the decomposition of equimolar single-phase solid solutions,namely,the Zr-poor phase and Zr-rich phase,respectively.The distribution of Nb element is relatively uniform.The semicoherent interfaces between the Zr-poor phase and the Zr-rich phase can harden and strengthen effectively under the synergistic effect of grain refinement.Ceramics with phase decomposition structures have apparent advantages compared to single-phase high-entropy carbides.This work provides an important train of thought for the microstructure tailoring and properties optimization of multi-component carbide ceramics. 展开更多
关键词 multicomponent ceramics nontoichiometry microstructure evolution phase decomposition mechanical properties
原文传递
Microstructure evolution and tribological behavior of TiC/Ti_(2)AlC core-shell particle-reinforced composite coatings
4
作者 LIU Si-yuan MO Tai-qian +3 位作者 LIN Bo WANG Xue-jian XIAO Hua-qiang MA Kai 《Journal of Central South University》 2025年第9期3255-3271,共17页
TiC/Ti_(2)AlC core-shell structure reinforced Ti-based composite coating was prepared by laser cladding technology.The effect of Ti_(2)AlC content on the microstructure and mechanical behavior of the coating was studi... TiC/Ti_(2)AlC core-shell structure reinforced Ti-based composite coating was prepared by laser cladding technology.The effect of Ti_(2)AlC content on the microstructure and mechanical behavior of the coating was studied.The results showed that the reinforced phase was mainly TiC/Ti_(2)AlC MAX phase core-shell structure at 20%Ti_(2)AlC content.According to the synthesis mechanism,Ti_(2)AlC nucleated on TiC through the diffusion of Al atoms to further generate the core-shell structure.The friction and wear test results showed that the wear resistance of the coating was significantly improved under the load distribution effect of the core-shell structure.The friction coefficient decreased to 0.342,and the wear rate reached 8.19×10^(−5)mm^(3)/(N·m),which was only 47.07%of TC4 substrate. 展开更多
关键词 laser cladding MAX phase decomposition core-shell structure frictional wear
在线阅读 下载PDF
Structural Changes ofαPhase in Furnace Cooled Eutectoid Zn-Al Based Alloy
5
作者 Y.H.Zhu K.C.Chan +2 位作者 G.K.H.Pang T.M.Yue W.B.Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第3期347-352,共6页
Furnace cooling is a slow cooling process. It is of importance to study structural evolution and its effects on the properties of alloys during the furnace cooling. Decomposition of aluminium rich α phase in a furnac... Furnace cooling is a slow cooling process. It is of importance to study structural evolution and its effects on the properties of alloys during the furnace cooling. Decomposition of aluminium rich α phase in a furnace cooled eutectoid Zn-Al based alloy was studied by transmission electron microscopy. Two kinds of precipitates in the α phase were detected in the FCZA22 alloy during ageing at 170℃. One was the hcp transitional α" m phase which aooears as directional rods and the round precipitates. The other was the fcc α'm phase. 〈101〉. The orientation relationship between the a phase and transitional phase α'm was determined as (022)α'm (fcc)//(022^-)α(fcc), [1^-11]α'm, (fcc)//[2^-33]α(fcc). The non-equilibrium phase decomposition of the α phase is discussed in correlation with the equilibrium phase relationships. 展开更多
关键词 phase decomposition Microstructural evolution Zn-Al alloys
在线阅读 下载PDF
Enhanced stability of FA-based perovskite:Rare-earth metal compound EuBr_(2) doping
6
作者 候敏娜 郭旭 +6 位作者 韩梅斗雪 赵均陶 王志元 丁毅 侯国付 张宗胜 韩小平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期669-675,共7页
It is highly desirable to enhance the long-term stability of perovskite solar cells(PSCs)so that this class of photovoltaic cells can be effectively used for the commercialization purposes.In this contribution,attempt... It is highly desirable to enhance the long-term stability of perovskite solar cells(PSCs)so that this class of photovoltaic cells can be effectively used for the commercialization purposes.In this contribution,attempts have been made to use the two-step sequential method to dope EuBr_(2)into FAMAPbI_(3)perovskite to promote the stability.It is shown that the device durability at 85℃in air with RH of 20%-40%is improved substantially,and simultaneously the champion device efficiency of 23.04%is achieved.The enhancement in stability is attributed to two points:(ⅰ)EuBr_(2)doping effectively inhibits the decomposition andα-δphase transition of perovskite under ambient environment,and(ⅱ)EuBr_(2)aggregates in the oxidized format of Eu(BrO_(3))_(3)at perovskite grain boundaries and surface,hampering humidity erosion and mitigates degradation through coordination with H_(2)O. 展开更多
关键词 EuBr_(2) doping inhibited phase transition and decomposition STABILITY perovskite solar cell
原文传递
Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures 被引量:7
7
作者 P.P.Cao H.L.Huang +4 位作者 S.H.Jiang X.J.Liu H.Wang Y.Wu Z.P.Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第27期243-254,共12页
Several body-centered-cubic(BCC)refractory high entropy alloys(HEAs),i.e.,Hf Nb Ta Ti Zr,Nb Ta Ti Zr,Hf Nb Ti Zr and Nb Ti Zr,were annealed at intermediate temperatures for 100 h,and their microstructures and aging be... Several body-centered-cubic(BCC)refractory high entropy alloys(HEAs),i.e.,Hf Nb Ta Ti Zr,Nb Ta Ti Zr,Hf Nb Ti Zr and Nb Ti Zr,were annealed at intermediate temperatures for 100 h,and their microstructures and aging behaviors were studied in detail.All these HEAs start to decompose into multiple phases at around 500°C,but reenter the single-phase region at significantly different temperatures which were determined to be 900,1000,1100 and above 1300°C for Hf Nb Ti Zr,Nb Ti Zr,Hf Nb Ta Ti Zr and Nb Ta Ti Zr,respectively.Our analysis indicates that the onset decomposition temperature in these four HEAs is closely related to the elemental diffusion rates while the ending decomposition temperature is strongly dependent on the elemental melting points.Our findings are important not only for understanding phase stability of HEAs in general,but also for adjusting processing parameters to optimize mechanical properties of these HEAs. 展开更多
关键词 Refractory high entropy alloys phase decomposition Diffusion rate Melting point
原文传递
Phase transition of multi-component(TiZrVNb)C ceramics—Part II:From single phase to multiple phases via adjusting V content 被引量:1
8
作者 Qingyi Kong Lei Chen +4 位作者 Sijia Huo Kunxuan Li Wenyu Lu Yujin Wang Yu Zhou 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第5期689-698,共10页
To address the relatively mediocre mechanical properties of single-phase multi-component carbide ceramics,a phase transition from a single phase to multiple phases was proposed to achieve superior mechanical propertie... To address the relatively mediocre mechanical properties of single-phase multi-component carbide ceramics,a phase transition from a single phase to multiple phases was proposed to achieve superior mechanical properties.A series of(TiZrV_(x)Nb)C_(0.8) ceramics with different V contents were fabricated by spark plasma sintering(SPS).The influence of the V content on the phase composition,microstructural evolution,and mechanical properties was investigated in detail.The transition behavior from a single phase to multiple phases is discovered and discussed.The formation of the Zr-rich phase and Zr-poor phase can be attributed to the increase in lattice distortion and mixed enthalpy caused by the addition of V.A nanometer lamellar structure with a semi-coherent interface obtained via in situ decomposition is reported for the first time in multi-component carbide ceramics.The semi-coherent interfaces with high dislocation density and strain concentration effectively improve the mechanical properties,grain refinement,and multi-phase formation.The optimal comprehensive mechanical properties of the Vickers hardness(26.3 GPa),flexural strength(369 MPa),and fracture toughness(3.1 MPa·m^(1/2))were achieved for the sample with 20 mol%V. 展开更多
关键词 multi-component ceramics multiple phases microstructure evolution phase decomposition mechanical properties
原文传递
Experimental Investigation of the Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys by Means of Atom Probe Tomography
9
作者 Muna Khushaim Torben Boll 《Open Journal of Metal》 2016年第2期25-44,共20页
Aluminum-based alloys play a key role in modern engineering and are widely used in construction components in aircraft, automobiles and other means of transportation due to their light weight and superior mechanical p... Aluminum-based alloys play a key role in modern engineering and are widely used in construction components in aircraft, automobiles and other means of transportation due to their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. An improvement of an Al-based alloy has been performed based on the understanding of the relationships among compositions, processing, microstructural characteristics and properties. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu alloys during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Investigation of the fine scale segregation effects of dilute solutes in aluminum alloys which were experienced different heat treatments by using atom probe tomography has been achieved. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160°C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160°C) induces increasing on the number density of the Li clusters and hence increase number of precipitated particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus the results contribute to the understanding of Al-alloy design. 展开更多
关键词 phase decomposition Atom Probe Tomography Early Stage of Precipitation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部