期刊文献+
共找到498篇文章
< 1 2 25 >
每页显示 20 50 100
Thermal-responsive lubricant infused surface based on composite phase change materials for durable and efficient scale resistance
1
作者 Maosheng Ye Ran Zhao +6 位作者 Wei Chen Yang Wang Weizhe Gao Yingbo Li Danna Liu Jingxin Meng Shutao Wang 《Nano Research》 2026年第1期702-712,共11页
Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flush... Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flushing,thereby reducing the antifouling capability of LIS.Herein,we reported a thermal-responsive lubricant infused surface(TLIS)based on composite phase change materials(CPCMs),exhibiting durable and efficient anti-scaling performance.During multicycle scalingdescaling test,the anti-scaling efficiencies of TLIS based on paraffin and vaseline can be increased to 91.4%±0.5% for first cycle and 85.3%±3.3% for sixth cycle.The paraffin acts as solid scaffolds for structural stability while the vaseline acts as liquid lubricants for anti-scaling enhancement.The universality of this surface can be revealed by suppressing various scales(e.g.,CaCO_(3),CaSO_(4),CaC_(2)O_(4),and MgCO_(3))and varying CPCMs types(e.g.,n-alkanes,ionic liquids,and fatty acids).Therefore,this study presents a promising strategy that enhances the durability of anti-scaling capability and potentially applys in heat exchange systems. 展开更多
关键词 lubricant infused surface nanosubstrate phase change materials ANTI-SCALING
原文传递
Layered MXene-phase change composites for integrated photothermal regulation and electromagnetic shielding
2
作者 Teng Li Yuanjun Yang +5 位作者 Yawen Fan Danyuan Huang Li Zhang Xinpeng Hu Ying Chen Xinxin Sheng 《Nano Research》 2026年第1期655-664,共10页
Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctio... Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctional layered composite phase change materials(CPCMs)comprising alternating cellulose nanofiber/phase change capsule/sodium alginate(CNF/PCC/SA)layers and MXene/sodium alginate(MXene/SA)layers.The strong interfacial adhesion and controlled multilayer architecture enable the CPCM to achieve high electrical conductivity(up to 279.8 S/cm)and excellent EMI shielding effectiveness(up to 57.6 dB in the X-band).The layered structure enhances electromagnetic wave attenuation via multiple internal reflections and polarization losses,outperforming homogeneous composites.Moreover,the CPCMs exhibit superior light absorption(maximum nearly 100% for the optimized 5-layer structure)and efficient light-to-thermal conversion,achieving rapid temperature increases and uniform heat distribution under light irradiation.Additionally,the phase change capsules enable latent heat storage,ensuring thermal buffering and prolonged temperature regulation.This work provides novel insights into the rational design of multifunctional composites integrating wireless thermal management and EMI shielding,with promising applications in wearable electronics and smart thermal regulation. 展开更多
关键词 electromagnetic interference(EMI)shielding phase change thermal management FUNCTIONAL
原文传递
Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage:Materials,fabrication and applications 被引量:5
3
作者 Lei Hu Li Zhang +4 位作者 Wei Cui Qinyou An Ting Ma Qiuwang Wang Liqiang Mai 《Journal of Materials Science & Technology》 2025年第7期204-226,共23页
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv... Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability. 展开更多
关键词 Thermal energy storage phase change material Supporting material Carbon-based material Thermal conductivity Shape-stabilized composite
原文传递
Review on high-temperature macroencapsulated phase change materials:Encapsulation strategy,thermal storage system,and optimization 被引量:1
4
作者 Yi Yang Xiaojie Guo +2 位作者 Meng Liu Hang Yang Deqiu Zou 《Journal of Energy Chemistry》 2025年第5期324-359,共36页
High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluct... High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluctuation range.However,their practical application is limited due to problems such as leakage,corrosion,and volume changes at high temperatures.Recent research has shown that macroencapsulation technology holds promise in addressing these issues.This paper focuses on the macroencapsulation technology of high-temperature PCMs,starting with a review of the classification and development history of high-temperature macroencapsulatd PCMs.Four major encapsulation strategies,including electroplating method,solid/liquid filling method,sacrificial material method,and powder compaction into sphere method,are then summarized.The methods for effectively addressing issues such as corrosion,leakage,supercooling,and phase separation in PCMs are analyzed,along with approaches for improving the heat transfer performance,mechanical strength,and thermal cycling stability of macrocapsules.Subsequently,the structure and packing arrangement optimization of macrocapsules in thermal storage systems is discussed in detail.Finally,after comparing the performance of various encapsulation strategies and summarizing existing issues,the current technical challenges,improvement methods,and future development directions are proposed.More attention should be given to utilizing AI technology and reinforcement learning to reveal the multiphysics-coupled heat and mass transfer mechanisms in macrocapsule applications,as well as to optimize material selection and encapsulation parameters,thereby enhancing the overall efficiency of thermal storage systems. 展开更多
关键词 phase change materials Macroencapsulation Macrocapsules Thermal energy storage Encapsulation strategy
在线阅读 下载PDF
Advances in Organic Porous Polymeric-Supported Photothermal Phase Change Materials 被引量:1
5
作者 Fulai Zhao Weikang Yuan +4 位作者 Huiyu Chen Hui Fu Zhen Li Jian Xiao Yiyu Feng 《Carbon Energy》 2025年第6期47-89,共43页
The urgent demand for renewable energy solutions,propelled by the global energy crisis and environmental concerns,has spurred the creation of innovative materials for solar thermal storage.Photothermal phase change ma... The urgent demand for renewable energy solutions,propelled by the global energy crisis and environmental concerns,has spurred the creation of innovative materials for solar thermal storage.Photothermal phase change materials(PTPCMs)represent a novel type of composite phase change material(PCM)aimed at improving thermal storage efficiency by incorporating photothermal materials into traditional PCMs and encapsulating them within porous structures.Various porous encapsulation materials have been studied,including porous carbon,expanded graphite,and ceramics,but issues like brittleness hinder their practical use.To overcome these limitations,flexible PTPCMs using organic porous polymers—like foams,hydrogels,and porous wood—have emerged,offering high porosity and lightweight characteristics.This review examines recent advancements in the preparation of PTPCMs based on porous polymer supports through techniques like impregnation and in situ polymerization,assessing the impact of different porous polymer materials on PCM performance and clarifying the mechanisms of photothermal conversion and heat storage.Subsequently,the most recent advancements in the applications of porous polymer-based PTPCMs are systematically summarized,and future research challenges and possible solutions are discussed.This review aims to foster awareness about the potential of PTPCMs in promoting environmentally friendly energy practices and catalyzing further research in this promising field. 展开更多
关键词 functional composite materials multifunctional application photothermal conversion efficiency photothermal phase change materials porous polymers thermal energy storage
在线阅读 下载PDF
Oxidation Resistance of Form-stable Hightemperature Phase Change Thermal Energy Storage Materials Doped by Impregnated Graphite
6
作者 LI Baorang DAI Jianhuan +2 位作者 ZHANG Wei LIU Xiangchen YANG Liu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期1-12,共12页
We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) change... We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance. 展开更多
关键词 phase change materials GRAPHITE impregnation method oxidation sintering thermal analysis
原文传递
A graphene composite aerogel with a high thermal conductivity,compressibility and flexibility meets the requirements of phase-change materials for rigid-flexible material innovation
7
作者 CUI Jia-ming CHEN Yi-xing +1 位作者 XU Wen-tao WANG Sheng 《新型炭材料(中英文)》 北大核心 2025年第5期1136-1153,共18页
Oriented graphene aerogels have limited applica-tions because the flexibility of their graphene sheets and mi-crostructure give them a low skeleton strength,insufficient compression resilience,and poor flexibility.We ... Oriented graphene aerogels have limited applica-tions because the flexibility of their graphene sheets and mi-crostructure give them a low skeleton strength,insufficient compression resilience,and poor flexibility.We report the preparation of novel aerogel materials with a much better per-formance.Using the driving force of graphene oxide(GO)self-assembly andπ-πinteractions,carbon nanotubes(CNTs)were attached to the GO sheets,and an oriented composite carbon skeleton was constructed using“hydro-plastic foam-ing”.The introduction of CNTs significantly increased the strength of the skeleton and gave the aerogel an excellent re-versible compressibility.The innovative use of cold pressing greatly improved the thermal conductivity and flexibility of the aerogel,providing new ideas for the development of high-performance aerogels.Tests show that the obtained graphene composite aerogel has a reversible compressive strain of over 90%and can withstand 500 compression cycles along the direc-tion of pore accumulation.It can endure more than 10000 bending cycles perpendicular to the direction of composite carbon layer stacking,and its in-plane thermal conductivity reaches 64.5 W·m^(-1)·K^(-1).When filled with phase change materials,the high porosity of the carbon skeleton enables the material to have a high phase change filling rate,and its phase change enthalpy is greater than 150 J/g.Thanks to the exceptional flexibility of the carbon skeleton,the macrostructure of phase change materials can be bent as needed to adapt to thermal management scenarios and conform to device shapes.This significantly enhances practical application compatibility,providing flexible support for temperature control and thermal management across diverse device forms. 展开更多
关键词 Oriented graphene aerogel GO CNT Hydro-plastic foaming phase change material
在线阅读 下载PDF
Magnetron sputter and phase change optimization of waferlevel GeTe films for RF switch
8
作者 Shihang Liu Hanxiang Jia +2 位作者 Shuangzan Lu Changyu Hu Jun Liu 《Journal of Semiconductors》 2025年第7期108-114,共7页
With the rapid advancement of 5G communication technology,increasingly stringent demands are placed on the performance and functionality of phase change switches.Given that RF and microwave signals exhibit characteris... With the rapid advancement of 5G communication technology,increasingly stringent demands are placed on the performance and functionality of phase change switches.Given that RF and microwave signals exhibit characteristics of high frequency,high speed,and high precision,it is imperative for phase change switches to possess fast,accurate,and reliable switching capabilities.Moreover,wafer-level compositional homogeneity and resistivity uniformity during semiconductor manufacturing are crucial for ensuring the yield and reliability of RF switches.By controlling magnetron sputter of GeTe through from four key parameters(pressure,power,Ar flow,and post-annealing)and incorporating elemental proportional compensation in the target,we achieved effective modulation over GeTe uniformity.Finally,we successfully demonstrated the process integration of GeTe phase-change RF switches on 6-inch scaled wafers. 展开更多
关键词 GETE magnetron sputter phase change in-wafer uniformity RF switch
在线阅读 下载PDF
Experimental Study on Properties of Nano-Silicon Modified Microencapsulated Phase Change Materials Mortar
9
作者 Jian Xia Xianzhong Hu +1 位作者 Yan Li Wei Zhang 《Structural Durability & Health Monitoring》 2025年第6期1489-1506,共18页
Incorporating microencapsulated phase change materials (MPCM) into mortar enhances building thermal energy storage for energy savings but severely degrades compressive strength by replacing sand and creating pores. Th... Incorporating microencapsulated phase change materials (MPCM) into mortar enhances building thermal energy storage for energy savings but severely degrades compressive strength by replacing sand and creating pores. This study innovatively addresses this critical limitation by introducing nano-silicon (NS) as a modifier to fill pores and promote hydration in MPCM mortar. Twenty-five mixes with varying NS content from 0 to 4 weight percent and different MPCM contents were comprehensively tested for flowability, compressive strength, thermal conductivity, thermal energy storage via Differential Scanning Calorimetry, and microstructure via Scanning Electron Microscopy. Key quantitative results showed MPCM reduced mortar consistency while NS had minimal effect. Crucially, although MPCM decreased compressive strength, NS addition significantly counteracted this loss. Increasing NS content from 0 percent to 4 percent enhanced compressive strength by 12.53%, 14.21%, 25.49%, 21.70%, and 40.70%, respectively, across the tested MPCM levels. Thermal conductivity was primarily reduced by higher MPCM content leading to lower conductivity, with NS showing negligible and inconsistent influence. The phase change temperature of the modified mortar matched that of pure MPCM, although its relative latent heat slightly decreased. This work conclusively demonstrates the novel and effective use of nano-silicon, achieving up to a 40.7 percent strength recovery in MPCM mortar while preserving its essential phase change temperature and thermal conductivity reduction capability. This strategy presents a feasible pathway for developing high-performance, energy-efficient building composites. 展开更多
关键词 Microencapsulated phase change material MORTAR compressive strength thermal conductivity FLOWABILITY
在线阅读 下载PDF
Fabrication and characterization of photochromic microencapsulated phase change materials with highly cross-linked polyurethane shell coated by nano-TiO_(2)
10
作者 Hang Zhang Shuhui Liu +1 位作者 Xingxiang Zhang Wei Li 《Frontiers of Materials Science》 2025年第4期109-121,共13页
A new method of incorporating nano-sized titanium dioxide(nano-TiO_(2))particles onto the shell of photochromic microencapsulated phase change materials was introduced,in order to address issues of easy degradation of... A new method of incorporating nano-sized titanium dioxide(nano-TiO_(2))particles onto the shell of photochromic microencapsulated phase change materials was introduced,in order to address issues of easy degradation of photochromic dyes’core components caused by ultraviolet(UV)irradiation and residual organic emulsifiers.Using nano-TiO_(2)as the Pickering emulsion stabilizer and cross-linked polyurethane as the shell material,a composite protective structure was constructed to encapsulate core materials with phase-change and photochromic properties,thereby forming photochromic phase change microcapsules(TPT-MPCMs)with UV protection and thermal insulation.Characterization results show that the core-shell structured TPTMPCMs possessed high light transmittance,with a particle size of 5-15μm and a latent heat of 116.2 J·g^(-1).The highly cross-linked shell formed by xylitol and isophorone diisocyanate effectively protected the core from thermal degradation up to 180°C,while the nano-TiO_(2)shell surface allowed maintaining the UV responsiveness of microcapsules after exposure to intense UV irradiation for 5 h.This strategy significantly improves the long-term stability and service life of photochromic microcapsules under harsh environments,opening up broad prospects for their applications in fields such as outdoor anti-counterfeiting labels,intelligent temperature-controlled coatings,and multifunctional smart textiles. 展开更多
关键词 Pickering emulsion MICROCAPSULE phase change material crosslinked polyurethane reversible photochromism
原文传递
Theories and applications of phase-change related rock mechanics in oil and gas reservoirs
11
作者 JIN Yan LIN Botao +3 位作者 GAO Yanfang PANG Huiwen GUO Xuyang SHENTU Junjie 《Petroleum Exploration and Development》 2025年第1期157-169,共13页
Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs,which include phase change of solid alkane-related mixtures upon heating,sand liquef... Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs,which include phase change of solid alkane-related mixtures upon heating,sand liquefaction induced by sudden pressure release of the over-pressured sand body,and formation collapse due to gasification of pore fillings from pressure reduction,this study first systematically analyzes the progress of theoretical understanding,experimental methods,and mathematical representation,then discusses the engineering application scenarios corresponding to the three phenomena and reveals the mechanical principles and application effectiveness.Based on these research efforts,the study further discusses the significant challenges,potential developmental trends,and research approaches that require urgent exploration.The findings disclose that various phase-related rock mechanics phenomena require specific experimental and mathematical methods that can produce multi-field coupling mechanical mechanisms,which will eventually instruct the control on resource exploitation,evaluation on disaster level,and analysis of formation stability.To meet the development needs of the principle,future research efforts should focus on mining more phase-change related rock mechanics phenomena during oil and gas resources exploitation,developing novel experimental equipment,and using techniques of artificial intelligence and digital twins to implement real-time simulation and dynamic visualization of phase-change related rock mechanics. 展开更多
关键词 oil and gas reservoir phase-change related rock mechanics phase change engineering application multi-field coupling experimental device artificial intelligence
在线阅读 下载PDF
Recyclable,Flexible and Highly Thermally Conductive Phase Change Composites with Dynamic Networks for Thermal Management
12
作者 Jun-Xia Guo Shuang-Yu Cai +6 位作者 Xu Han Ye Sun Chun-Lin Li Kai Zheng Yu-Ze Xu Rui-Guang Li Cheng-Jie Li 《Chinese Journal of Polymer Science》 2025年第4期625-639,共15页
Flexible phase change materials(PCMs)have become increasingly critical to address the demand for thermal management in electronic technologies and energy conversion.However,their application remains challenging becaus... Flexible phase change materials(PCMs)have become increasingly critical to address the demand for thermal management in electronic technologies and energy conversion.However,their application remains challenging because of their rigidity,liquid leakage,and insufficient thermal conductivity.Herein,flexible glutamic acid@natural rubber/paraffin wax(PW)/carbon nanotubes-graphene nanoplatelets(GNR/PW/CGNP)phase change composites with high thermal conductivity,excellent shape stability,and recyclability were reported.Zn^(2+)-based dynamic crosslinking was constructed through the reaction of zinc acetate and carboxyl groups on glutamic acid@natural rubber(GNR),which was used as a flexible matrix to physically blend with paraffin wax/carbon nanotubes/graphene nanoplatelets(PW/CGNP)to achieve uniform dispersion of PW/CGNP,continuous thermal conductivity networks,and good encapsulation of PW.The GNR/PW/CGNP composites showed excellent mechanical strength,flexibility,and recycling ability,and effective encapsulation prevented the outflow of melted PW during the phase transition.Also,the phase change enthalpy could attain 111.1 J/g with a higher thermal conductivity of 1.055 W/m K,428%higher than that of pure PW owing to the formation of efficient thermal conductive pathways,which exhibited outstanding thermal management performance and superior temperature control behavior in electronic devices.The developed flexible composite PCMs may open new possibilities for next-generation flexible thermal management electronics. 展开更多
关键词 phase change composites Mechanical flexibility Shape stability Recycling ability Thermal management
原文传递
Biomimetic Structure and Phase Change Materials for Multifunctional Personal Thermal Management
13
作者 Qing Su Guojun Sheng +5 位作者 Yan Li Xiaoping Lu Chao Wang Chenxing Xin Huasheng Wang Hongyong Jiang 《Journal of Bionic Engineering》 2025年第2期513-561,共49页
With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensur... With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensure human thermal comfort in extreme environments. Biomimetic structures have emerged as a novel source of inspiration for PTM applications. This review systematically summarizes the biomimetic structures, phase change materials, manufacturing methods, and the performance of multifunctional PTM wearables. Firstly, it analyzes the biomimetic structures with thermal regulation and encapsulated phase change material functionalities from different dimensions, highlighting their applications in PTM. Subsequently, it outlines the conventional manufacturing methods incorporating various biomimetic structures, offering strategies for the production of PTM wearables. The review also discusses the typical performance characteristics of multifunctional PTM wearables, addressing the current demands in thermal management. Finally, opportunities and challenges in PTM field are proposed, proposing new directions for future research. 展开更多
关键词 Personal thermal management Biomimetic structure phase change material Manufacturing methods Multifunctionality
在线阅读 下载PDF
Ferro-alloys as high temperature phase change materials
14
作者 Paolo Lai Zhong Lo Biundo Wojciech Polkowski +2 位作者 Jianmeng Jiao Maria Wallin Merete Tangstad 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2177-2188,共12页
Latent heat thermal energy storage(LHTES)is an attractive method for enhancing the functionality and availability of renew-able energy sources,and it is extensively used to support concentrated solar power technologie... Latent heat thermal energy storage(LHTES)is an attractive method for enhancing the functionality and availability of renew-able energy sources,and it is extensively used to support concentrated solar power technologies.The main feature of every LHTES sys-tem is a phase change material(PCM),i.e.,a substance used to absorb/release energy upon cyclic melting/solidification.This study in-vestigates the potential of ferro-alloys as high-performance PCM candidates,targeting energy storage capacities exceeding 1 MWh·m^(−3),and operational temperatures above 1000°C.A thermodynamic assessment of binary and ternary Fe-based systems,alloyed with Si,B,Cr,V,and Ti,was conducted to identify compositions with optimal phase transition characteristics and heat storage potential.The results highlight the significant potential of the Fe-Si-B system,where boron’s exceptionally high latent heat enhances energy storage capacity despite challenges posed by its high melting point and cost.The Fe-Si-Cr system revealed promising alloys,such as Fe-34Si-38Cr and Fe-34Si-43Cr,offering excellent energy storage density and favorable phase transition temperatures.In the Fe-Si-V system,vanadium additions produced alloys like Fe-36Si-14V and Fe-34Si-10V,which meet energy storage criteria,although the high melting points of some Si-V phases may restrict their practical applicability.The Fe-Si-Ti system showed standout compositions,including Fe-38Si-20Ti and Si-48Ti,achieving energy storage capacities of approximately 1.5 MWh·m^(−3).This study compares ferro-alloy PCMs against state-of-the-art metallic PCMs,highlighting the performance of certain ferro-alloys. 展开更多
关键词 ferro-alloys ferro-silicon-alloys phase change materials latent heat thermal energy storage FactSage
在线阅读 下载PDF
Magnetically-responsive phase change thermal storage materials:Mechanisms,advances,and beyond
15
作者 Yan Gao Yang Li +3 位作者 Jinjie Lin Panpan Liu Xiao Chen Ge Wang 《Journal of Energy Chemistry》 2025年第2期485-510,I0010,共27页
Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials... Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs. 展开更多
关键词 phase change materials Magnetic-thermal conversion Magnetic nanoparticles Thermal energy storage Response mechanism
在线阅读 下载PDF
Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb_(2)S_(3)phase transitions
16
作者 Shixin Gao Tun Cao +6 位作者 Haonan Ren Jingzhe Pang Ran Chen Yang Ren Zhenqing Zhao Xiaoming Chen Dongming Guo 《Opto-Electronic Technology》 2025年第1期58-64,共7页
Planar lightwave circuit(PLC)splitters have long been foundational components in passive optical communication networks,achieving commercial success since the 1990s.However,their inherent fixed splitting ratios impose... Planar lightwave circuit(PLC)splitters have long been foundational components in passive optical communication networks,achieving commercial success since the 1990s.However,their inherent fixed splitting ratios impose significant limitations on capacity expansion,often requiring physical replacement and causing service disruptions.Thermally tunable optical splitters address this challenge by enabling adjustable splitting ratios,but their operation is contingent upon a continuous power supply and complex driving systems.In this work,we present a novel,non-volatile tunable PLC platform based on Sb_(2)S_(3)phase-change materials.The proposed device,which incor-porates a Mach-Zehnder interferometer(MZI)optical switch structure,offers tunable splitting ratios via laser-direct writing or ohmic heating,providing flexible reconfiguration capabilities.Experimental results demonstrate non-volatile power splitting ranging from 50∶50 to 20∶80,with a modest increase of approximately 1 dB in additional loss.This work highlights the potential of the proposed platform for low-power,high-efficiency,and reconfigurable photonic networks. 展开更多
关键词 phase change materials RECONFIGURABLE planar lightwave circuit integrated photonic devices optical routing
在线阅读 下载PDF
Engineering tiramisu-like phase change nanocomposite for superior thermal energy management and electromagnetic interference shielding
17
作者 Boyang Hu Hong Guo +5 位作者 Ting Li Xiwei Cao Min Cao Weiyan Qi Ying Cui Baoan Li 《Journal of Materials Science & Technology》 2025年第3期113-124,共12页
Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change ma... Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change materials.Here,we report a tiramisu-like composite(GMP),where the typical“crust-and-cheese”hierarchical structure is replicated by an innovative two-step bidirectional freezing assembly(BFA)and compressive densification.Hierarchical-aligned graphene array(G-GA)with ultralow thermal resistance is fabricated through 1st BFA and graphitization.During the 2nd BFA,the MXene-CNF crosslinking network with hydrogen-bond actions is used for encapsulating polyethylene glycol(PEG)onto the microlayers of the G-GA skeleton.Remarkably,the microlaminated GMP4 achieves a recorded TC of 34.05 W m^(-1) K^(-1),unprecedented EMI SE of 87.4 dB,and preferable enthalpy density of 179.4 J cm^(-3),along with leakage-free function,and eminent thermal durability.Furthermore,the GMP-loaded equipment is demonstrated for efficient microelectronics cooling and sustainable solar energy utilization.This work opens new avenues for multiscale designing multifunctional macro-composites,broadening the application prospects in advanced electronics and solar energy utilization systems. 展开更多
关键词 phase change composite Multiscale structure construction Bidirectional freezing assembly Thermal management EMI shielding
原文传递
Biomimetic and Compressible Wood Phase Change Gel With Hierarchically Aligned Lamellar Structure for Controlled Thermal Management
18
作者 Jiazuo Zhou Yifan Liu +11 位作者 Xinbei Jia Yudong Li Xiaohan Sun Xinyao Ji Yuan Yu Taikun Yao Zhuoer Li Jian Li Haiyue Yang Yao Xiao Wentao Gan Chengyu Wang 《Carbon Energy》 2025年第10期40-53,共14页
The recovery and utilization of ubiquitous low-grade heat are crucial for mitigating the fossil energy crisis.However,uncontrolled spontaneous heat dissipation limits its practical application.Inspired by skeletal mus... The recovery and utilization of ubiquitous low-grade heat are crucial for mitigating the fossil energy crisis.However,uncontrolled spontaneous heat dissipation limits its practical application.Inspired by skeletal muscle thermogenesis,we develop a compressible wood phase change gel with mechano-controlled heat release by infiltrating xylitol gel into wood aerogel.The xylitol gel can store recovered low-grade heat for at least 1 month by leveraging its inherent energy barrier.The hierarchically aligned lamellar structure of wood aerogel facilitates mechanical adaptation,hydrogen bond formation,and energy dissipation between the wood aerogel and the xylitol gel,increasing the compressive strength and toughness of wood phase change gel fivefold compared to xylitol gel.This enhancement effect enables repetitive contact-separation motions between the wood phase change gel and the substrate during radial compression,overcoming the energy barrier and releasing approximately 178.6 J g−1 of heat.As a proof-of-concept,the wood phase change gel serves as the hot side in a thermoelectric generator,providing about 2.13 W m^(−2) of clean electricity by the controlled utilization of recovered solar heat.This study presents a sustainable method to achieve off-grid electricity generation through the controlled utilization of recovered low-grade heat. 展开更多
关键词 aligned lamellar structure biomimetic material compressible wood gel controlled thermal management phase change material
在线阅读 下载PDF
Study on Optimization of Two-Stage Phase Change Heat Storage Coupled Solar-Air Source Heat Pump Heating System in Severe Cold Region
19
作者 Xueli Wang Yan Jia Degong Zuo 《Energy Engineering》 2025年第4期1603-1627,共25页
The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-... The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-air source heat pump heating system structure that is specifically designed for such regions.The two-stage heat storage device in this heating system expands the storage temperature range of solar heat.The utilization of the two-stage heat storage device not onlymakes up for the instability of the solar heating system,but can also directlymeet the building heating temperature,and can reduce the influence of low-temperature outdoor environments in severe cold regions on the heating performance of the air source heat pump by using solar energy.Therefore,the two-stage phase change heat storage coupled to the solar energy-air source heat pump heating system effectively improves the utilization rate of solar energy.A numerical model of the system components and their integration was developed using TRNSYS software in this study,and various performance aspects of the system were simulated and analyzed.The simulation results demonstrated that the two-stage heat storage device can effectively store solar energy,enabling its hierarchical utilization.The low-temperature solar energy stored by the two-stage phase change heat storage device enhances the coefficient of performance of the air source heat pump by 11.1%in severe cold conditions.Using the Hooke-Jeeves optimization method,the annual cost and carbon emissions are taken as optimization objectives,with the optimized solar heat supply accounting for 52.5%.This study offers valuable insights into operational strategies and site selection for engineering applications,providing a solid theoretical foundation for the widespread implementation of this system in severe cold regions. 展开更多
关键词 Two-stage heat storage building heating Hooke-Jeeves optimization phase change heat storage device severe cold region
在线阅读 下载PDF
Enhancing Energy Efficiency in Vapor Compression Refrigeration Systems Using Phase Change Materials
20
作者 Rachid Djeffal Sidi Mohammed El Amine Bekkouche +5 位作者 Zakaria Triki Abir Abboud Sabrina Lekmine Hichem Tahraoui Jie Zhang Abdeltif Amrane 《Frontiers in Heat and Mass Transfer》 2025年第4期1129-1149,共21页
Refrigeration systems are essential across various sectors,including food preservation,medical storage,and climate control.However,their high energy consumption and environmental impact necessitate innovative solution... Refrigeration systems are essential across various sectors,including food preservation,medical storage,and climate control.However,their high energy consumption and environmental impact necessitate innovative solutions to enhance efficiency while minimizing energy usage.This paper investigates the integration of Phase Change Materials(PCMs)into a vapor compression refrigeration system to enhance energy efficiency and temperature regulation for food preservation.A multifunctional prototype was tested under two configurations:(1)a standard thermally insulated room,and(2)the same room augmented with eutectic plates filled with either Glaceol(-10℃ melting point)or distilled water(0℃ melting point).Thermocouples were calibrated and deployed to record air and PCM temperatures during freeze–thaw cycles at thermostat setpoints of and Additionally,a-30℃ -35℃ .defrosting resistor and timer were added to mitigate frost buildup,a known cause of efficiency loss.The experimental results show that PCM-enhanced rooms achieved up to 10.98℃ greater temperature stability during defrost cycles and reduced energy consumption by as much as 7.76%(from 0.4584 to 0.4231 kWh/h).Moreover,the effectiveness of PCMs depended strongly on thermostat settings and PCM type,with distilled water demonstrating broader solidification across plates under higher ambient loads.These findings highlight the potential of PCM integration to improve cold-chain performance,offering rapid cooling,moisture retention,and extended product conservation during power interruptions. 展开更多
关键词 Vapor compression refrigeration phase change materials(PCMs) energy efficiency thermal energy storage cold-chain preservation
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部