We introduce and study the relation between Pesin-Pitskel topological pressure on an arbitrary subset and measure theoretic pressure of Borel probability measure for nonautonomous dynamical systems,which is an extensi...We introduce and study the relation between Pesin-Pitskel topological pressure on an arbitrary subset and measure theoretic pressure of Borel probability measure for nonautonomous dynamical systems,which is an extension of the classical definition of Bowen topological entropy.We show that the Pesin-Pitskel topological pressure can be determined by the local pressures of measures in nonautonomous case and establish a variational principle for Pesin-Pitskel topological pressure on compact subsets in the context of nonautonomous dynamical systems.展开更多
In the present paper we have made an attempt to investigate the importance of the concepts of dynamical stability and complexity along with their interelationship in an evolving biological systems described by a syste...In the present paper we have made an attempt to investigate the importance of the concepts of dynamical stability and complexity along with their interelationship in an evolving biological systems described by a system of kinetic (both deterministic and chaotic) equations. The key to the investigation lies in the expres-sion of a time-dependent Boltzmann-like entropy function derived from the dynamical model of the system. A significant result is the determination of the expression of Boltzmann - entropy production rate of the evolving system leading to the well-known Pesin-type identity which provides an elegant and simple meas-ure of dynamical complexity in terms of positive Lyapunov exponents. The expression of dynamical com-plexity has been found to be very suitable in the study of the increase of dynamical complexity with the suc-cessive instabilities resulting from the appearance of new polymer species (or ecological species) into the original system. The increase of the dynamical complexity with the evolutionary process has been explained with a simple competitive model system leading to the “principle of natural selection”.展开更多
In a C1 non-uniformly hyperbolic systems with limit domination, we consider the periodic measures that supported on the Pesin set and keep a distance at least 6 to a hyperbolic ergodic measure μ given before. And the...In a C1 non-uniformly hyperbolic systems with limit domination, we consider the periodic measures that supported on the Pesin set and keep a distance at least 6 to a hyperbolic ergodic measure μ given before. And then, we bound from top the exponential growth rate of such periodic measures by the supremum of measure theoretic entropy on a closed set.展开更多
基金Supported by NSFC(Nos.11971236,11901419)the Foundation in Higher Education Institutions of Henan Province(No.23A110020)。
文摘We introduce and study the relation between Pesin-Pitskel topological pressure on an arbitrary subset and measure theoretic pressure of Borel probability measure for nonautonomous dynamical systems,which is an extension of the classical definition of Bowen topological entropy.We show that the Pesin-Pitskel topological pressure can be determined by the local pressures of measures in nonautonomous case and establish a variational principle for Pesin-Pitskel topological pressure on compact subsets in the context of nonautonomous dynamical systems.
文摘In the present paper we have made an attempt to investigate the importance of the concepts of dynamical stability and complexity along with their interelationship in an evolving biological systems described by a system of kinetic (both deterministic and chaotic) equations. The key to the investigation lies in the expres-sion of a time-dependent Boltzmann-like entropy function derived from the dynamical model of the system. A significant result is the determination of the expression of Boltzmann - entropy production rate of the evolving system leading to the well-known Pesin-type identity which provides an elegant and simple meas-ure of dynamical complexity in terms of positive Lyapunov exponents. The expression of dynamical com-plexity has been found to be very suitable in the study of the increase of dynamical complexity with the suc-cessive instabilities resulting from the appearance of new polymer species (or ecological species) into the original system. The increase of the dynamical complexity with the evolutionary process has been explained with a simple competitive model system leading to the “principle of natural selection”.
基金supported by National Natural Science Foundation of China (Grant Nos. 10671006)supported by National Natural Science Foundation of China (Grant Nos. 10671006, 10831003)+1 种基金National Basic Research Program of China (973 Program, 2006CB805903)supported by CAPES (Brazil)
文摘In a C1 non-uniformly hyperbolic systems with limit domination, we consider the periodic measures that supported on the Pesin set and keep a distance at least 6 to a hyperbolic ergodic measure μ given before. And then, we bound from top the exponential growth rate of such periodic measures by the supremum of measure theoretic entropy on a closed set.