The recognition and monitoring of localized corrosion at the early stage on the inner wall surface of pipes are extremely difficult and simultaneously the reliable approach for recognition and monitoring is missing.He...The recognition and monitoring of localized corrosion at the early stage on the inner wall surface of pipes are extremely difficult and simultaneously the reliable approach for recognition and monitoring is missing.Here we report a spatially resolved method to recognize and monitor the localized corrosion in a non-destructive way based on the permeating hydrogen signal generated from localized corrosion itself.A simulative localized corrosion was created on one side surface of the carbon steel specimen where a dot of wet elemental sulfur was introduced to accelerate the corrosion on the local region.While,the potential on the other side surface(the reverse side of the corrosion site)of the specimen was measured using a scanning Kelvin probe.The results show that the permeating hydrogen generated from localized corrosion easily arrives on the reverse side surface of the corrosion site and then causes a huge change in surface potential.The location resolution of potential distribution can be revealed with micron level.Therefore,it is thought that the location of localized corrosion can be recognized by the permeating hydrogen signal distribution on the reverse side surface of the corrosion site since the region of potential decreasing is highly corresponding to the corrosion site.Moreover,the strength of the permeating hydrogen signal is highly related to the corrosion depth and transient corrosion rate of localized corrosion.This means that the localized corrosion development can also be monitored using the permeating hydrogen signal.Therefore,it can be expected that the localized corrosion occurring on the inner wall surface of pipes or equipment can be recognized and monitored successfully on the outer wall surface in a non-destructive way once the permeating hydrogen is present during the localized corrosion proceeding.展开更多
Rare earth (RE) atoms were permeated into the surface of Al bronze (Cu-7. gA1-1. 9 Sn) by the method of chemical heat treatment. The permeated layer was then analysed by TEM (Transmission Electron Microscope) , EPMA (...Rare earth (RE) atoms were permeated into the surface of Al bronze (Cu-7. gA1-1. 9 Sn) by the method of chemical heat treatment. The permeated layer was then analysed by TEM (Transmission Electron Microscope) , EPMA (Electronic Probe Microanalysis) and IMA (Ion Microprobe Appratus). The results show that CuREAl and dispersed η phase (Cu6Sn5) distribute in the layer, RE content decreases in the depth direction, and alloying elements (Al, Sn) are enriched in the outer layer and dilute in the second layer.展开更多
CH4-CO2-O-2 reforming to syngas in a never Ba0.5Sr0.5Co0.8Fe0.2O3.delta oxygen-permeable membrane reactor using LiLaNiO/gamma-Al2O3 as catalyst was successfully reported. Excellent reaction performance was achieved wi...CH4-CO2-O-2 reforming to syngas in a never Ba0.5Sr0.5Co0.8Fe0.2O3.delta oxygen-permeable membrane reactor using LiLaNiO/gamma-Al2O3 as catalyst was successfully reported. Excellent reaction performance was achieved with around 92% methane conversion efficiency, 95% CO2 conversion rate, and nearly 8.5mL/min.cm(2) oxygen permeation flux. In contrast to the oxygen permeation model with the presence of large concentration of CO2 (under such condition the oxygen permeation flux deteriorates with time), the oxygen permeation flux is really stable under the CH4CO2-O-2 reforming condition.展开更多
The androgenetic alopecia(AGA)is the most prevalent clinical manifestation of hair loss,believed to be associated with excessive dihydrotestosterone(DHT)caused by typeⅡ5α-reductase(5αR2).The utilization of oral fin...The androgenetic alopecia(AGA)is the most prevalent clinical manifestation of hair loss,believed to be associated with excessive dihydrotestosterone(DHT)caused by typeⅡ5α-reductase(5αR2).The utilization of oral finasteride(FNS),which selectively inhibits 5αR2,is frequently constrained by its adverse effects.Topical FNS formulations can mitigate adverse effects but often exhibit limited dermal permeability.Nanocarriers show great potential in augmenting the cutaneous permeation of loaded FNS due to their inherent properties of selective accumulation within the hair follicles(HFs).In this study,hollow mesoporous silica nanoparticles(HMSN)with varying sizes were utilized as the nanocarriers for FNS,following mixing with the Carbopol hydrogel(F@H/Gel)for direct topical application.Specifically,the influence of size on the targeted delivery of FNS to HFs,and its enhanced therapeutic efficacy for the AGA mice model was evaluated.Results showed that the HMSN,with a diameter of approximately 300 nm,exhibited significant enhancement in FNS retention within skin and HFs,as well as remarkably accelerated hair regrowth on an AGA mouse model.In conclusion,this FNS topical formulation has proved to be a viable approach in offering a secure and efficient treatment modality for AGA.展开更多
SrxBi1-xFeO3- (SBF) series mixed conductors were synthesized using Standard ceramic method. The properties of such materials were characterized by XRD, O2-TPD techniques. Ab-normal crystal phenomena were found and exp...SrxBi1-xFeO3- (SBF) series mixed conductors were synthesized using Standard ceramic method. The properties of such materials were characterized by XRD, O2-TPD techniques. Ab-normal crystal phenomena were found and explained and correlated with the oxygen permeation results. By analysis of the critical radius (rc), the degree of openness of the lattice (Fv) and the average metal-oxygen bonding energy of the perovskite lattice (ABE), it was proposed that the oxygen permeation flux is determined mainly by the oxygen diffusion rate in bulk when 1-x≤0.5, and by the concentration of oxygen vacancy when 1-x≥ 0.5. The stability of Sr0.5Bi0.5FeO3- was also investigated, and the high stability of it was attributed to the stable BO6 octahedra.展开更多
Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitati...Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.展开更多
In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various alga...In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various algae harvesting techniques,membrane-based filtration has shown numerous advantages.This study evaluated the reuse of permeate streams derived from Scenedesmus obliquus(S.obliquus)biomass filtration under bench-scale and pilot-scale conditions.In particular,this study identified a series of challenges and mechanisms that influence the water reuse potential and the robustness of the membrane harvesting system.In a preliminary phase of this investigation,the health status of the initial biomass was found to have important implications for the harvesting performance and quality of the permeate stream to be reused;healthy biomass ensured better dewatering performance(i.e.,higher water fluxes)and higher quality of the permeate water streams.A series of bench-scale filtration experiments with different combinations of cross-flow velocity and pressure values were performed to identify the operative conditions that would maximize water productivity.The selected conditions,2.4 m·s^(-1)and 1.4 bar(1 bar=105 Pa),respectively,were then applied to drive pilot-scale microfiltration tests to reuse the collected permeate as a new cultivation medium for S.obliquus growth in a pilot-scale photobioreactor.The investigation revealed key differences between the behavior of the membrane systems at the two scales(bench and pilot).It indicated the potential for beneficial reuse of the permeate stream as the pilot-scale experiments ensured high harvesting performance and growth rates of biomass in permeate water that were highly similar to those recorded in the ideal cultivation medium.Finally,different nutrient reintegration protocols were investigated,revealing that both macro-and micro-nutrient levels are critical for the success of the reuse approach.展开更多
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production...Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.展开更多
Passive sampling technology has good application prospects for monitoring trace pollutants in aquatic environments.Further research on the sampling mechanism of this technology is essential to improve the measurement ...Passive sampling technology has good application prospects for monitoring trace pollutants in aquatic environments.Further research on the sampling mechanism of this technology is essential to improve the measurement accuracy and extend the application scope of this approach.In this study,adsorption and permeation experiments were performed to investigate the sorption and mass transfer properties of five chiral pharmaceuticals at the enantiomeric level on polyethersulfone(PES)and polytetrafluoroethylene(PTFE)membranes used in a polar organic chemical integrative sampler.Batch adsorption experiments showed that the PES membrane had an adsorption phenomenon for most selected pollutants and an insignificant sorption behavior was observed for all selected pharmaceuticals on the PTFE membrane except for R(S)-fluoxetine.The diffusion coefficients of selected pharmaceuticals onto the PTFE membrane were approximately one order of magnitude higher than those onto the PES membrane.The permeation experiment indicated that under different hydraulic conditions,the change of the relative pollutant concentration through the PTFE membrane for the composite pollutant system was more obvious than that for the single pollutant system,and mass transfer hysteresis exists for both contaminant systems through PES membranes.Using the first-order equation or 3-component model to estimate the overall mass transfer coefficients,the results showed that the overall mass transfer coefficient values of pollutants in the composite pollutant system onto both membranes were higher than those in the single pollutant system.This parameter was mainly influenced by the synergistic effects of the multi-analyte interaction and diminished water boundary layers during the mass transfer process.展开更多
This work shows the synthesis,characterization and evaluation of dense-ceramic membranes made of Ce_(0.85)Gd_(0.15)O_(2-δ)-LaNiO_(3)(CG-LN)composites,where the fluorite-perovskite ratio(CG:LN)was varied as follows:75...This work shows the synthesis,characterization and evaluation of dense-ceramic membranes made of Ce_(0.85)Gd_(0.15)O_(2-δ)-LaNiO_(3)(CG-LN)composites,where the fluorite-perovskite ratio(CG:LN)was varied as follows:75:25,80:20 and 85:15 wt.%.Supports were initially characterized by XRD,SEM and electrical conductivity(using vacuum and oxygen atmospheres),to determine the composition,microstructural and ionic-electronic conductivity properties.Later,supports were infiltrated with an eutectic carbonates mixture,producing the corresponding dense dual-phase membranes,in which CO_(2)permeation tests were conducted.Here,CO_(2)permeation experiments were performed from 900 to 700℃,in the presence and absence of oxygen(flowed in the sweep membrane side).Results showed that these composites possess high CO_(2)permeation properties,where the O_(2)addition significantly improves the ionic conduction on the sweep membrane side.Specifically,the GC80-LN20 composition presented the best results due to the following physicochemical characteristics:high electronic and ionic conductivity,appropriate porosity,interconnected porous channels,as well as thermal and chemical stabilities between the composite support and carbonate phases.展开更多
[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by ga...[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.展开更多
NBS-LRR (nucleotide binding sites and leucine rich repeat) protein plays a crucial role as sentries and as defense activators in plants. The structure and function of NBS-LRR proteins are closely related. Previous art...NBS-LRR (nucleotide binding sites and leucine rich repeat) protein plays a crucial role as sentries and as defense activators in plants. The structure and function of NBS-LRR proteins are closely related. Previous articles have announced that the activated ZAR1 (HopZ-Activated Resistance 1) forms a pentamer in the plasma membrane, which is a calcium permeable channel that can trigger plant immune signaling and cell death. However, the structure of galore NBS-LRRs in Arabidopsis is not yet clear. The functional sites of distinct NBS-LRR in cells may vary. In addition, identifying pathogens and activating defense regions may occur in different subcellular compartments. Therefore, dissecting the specific structure and positioning of NBS-LRRs is an indispensable step in understanding their functions. In this article, we exploit AlphaFold to predict the structure of some designed NBS-LRRs, and utilize Agroinfiltration transient expression system, combined with biochemical fractionation, to dissect the localization of these NBS-LRR receptors from Arabidopsis. Structural data indicates that the identified NBS-LRRs share analogous conformation. Membrane fractionation assay demonstrates these NBS-LRRs are mainly associated with the membrane. These data show that the Ca2+-permeable channel activity may be evolutionarily conserved in NBS-LRR of Arabidopsis, and this study provides some reference clues for analyzing the structure and localization patterns of other plant immune receptors.展开更多
Borneol, as a traditional natural permeation enhancer, has been widely used to promote the transdermal absorption of active ingredients. In this review, the mechanism of borneol in promoting permeation by destroying t...Borneol, as a traditional natural permeation enhancer, has been widely used to promote the transdermal absorption of active ingredients. In this review, the mechanism of borneol in promoting permeation by destroying the highly ordered lipid structure of the lipid layer and by destroying the hydrogen-bond network was described. The application of borneol in promoting the transdermal absorption of the active ingredients of traditional Chinese medicine and chemical drugs was introduced. The application of borneol as a natural ingredient added to functional cosmetics was summarized, and its effects on skin-spot treatment, acne skin care, eczema skin care, skin repair and anti-oxidation were introduced. Finally, the possible problems in the application of borneol in cosmetics were put forward, and the application prospect of borneol in the development of cosmetics was given.展开更多
This study investigated whether liposomes could enhance the permeation and penetration of diclofenac diethylammonium. For this, a 1.16% diclofenac diethylammonium liposome gel formulation was developed (Grupo Leti, S....This study investigated whether liposomes could enhance the permeation and penetration of diclofenac diethylammonium. For this, a 1.16% diclofenac diethylammonium liposome gel formulation was developed (Grupo Leti, S.A.V.). In vitro and ex vivo tests were conducted to analyze the diffusion and penetration profiles of the formulation. The profiles obtained were compared with a commercially available product, DiAnalper gel (Pharmetique Labs). The in vitro test was assessed in a Franz diffusion cell system using a dialysis membrane. The cumulative amount of drug permeated after 24 h demonstrated a significantly (p 2, whereas the commercial formulation yielded values of 371.00 ± 3.54 μg/cm2. These findings were further supported by consistent results in the percentage of drug release, flux, and permeability coefficient, all indicating a notable improvement in diffusion associated with the liposomal gel formulation. The tape stripping assay performed on pig ear skin demonstrates a statistically significant difference (p < 0.05) between the penetration transport of the diclofenac from liposome gel formulation (1413.95 ± 250.51 μg) and the conventional product (202.36 ± 18.07 μg) the liposomal formulation was able to cross de stratum corneum and deliver a high amount of drug to the skin. These findings demonstrated that incorporating diclofenac into a liposomal system significantly improved the drug delivery, which could confer an advantage for clinical uses.展开更多
Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),w...Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),which consists of a firming essence,an atomizer and a photoelectric penetrator,for facial anti-aging efficacy.Material and methods:In this work,in vitro cell experiments and human efficacy study were used to evaluate the firming and anti-wrinkle effects.Cell experiments were used to verify the effect of the firming essence on the cell proliferation,migration,and anti-inflammation in keratinocytes(HaCaT),and on the gene expression levels of type I and type III collagen(Col-1 and Col-3)and type I matrix metalloproteinase(MMP-1)in human skin fibroblasts(HSF).After in vitro test,60 women aged 35–60 years were enrolled in the randomized test,of which 30 subjects were randomly selected to be the experimental group and treated with the TPS system,while the left 30 subjects were treated with the firming essence only considered as control.After 28 days,skin elasticity,skin redness value,and skin wrinkles were measured to evaluate the efficacy of the TPS system.Results:Cell experiments showed that the firming essence can significantly improve the proliferation and the migration of HaCaT cells.It also promoted the expression level of Col-1 and Col-3 gene,and inhibited the expression level of MMP-1 gene in HSF cells.After confirming the efficacy of firming essence,the efficacy benefit of the TPS was further studied.The 28-day tests show that combined use firming essence with atomizer and penetrator can significantly increase skin elasticity,reduce skin hemoglobin value and skin wrinkles on Day 28.Moreover,all the mentioned improvements are significantly better than that in the control group.Conclusion:Through efficient delivery in the whole process,TPS boosts the efficacy of active components in the firming essence.TPS offers an efficient,non-invasive,and convenient way for enhanced facial rejuvenation efficacy.展开更多
Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical iss...Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance.展开更多
A GC-MS method for the determination of 27 organochlorine pesticides and 15 Pyrethroid pesticides in animal food is established.The method was based on Gel Permeation chromatography combined with solid-phase extractio...A GC-MS method for the determination of 27 organochlorine pesticides and 15 Pyrethroid pesticides in animal food is established.The method was based on Gel Permeation chromatography combined with solid-phase extraction for sample preparation.Rapid qualitative and quantitative analyses was carried out by gas chromatography-mass spectrometry under the selective-ion monitoring mode.The experimental results showed that the correlation coefficients were better than 0.99,the recoveries for spiked standards were 70%-104%,the relative standard deviations were 2.1%-15.9%.展开更多
One major problem encountered in transdermal drug delivery is the low permeability of drugs through the skin barrier. In the present study, we developed a surfactant-ethanolic liposomal system to improve the transderm...One major problem encountered in transdermal drug delivery is the low permeability of drugs through the skin barrier. In the present study, we developed a surfactant-ethanolic liposomal system to improve the transdermal delivery of docetaxel (DTX), a model drug for high molecular weight and poorly water-soluble drugs. Surfactant-ethanolic liposomes (SEL) were composed of phospholipids, ethanol, sodium cholate, DTX and PBS which were prepared by thin film dispersion method. The developed formulations were characterized by determining the vesicle shape and surface morphology, size and size distribution, entrapment efficiency and drug loading capacity. The effects of the developed formulations on the permeation of DTX across rat skin in vitro were investigated using the modified Franz diffusion cell under both occlusive and non-occlusive application condi- tions. The DTX SELs with optimum composition (phospholipid-surfactant, 85:15, w/w) provided a significantly higher steadystate amount of flux and cumulative permeation, compared to the tranditional liposomes, surfactant liposomes and ethanolic liposomes. The optimal SELs exhibited stable vesicle size, morphology and drug loading capacity. Our results indicated that SELs were promising carriers to enhance the transdermal delivery of DTX.展开更多
For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups,...For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups, was synthesized and characterized by the Fourier transform infrared (FFIR), the gel permeation chromatography (GPC) and the chemical analysis methods. The reaction conditions were studied and optimized. A tracking research on the polymerization process of TDI was taken by using the GPC. The formation processes of the terpolymer, oligomers and higher-polymers were also dealt with. Results show that the TDI terpolymer can be prepared in the presence of Cat-3 catalyst and at the reaction temperature of (60 ±2)℃. The reaction time is short, its outcomes have narrow molecular weights distribution, namely molecular weights from 530 to 550, Mw/Mn =1.10, and the mass fraction of NCO is (25. 0 ± 0. 5)%. With the reaction time prolonging, however, TDI can be further higher-polymedzed to form higher-polymers. Benzoyl chloride (0. 4%, mass fraction), as the stabilizing agent, can effectively inhibit the occurrence of higher-polymerization. The obtained TDI terpolymer can be stable for more than half a year.展开更多
The effect of pH on the permeation of Lidocaine hydrochloride (LH) across excised rat skin was studied, the steady state flux (JSS) at different pH being determined using improved Valia-Chien diffusion cells. JSS incr...The effect of pH on the permeation of Lidocaine hydrochloride (LH) across excised rat skin was studied, the steady state flux (JSS) at different pH being determined using improved Valia-Chien diffusion cells. JSS increased substantially when pH was close to the pKa of LH. The profile of JSS versus pH showed an 慡?shaped curve. JSS of Lidocaine free base (LFB) was fourteen times that of LH. The pH of vehicle influences the permeation of LH significantly and should be considered as an important factor when a formulation is developed.展开更多
基金support from the National Natural Science Foundation of China(No.52171080)。
文摘The recognition and monitoring of localized corrosion at the early stage on the inner wall surface of pipes are extremely difficult and simultaneously the reliable approach for recognition and monitoring is missing.Here we report a spatially resolved method to recognize and monitor the localized corrosion in a non-destructive way based on the permeating hydrogen signal generated from localized corrosion itself.A simulative localized corrosion was created on one side surface of the carbon steel specimen where a dot of wet elemental sulfur was introduced to accelerate the corrosion on the local region.While,the potential on the other side surface(the reverse side of the corrosion site)of the specimen was measured using a scanning Kelvin probe.The results show that the permeating hydrogen generated from localized corrosion easily arrives on the reverse side surface of the corrosion site and then causes a huge change in surface potential.The location resolution of potential distribution can be revealed with micron level.Therefore,it is thought that the location of localized corrosion can be recognized by the permeating hydrogen signal distribution on the reverse side surface of the corrosion site since the region of potential decreasing is highly corresponding to the corrosion site.Moreover,the strength of the permeating hydrogen signal is highly related to the corrosion depth and transient corrosion rate of localized corrosion.This means that the localized corrosion development can also be monitored using the permeating hydrogen signal.Therefore,it can be expected that the localized corrosion occurring on the inner wall surface of pipes or equipment can be recognized and monitored successfully on the outer wall surface in a non-destructive way once the permeating hydrogen is present during the localized corrosion proceeding.
文摘Rare earth (RE) atoms were permeated into the surface of Al bronze (Cu-7. gA1-1. 9 Sn) by the method of chemical heat treatment. The permeated layer was then analysed by TEM (Transmission Electron Microscope) , EPMA (Electronic Probe Microanalysis) and IMA (Ion Microprobe Appratus). The results show that CuREAl and dispersed η phase (Cu6Sn5) distribute in the layer, RE content decreases in the depth direction, and alloying elements (Al, Sn) are enriched in the outer layer and dilute in the second layer.
文摘CH4-CO2-O-2 reforming to syngas in a never Ba0.5Sr0.5Co0.8Fe0.2O3.delta oxygen-permeable membrane reactor using LiLaNiO/gamma-Al2O3 as catalyst was successfully reported. Excellent reaction performance was achieved with around 92% methane conversion efficiency, 95% CO2 conversion rate, and nearly 8.5mL/min.cm(2) oxygen permeation flux. In contrast to the oxygen permeation model with the presence of large concentration of CO2 (under such condition the oxygen permeation flux deteriorates with time), the oxygen permeation flux is really stable under the CH4CO2-O-2 reforming condition.
基金funded by the National Natural Science Foundation of China Regional Innovation and Development Joint Fund(Sichuan)(No.U21A20417)the National Natural Science Foundation of China(No.31930067)。
文摘The androgenetic alopecia(AGA)is the most prevalent clinical manifestation of hair loss,believed to be associated with excessive dihydrotestosterone(DHT)caused by typeⅡ5α-reductase(5αR2).The utilization of oral finasteride(FNS),which selectively inhibits 5αR2,is frequently constrained by its adverse effects.Topical FNS formulations can mitigate adverse effects but often exhibit limited dermal permeability.Nanocarriers show great potential in augmenting the cutaneous permeation of loaded FNS due to their inherent properties of selective accumulation within the hair follicles(HFs).In this study,hollow mesoporous silica nanoparticles(HMSN)with varying sizes were utilized as the nanocarriers for FNS,following mixing with the Carbopol hydrogel(F@H/Gel)for direct topical application.Specifically,the influence of size on the targeted delivery of FNS to HFs,and its enhanced therapeutic efficacy for the AGA mice model was evaluated.Results showed that the HMSN,with a diameter of approximately 300 nm,exhibited significant enhancement in FNS retention within skin and HFs,as well as remarkably accelerated hair regrowth on an AGA mouse model.In conclusion,this FNS topical formulation has proved to be a viable approach in offering a secure and efficient treatment modality for AGA.
文摘SrxBi1-xFeO3- (SBF) series mixed conductors were synthesized using Standard ceramic method. The properties of such materials were characterized by XRD, O2-TPD techniques. Ab-normal crystal phenomena were found and explained and correlated with the oxygen permeation results. By analysis of the critical radius (rc), the degree of openness of the lattice (Fv) and the average metal-oxygen bonding energy of the perovskite lattice (ABE), it was proposed that the oxygen permeation flux is determined mainly by the oxygen diffusion rate in bulk when 1-x≤0.5, and by the concentration of oxygen vacancy when 1-x≥ 0.5. The stability of Sr0.5Bi0.5FeO3- was also investigated, and the high stability of it was attributed to the stable BO6 octahedra.
基金the support of this research from the Serbian Ministry of Education,Science and Technological Development(Grant No.451-03-68/2023-14/200325)Ministry of Defense(Grant No.VA-TT/1/22-24)。
文摘Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.
基金supported by the Politecnico di Torino and the CleanWaterCenter@PoliTo(58_DIM20TIRALB,58_DIM22TIRALB,and 01_TRIN_CI_CWC).
文摘In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various algae harvesting techniques,membrane-based filtration has shown numerous advantages.This study evaluated the reuse of permeate streams derived from Scenedesmus obliquus(S.obliquus)biomass filtration under bench-scale and pilot-scale conditions.In particular,this study identified a series of challenges and mechanisms that influence the water reuse potential and the robustness of the membrane harvesting system.In a preliminary phase of this investigation,the health status of the initial biomass was found to have important implications for the harvesting performance and quality of the permeate stream to be reused;healthy biomass ensured better dewatering performance(i.e.,higher water fluxes)and higher quality of the permeate water streams.A series of bench-scale filtration experiments with different combinations of cross-flow velocity and pressure values were performed to identify the operative conditions that would maximize water productivity.The selected conditions,2.4 m·s^(-1)and 1.4 bar(1 bar=105 Pa),respectively,were then applied to drive pilot-scale microfiltration tests to reuse the collected permeate as a new cultivation medium for S.obliquus growth in a pilot-scale photobioreactor.The investigation revealed key differences between the behavior of the membrane systems at the two scales(bench and pilot).It indicated the potential for beneficial reuse of the permeate stream as the pilot-scale experiments ensured high harvesting performance and growth rates of biomass in permeate water that were highly similar to those recorded in the ideal cultivation medium.Finally,different nutrient reintegration protocols were investigated,revealing that both macro-and micro-nutrient levels are critical for the success of the reuse approach.
基金Financial support by the Spanish Ministry of Science(PID2022139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AE I/10.13039/501100011033)with funding from Next Generation EU(PRTR-C17.I1)within the Planes Complementarios con CCAA(Area of Green Hydrogen and Energy)+2 种基金carried out in the CSIC Interdisciplinary Thematic Platform(PTI+)Transición Energética Sostenible+(PTI-TRANSENER+)the Universitat Politècnica de València(UPV)the support of the Servicio de Microscopía Elcectronica of the UPV。
文摘Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.
基金supported by the National Natural Science Foundation of China (No.41977377)。
文摘Passive sampling technology has good application prospects for monitoring trace pollutants in aquatic environments.Further research on the sampling mechanism of this technology is essential to improve the measurement accuracy and extend the application scope of this approach.In this study,adsorption and permeation experiments were performed to investigate the sorption and mass transfer properties of five chiral pharmaceuticals at the enantiomeric level on polyethersulfone(PES)and polytetrafluoroethylene(PTFE)membranes used in a polar organic chemical integrative sampler.Batch adsorption experiments showed that the PES membrane had an adsorption phenomenon for most selected pollutants and an insignificant sorption behavior was observed for all selected pharmaceuticals on the PTFE membrane except for R(S)-fluoxetine.The diffusion coefficients of selected pharmaceuticals onto the PTFE membrane were approximately one order of magnitude higher than those onto the PES membrane.The permeation experiment indicated that under different hydraulic conditions,the change of the relative pollutant concentration through the PTFE membrane for the composite pollutant system was more obvious than that for the single pollutant system,and mass transfer hysteresis exists for both contaminant systems through PES membranes.Using the first-order equation or 3-component model to estimate the overall mass transfer coefficients,the results showed that the overall mass transfer coefficient values of pollutants in the composite pollutant system onto both membranes were higher than those in the single pollutant system.This parameter was mainly influenced by the synergistic effects of the multi-analyte interaction and diminished water boundary layers during the mass transfer process.
基金supported by the PAPIIT-UNAM project numbers IN-205823 and IA-107123DGV thanks to PNPC–CONACyT for her Ph.D.scholarship。
文摘This work shows the synthesis,characterization and evaluation of dense-ceramic membranes made of Ce_(0.85)Gd_(0.15)O_(2-δ)-LaNiO_(3)(CG-LN)composites,where the fluorite-perovskite ratio(CG:LN)was varied as follows:75:25,80:20 and 85:15 wt.%.Supports were initially characterized by XRD,SEM and electrical conductivity(using vacuum and oxygen atmospheres),to determine the composition,microstructural and ionic-electronic conductivity properties.Later,supports were infiltrated with an eutectic carbonates mixture,producing the corresponding dense dual-phase membranes,in which CO_(2)permeation tests were conducted.Here,CO_(2)permeation experiments were performed from 900 to 700℃,in the presence and absence of oxygen(flowed in the sweep membrane side).Results showed that these composites possess high CO_(2)permeation properties,where the O_(2)addition significantly improves the ionic conduction on the sweep membrane side.Specifically,the GC80-LN20 composition presented the best results due to the following physicochemical characteristics:high electronic and ionic conductivity,appropriate porosity,interconnected porous channels,as well as thermal and chemical stabilities between the composite support and carbonate phases.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei Province.
文摘[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.
文摘NBS-LRR (nucleotide binding sites and leucine rich repeat) protein plays a crucial role as sentries and as defense activators in plants. The structure and function of NBS-LRR proteins are closely related. Previous articles have announced that the activated ZAR1 (HopZ-Activated Resistance 1) forms a pentamer in the plasma membrane, which is a calcium permeable channel that can trigger plant immune signaling and cell death. However, the structure of galore NBS-LRRs in Arabidopsis is not yet clear. The functional sites of distinct NBS-LRR in cells may vary. In addition, identifying pathogens and activating defense regions may occur in different subcellular compartments. Therefore, dissecting the specific structure and positioning of NBS-LRRs is an indispensable step in understanding their functions. In this article, we exploit AlphaFold to predict the structure of some designed NBS-LRRs, and utilize Agroinfiltration transient expression system, combined with biochemical fractionation, to dissect the localization of these NBS-LRR receptors from Arabidopsis. Structural data indicates that the identified NBS-LRRs share analogous conformation. Membrane fractionation assay demonstrates these NBS-LRRs are mainly associated with the membrane. These data show that the Ca2+-permeable channel activity may be evolutionarily conserved in NBS-LRR of Arabidopsis, and this study provides some reference clues for analyzing the structure and localization patterns of other plant immune receptors.
文摘Borneol, as a traditional natural permeation enhancer, has been widely used to promote the transdermal absorption of active ingredients. In this review, the mechanism of borneol in promoting permeation by destroying the highly ordered lipid structure of the lipid layer and by destroying the hydrogen-bond network was described. The application of borneol in promoting the transdermal absorption of the active ingredients of traditional Chinese medicine and chemical drugs was introduced. The application of borneol as a natural ingredient added to functional cosmetics was summarized, and its effects on skin-spot treatment, acne skin care, eczema skin care, skin repair and anti-oxidation were introduced. Finally, the possible problems in the application of borneol in cosmetics were put forward, and the application prospect of borneol in the development of cosmetics was given.
文摘This study investigated whether liposomes could enhance the permeation and penetration of diclofenac diethylammonium. For this, a 1.16% diclofenac diethylammonium liposome gel formulation was developed (Grupo Leti, S.A.V.). In vitro and ex vivo tests were conducted to analyze the diffusion and penetration profiles of the formulation. The profiles obtained were compared with a commercially available product, DiAnalper gel (Pharmetique Labs). The in vitro test was assessed in a Franz diffusion cell system using a dialysis membrane. The cumulative amount of drug permeated after 24 h demonstrated a significantly (p 2, whereas the commercial formulation yielded values of 371.00 ± 3.54 μg/cm2. These findings were further supported by consistent results in the percentage of drug release, flux, and permeability coefficient, all indicating a notable improvement in diffusion associated with the liposomal gel formulation. The tape stripping assay performed on pig ear skin demonstrates a statistically significant difference (p < 0.05) between the penetration transport of the diclofenac from liposome gel formulation (1413.95 ± 250.51 μg) and the conventional product (202.36 ± 18.07 μg) the liposomal formulation was able to cross de stratum corneum and deliver a high amount of drug to the skin. These findings demonstrated that incorporating diclofenac into a liposomal system significantly improved the drug delivery, which could confer an advantage for clinical uses.
文摘Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),which consists of a firming essence,an atomizer and a photoelectric penetrator,for facial anti-aging efficacy.Material and methods:In this work,in vitro cell experiments and human efficacy study were used to evaluate the firming and anti-wrinkle effects.Cell experiments were used to verify the effect of the firming essence on the cell proliferation,migration,and anti-inflammation in keratinocytes(HaCaT),and on the gene expression levels of type I and type III collagen(Col-1 and Col-3)and type I matrix metalloproteinase(MMP-1)in human skin fibroblasts(HSF).After in vitro test,60 women aged 35–60 years were enrolled in the randomized test,of which 30 subjects were randomly selected to be the experimental group and treated with the TPS system,while the left 30 subjects were treated with the firming essence only considered as control.After 28 days,skin elasticity,skin redness value,and skin wrinkles were measured to evaluate the efficacy of the TPS system.Results:Cell experiments showed that the firming essence can significantly improve the proliferation and the migration of HaCaT cells.It also promoted the expression level of Col-1 and Col-3 gene,and inhibited the expression level of MMP-1 gene in HSF cells.After confirming the efficacy of firming essence,the efficacy benefit of the TPS was further studied.The 28-day tests show that combined use firming essence with atomizer and penetrator can significantly increase skin elasticity,reduce skin hemoglobin value and skin wrinkles on Day 28.Moreover,all the mentioned improvements are significantly better than that in the control group.Conclusion:Through efficient delivery in the whole process,TPS boosts the efficacy of active components in the firming essence.TPS offers an efficient,non-invasive,and convenient way for enhanced facial rejuvenation efficacy.
文摘Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance.
文摘A GC-MS method for the determination of 27 organochlorine pesticides and 15 Pyrethroid pesticides in animal food is established.The method was based on Gel Permeation chromatography combined with solid-phase extraction for sample preparation.Rapid qualitative and quantitative analyses was carried out by gas chromatography-mass spectrometry under the selective-ion monitoring mode.The experimental results showed that the correlation coefficients were better than 0.99,the recoveries for spiked standards were 70%-104%,the relative standard deviations were 2.1%-15.9%.
基金The Key Direction Program of Chinese Academy of Sciences(Grant No.kjcx2-sw-h12-01)
文摘One major problem encountered in transdermal drug delivery is the low permeability of drugs through the skin barrier. In the present study, we developed a surfactant-ethanolic liposomal system to improve the transdermal delivery of docetaxel (DTX), a model drug for high molecular weight and poorly water-soluble drugs. Surfactant-ethanolic liposomes (SEL) were composed of phospholipids, ethanol, sodium cholate, DTX and PBS which were prepared by thin film dispersion method. The developed formulations were characterized by determining the vesicle shape and surface morphology, size and size distribution, entrapment efficiency and drug loading capacity. The effects of the developed formulations on the permeation of DTX across rat skin in vitro were investigated using the modified Franz diffusion cell under both occlusive and non-occlusive application condi- tions. The DTX SELs with optimum composition (phospholipid-surfactant, 85:15, w/w) provided a significantly higher steadystate amount of flux and cumulative permeation, compared to the tranditional liposomes, surfactant liposomes and ethanolic liposomes. The optimal SELs exhibited stable vesicle size, morphology and drug loading capacity. Our results indicated that SELs were promising carriers to enhance the transdermal delivery of DTX.
文摘For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups, was synthesized and characterized by the Fourier transform infrared (FFIR), the gel permeation chromatography (GPC) and the chemical analysis methods. The reaction conditions were studied and optimized. A tracking research on the polymerization process of TDI was taken by using the GPC. The formation processes of the terpolymer, oligomers and higher-polymers were also dealt with. Results show that the TDI terpolymer can be prepared in the presence of Cat-3 catalyst and at the reaction temperature of (60 ±2)℃. The reaction time is short, its outcomes have narrow molecular weights distribution, namely molecular weights from 530 to 550, Mw/Mn =1.10, and the mass fraction of NCO is (25. 0 ± 0. 5)%. With the reaction time prolonging, however, TDI can be further higher-polymedzed to form higher-polymers. Benzoyl chloride (0. 4%, mass fraction), as the stabilizing agent, can effectively inhibit the occurrence of higher-polymerization. The obtained TDI terpolymer can be stable for more than half a year.
文摘The effect of pH on the permeation of Lidocaine hydrochloride (LH) across excised rat skin was studied, the steady state flux (JSS) at different pH being determined using improved Valia-Chien diffusion cells. JSS increased substantially when pH was close to the pKa of LH. The profile of JSS versus pH showed an 慡?shaped curve. JSS of Lidocaine free base (LFB) was fourteen times that of LH. The pH of vehicle influences the permeation of LH significantly and should be considered as an important factor when a formulation is developed.