This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a ...This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a marine type impeller was used.The impeller was set to rotate in the clockwise and counter clockwise directions with the same angular velocities in order to illustrate the effect of rotation direction on permeate flux.Consequently, permeate fluxes were measured at various impeller rotational speeds.The computational fluid dynamics(CFD)predicted dynamic pressure was related to the fluxes obtained in the experiments.Using the CFD modeling,it is proven that the change in dynamic pressure upon the membrane surface has direct effect on the permeate flux.展开更多
A vacuum membrane distillation(VMD)process with permeate fractional condensation on membrane downstream has been developed for simultaneous recovery of phosphorus and nitrogen from liquid digestate.The polytetrafluoro...A vacuum membrane distillation(VMD)process with permeate fractional condensation on membrane downstream has been developed for simultaneous recovery of phosphorus and nitrogen from liquid digestate.The polytetrafluoroethylene(PTFE)membrane flux could reach 6000 g·m-2·h-1 with the rejection efficiency of total phosphorus(TP)over 0.99,under the condition of flowrate being 120 L·h-1 and temperature being 40°C.Membrane fouling occurred with a film of organics and microorganism deposited on the surface of the membrane.Membrane flux could be reversed after the membrane was rinsed by water.Higher feed temperature and flowrate could improve the membrane flux,while hardly affect the rejection efficiency of total phosphorus.The concentration of TP could reach 1600 mg·L-1 after membrane distillation,which is about 5 times of that in initial liquid digestate.On the downstream of the membrane,some of the permeate vapor was condensed under the vacuum condition and most of water was collected here.The remaining vapor enriched with total nitrogen(TN)was compressed and pumped to the atmospheric condition to condense.The TN concentration in atmospheric condensate was as high as 7000 mg·L-1 with the process separation factor for ammonia being enhanced to 114.展开更多
Background:Whey permeate is an effective lactose source for nursery pigs and the most benefits are obtained when pigs are at 7 to 11 kg BW.Altering weaning ages could cause different length of early-weaner phases unti...Background:Whey permeate is an effective lactose source for nursery pigs and the most benefits are obtained when pigs are at 7 to 11 kg BW.Altering weaning ages could cause different length of early-weaner phases until 7 kg BW and thus it would influence the dietary need of whey permeate during 7 to 11 kg BW of pigs.This study aimed to evaluate if weaning ages would affect the dietary needs of whey permeate for optimum growth performance of pigs at 7 to 11 kg BW.Methods:A total of 1,632 pigs were weaned at d 21(d 21.2±1.3)or d 25(d 24.6±1.1)after birth.All pigs had a common early-weaner feeds until they reached 7 kg BW.When pigs reached 7 kg BW within a weaning age group,they were allotted in a randomized complete block design(2×4 factorial).Two factors were weaning age groups(21 and 25 d of age)and varying whey permeate levels(7.50%,11.25%,15.00%,and 18.75%).Data were analyzed using the GLM and NLIN procedures of SAS for slope-ratio and broken-line analyses to determine the growth response to whey permeate and optimal daily whey permeate intake for the growth of the pigs weaned at different ages.Results:Pigs weaned at 21 d of age had a common diet for 11 d to reach 7 kg BW whereas pigs weaned at 25 d of age needed 2 d.The G:F of pigs weaned at 25 d of age responded to increased daily whey permeate intake greater(P<0.05)than pigs weaned at 21 d of age.Breakpoints were obtained(P<0.05)at 88 and 60 g/d daily whey permeate intake or 17.0%and 14.4%of whey permeate for G:F of pigs weaned at 21 and 25 d of age,respectively.Conclusion:Pigs weaned at an older age with a short early-weaner phase had a greater growth response to whey permeate intake compared with pigs weaned at a younger age with a long early-weaner phase.Altering weaning ages affected dietary needs of whey permeate for optimum growth performance of pigs from 7 to 11 kg BW.展开更多
Aspergillus parasiticus, a common fungal contaminant in food, produces aflatoxin B1, which is classified as human carcinogen. Kefir is an ancient fermented beverage obtained by the fermentation of different substrates...Aspergillus parasiticus, a common fungal contaminant in food, produces aflatoxin B1, which is classified as human carcinogen. Kefir is an ancient fermented beverage obtained by the fermentation of different substrates with kefir grains. A very important waste produced by the dairy cheese industry is the whey permeate, which nowadays is a strong ambient contaminant. The aim of this work was to assess the effect of whey permeates fermented with kefir grains against A. parasiticus growth, aflatoxin B1 biosynthesis, and the kefir microorganisms protection against the cell damage produced by aflatoxin B1. It was observed that kefir-cell-free-supernatants (CFS) produced fungal inhibition. A fungicidal effect was observed with 65% v/v of CFS in the culture medium (final pH 4.55 and total undissociated lactic and acetic acid concentration 34.08 mM). Under these conditions, aflatoxin production was not detected. Finally, it was found that non-viable kefir microorganisms protected HepG2 cells from the damage produced by aflatoxin B1.展开更多
Fungal contamination by Aspergillus parasiticus and A. flavus causes negative effects on the production of food cereals. Kefir is an ancient fermented beverage obtained by the fermentation of different substrates with...Fungal contamination by Aspergillus parasiticus and A. flavus causes negative effects on the production of food cereals. Kefir is an ancient fermented beverage obtained by the fermentation of different substrates with kefir grains. An important waste produced by the dairy cheese industry is the whey permeate, which nowadays is a strong ambient contaminant. The aim of this work was the standardization of the whey permeate fermenting conditions with kefir grains, the assessment of the antifungal activity of the cell-free-supernatants (CFS) from these fermentations and to compare it with that obtained with CFS of milk fermented with kefir grains. Finally, we studied if the addition of kefir fermented whey permeate to food (bread) and feed (poultry) could produce shelf life improvement. The optimal condition to obtain CFS with fungicidal effect was a fermentation with 10% w/v of kefir grains, at 30°C, for 24 hours until a pH 3.7. We found that CFS from whey permeate caused fungal inhibition, whereas CFS of kefir grains grown in milk showed lower antifungal activity. Additionally, the addition of kefir-fermented whey permeates in food (bread) and feed (poultry) improved their resistance to fungal contamination. This is the first report about the application of kefir-fermented whey permeate to improve the shelf life, suggesting its potential use as a biopreservative.展开更多
It was proposed how the concentration distribution was calculated in the treble lager wall of hgdrogenation reactor according to the principle of hydrogen diffusion at the steady state in this paper. Based on the stea...It was proposed how the concentration distribution was calculated in the treble lager wall of hgdrogenation reactor according to the principle of hydrogen diffusion at the steady state in this paper. Based on the steady hydrogen permeation current density i∞ measund with the hydrogen probe at a given temperature, the hydmpen concentrationson the key interfaces and hydrogen distribution at any given mdial profile in the single, double or treble layer wall of hydrogenation reactor could be found by applying the presented equations throoph suitable parmeters ioput. The theoretical bases were provided for developing the nondestructive probing technique of the concentration of atomic hydmpen in the wallS of hydrogenation reactors.展开更多
The recognition and monitoring of localized corrosion at the early stage on the inner wall surface of pipes are extremely difficult and simultaneously the reliable approach for recognition and monitoring is missing.He...The recognition and monitoring of localized corrosion at the early stage on the inner wall surface of pipes are extremely difficult and simultaneously the reliable approach for recognition and monitoring is missing.Here we report a spatially resolved method to recognize and monitor the localized corrosion in a non-destructive way based on the permeating hydrogen signal generated from localized corrosion itself.A simulative localized corrosion was created on one side surface of the carbon steel specimen where a dot of wet elemental sulfur was introduced to accelerate the corrosion on the local region.While,the potential on the other side surface(the reverse side of the corrosion site)of the specimen was measured using a scanning Kelvin probe.The results show that the permeating hydrogen generated from localized corrosion easily arrives on the reverse side surface of the corrosion site and then causes a huge change in surface potential.The location resolution of potential distribution can be revealed with micron level.Therefore,it is thought that the location of localized corrosion can be recognized by the permeating hydrogen signal distribution on the reverse side surface of the corrosion site since the region of potential decreasing is highly corresponding to the corrosion site.Moreover,the strength of the permeating hydrogen signal is highly related to the corrosion depth and transient corrosion rate of localized corrosion.This means that the localized corrosion development can also be monitored using the permeating hydrogen signal.Therefore,it can be expected that the localized corrosion occurring on the inner wall surface of pipes or equipment can be recognized and monitored successfully on the outer wall surface in a non-destructive way once the permeating hydrogen is present during the localized corrosion proceeding.展开更多
The androgenetic alopecia(AGA)is the most prevalent clinical manifestation of hair loss,believed to be associated with excessive dihydrotestosterone(DHT)caused by typeⅡ5α-reductase(5αR2).The utilization of oral fin...The androgenetic alopecia(AGA)is the most prevalent clinical manifestation of hair loss,believed to be associated with excessive dihydrotestosterone(DHT)caused by typeⅡ5α-reductase(5αR2).The utilization of oral finasteride(FNS),which selectively inhibits 5αR2,is frequently constrained by its adverse effects.Topical FNS formulations can mitigate adverse effects but often exhibit limited dermal permeability.Nanocarriers show great potential in augmenting the cutaneous permeation of loaded FNS due to their inherent properties of selective accumulation within the hair follicles(HFs).In this study,hollow mesoporous silica nanoparticles(HMSN)with varying sizes were utilized as the nanocarriers for FNS,following mixing with the Carbopol hydrogel(F@H/Gel)for direct topical application.Specifically,the influence of size on the targeted delivery of FNS to HFs,and its enhanced therapeutic efficacy for the AGA mice model was evaluated.Results showed that the HMSN,with a diameter of approximately 300 nm,exhibited significant enhancement in FNS retention within skin and HFs,as well as remarkably accelerated hair regrowth on an AGA mouse model.In conclusion,this FNS topical formulation has proved to be a viable approach in offering a secure and efficient treatment modality for AGA.展开更多
In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various alga...In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various algae harvesting techniques,membrane-based filtration has shown numerous advantages.This study evaluated the reuse of permeate streams derived from Scenedesmus obliquus(S.obliquus)biomass filtration under bench-scale and pilot-scale conditions.In particular,this study identified a series of challenges and mechanisms that influence the water reuse potential and the robustness of the membrane harvesting system.In a preliminary phase of this investigation,the health status of the initial biomass was found to have important implications for the harvesting performance and quality of the permeate stream to be reused;healthy biomass ensured better dewatering performance(i.e.,higher water fluxes)and higher quality of the permeate water streams.A series of bench-scale filtration experiments with different combinations of cross-flow velocity and pressure values were performed to identify the operative conditions that would maximize water productivity.The selected conditions,2.4 m·s^(-1)and 1.4 bar(1 bar=105 Pa),respectively,were then applied to drive pilot-scale microfiltration tests to reuse the collected permeate as a new cultivation medium for S.obliquus growth in a pilot-scale photobioreactor.The investigation revealed key differences between the behavior of the membrane systems at the two scales(bench and pilot).It indicated the potential for beneficial reuse of the permeate stream as the pilot-scale experiments ensured high harvesting performance and growth rates of biomass in permeate water that were highly similar to those recorded in the ideal cultivation medium.Finally,different nutrient reintegration protocols were investigated,revealing that both macro-and micro-nutrient levels are critical for the success of the reuse approach.展开更多
Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitati...Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.展开更多
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production...Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.展开更多
Passive sampling technology has good application prospects for monitoring trace pollutants in aquatic environments.Further research on the sampling mechanism of this technology is essential to improve the measurement ...Passive sampling technology has good application prospects for monitoring trace pollutants in aquatic environments.Further research on the sampling mechanism of this technology is essential to improve the measurement accuracy and extend the application scope of this approach.In this study,adsorption and permeation experiments were performed to investigate the sorption and mass transfer properties of five chiral pharmaceuticals at the enantiomeric level on polyethersulfone(PES)and polytetrafluoroethylene(PTFE)membranes used in a polar organic chemical integrative sampler.Batch adsorption experiments showed that the PES membrane had an adsorption phenomenon for most selected pollutants and an insignificant sorption behavior was observed for all selected pharmaceuticals on the PTFE membrane except for R(S)-fluoxetine.The diffusion coefficients of selected pharmaceuticals onto the PTFE membrane were approximately one order of magnitude higher than those onto the PES membrane.The permeation experiment indicated that under different hydraulic conditions,the change of the relative pollutant concentration through the PTFE membrane for the composite pollutant system was more obvious than that for the single pollutant system,and mass transfer hysteresis exists for both contaminant systems through PES membranes.Using the first-order equation or 3-component model to estimate the overall mass transfer coefficients,the results showed that the overall mass transfer coefficient values of pollutants in the composite pollutant system onto both membranes were higher than those in the single pollutant system.This parameter was mainly influenced by the synergistic effects of the multi-analyte interaction and diminished water boundary layers during the mass transfer process.展开更多
This work shows the synthesis,characterization and evaluation of dense-ceramic membranes made of Ce_(0.85)Gd_(0.15)O_(2-δ)-LaNiO_(3)(CG-LN)composites,where the fluorite-perovskite ratio(CG:LN)was varied as follows:75...This work shows the synthesis,characterization and evaluation of dense-ceramic membranes made of Ce_(0.85)Gd_(0.15)O_(2-δ)-LaNiO_(3)(CG-LN)composites,where the fluorite-perovskite ratio(CG:LN)was varied as follows:75:25,80:20 and 85:15 wt.%.Supports were initially characterized by XRD,SEM and electrical conductivity(using vacuum and oxygen atmospheres),to determine the composition,microstructural and ionic-electronic conductivity properties.Later,supports were infiltrated with an eutectic carbonates mixture,producing the corresponding dense dual-phase membranes,in which CO_(2)permeation tests were conducted.Here,CO_(2)permeation experiments were performed from 900 to 700℃,in the presence and absence of oxygen(flowed in the sweep membrane side).Results showed that these composites possess high CO_(2)permeation properties,where the O_(2)addition significantly improves the ionic conduction on the sweep membrane side.Specifically,the GC80-LN20 composition presented the best results due to the following physicochemical characteristics:high electronic and ionic conductivity,appropriate porosity,interconnected porous channels,as well as thermal and chemical stabilities between the composite support and carbonate phases.展开更多
[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by ga...[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.展开更多
NBS-LRR (nucleotide binding sites and leucine rich repeat) protein plays a crucial role as sentries and as defense activators in plants. The structure and function of NBS-LRR proteins are closely related. Previous art...NBS-LRR (nucleotide binding sites and leucine rich repeat) protein plays a crucial role as sentries and as defense activators in plants. The structure and function of NBS-LRR proteins are closely related. Previous articles have announced that the activated ZAR1 (HopZ-Activated Resistance 1) forms a pentamer in the plasma membrane, which is a calcium permeable channel that can trigger plant immune signaling and cell death. However, the structure of galore NBS-LRRs in Arabidopsis is not yet clear. The functional sites of distinct NBS-LRR in cells may vary. In addition, identifying pathogens and activating defense regions may occur in different subcellular compartments. Therefore, dissecting the specific structure and positioning of NBS-LRRs is an indispensable step in understanding their functions. In this article, we exploit AlphaFold to predict the structure of some designed NBS-LRRs, and utilize Agroinfiltration transient expression system, combined with biochemical fractionation, to dissect the localization of these NBS-LRR receptors from Arabidopsis. Structural data indicates that the identified NBS-LRRs share analogous conformation. Membrane fractionation assay demonstrates these NBS-LRRs are mainly associated with the membrane. These data show that the Ca2+-permeable channel activity may be evolutionarily conserved in NBS-LRR of Arabidopsis, and this study provides some reference clues for analyzing the structure and localization patterns of other plant immune receptors.展开更多
Borneol, as a traditional natural permeation enhancer, has been widely used to promote the transdermal absorption of active ingredients. In this review, the mechanism of borneol in promoting permeation by destroying t...Borneol, as a traditional natural permeation enhancer, has been widely used to promote the transdermal absorption of active ingredients. In this review, the mechanism of borneol in promoting permeation by destroying the highly ordered lipid structure of the lipid layer and by destroying the hydrogen-bond network was described. The application of borneol in promoting the transdermal absorption of the active ingredients of traditional Chinese medicine and chemical drugs was introduced. The application of borneol as a natural ingredient added to functional cosmetics was summarized, and its effects on skin-spot treatment, acne skin care, eczema skin care, skin repair and anti-oxidation were introduced. Finally, the possible problems in the application of borneol in cosmetics were put forward, and the application prospect of borneol in the development of cosmetics was given.展开更多
This study investigated whether liposomes could enhance the permeation and penetration of diclofenac diethylammonium. For this, a 1.16% diclofenac diethylammonium liposome gel formulation was developed (Grupo Leti, S....This study investigated whether liposomes could enhance the permeation and penetration of diclofenac diethylammonium. For this, a 1.16% diclofenac diethylammonium liposome gel formulation was developed (Grupo Leti, S.A.V.). In vitro and ex vivo tests were conducted to analyze the diffusion and penetration profiles of the formulation. The profiles obtained were compared with a commercially available product, DiAnalper gel (Pharmetique Labs). The in vitro test was assessed in a Franz diffusion cell system using a dialysis membrane. The cumulative amount of drug permeated after 24 h demonstrated a significantly (p 2, whereas the commercial formulation yielded values of 371.00 ± 3.54 μg/cm2. These findings were further supported by consistent results in the percentage of drug release, flux, and permeability coefficient, all indicating a notable improvement in diffusion associated with the liposomal gel formulation. The tape stripping assay performed on pig ear skin demonstrates a statistically significant difference (p < 0.05) between the penetration transport of the diclofenac from liposome gel formulation (1413.95 ± 250.51 μg) and the conventional product (202.36 ± 18.07 μg) the liposomal formulation was able to cross de stratum corneum and deliver a high amount of drug to the skin. These findings demonstrated that incorporating diclofenac into a liposomal system significantly improved the drug delivery, which could confer an advantage for clinical uses.展开更多
Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),w...Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),which consists of a firming essence,an atomizer and a photoelectric penetrator,for facial anti-aging efficacy.Material and methods:In this work,in vitro cell experiments and human efficacy study were used to evaluate the firming and anti-wrinkle effects.Cell experiments were used to verify the effect of the firming essence on the cell proliferation,migration,and anti-inflammation in keratinocytes(HaCaT),and on the gene expression levels of type I and type III collagen(Col-1 and Col-3)and type I matrix metalloproteinase(MMP-1)in human skin fibroblasts(HSF).After in vitro test,60 women aged 35–60 years were enrolled in the randomized test,of which 30 subjects were randomly selected to be the experimental group and treated with the TPS system,while the left 30 subjects were treated with the firming essence only considered as control.After 28 days,skin elasticity,skin redness value,and skin wrinkles were measured to evaluate the efficacy of the TPS system.Results:Cell experiments showed that the firming essence can significantly improve the proliferation and the migration of HaCaT cells.It also promoted the expression level of Col-1 and Col-3 gene,and inhibited the expression level of MMP-1 gene in HSF cells.After confirming the efficacy of firming essence,the efficacy benefit of the TPS was further studied.The 28-day tests show that combined use firming essence with atomizer and penetrator can significantly increase skin elasticity,reduce skin hemoglobin value and skin wrinkles on Day 28.Moreover,all the mentioned improvements are significantly better than that in the control group.Conclusion:Through efficient delivery in the whole process,TPS boosts the efficacy of active components in the firming essence.TPS offers an efficient,non-invasive,and convenient way for enhanced facial rejuvenation efficacy.展开更多
Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical iss...Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance.展开更多
A GC-MS method for the determination of 27 organochlorine pesticides and 15 Pyrethroid pesticides in animal food is established.The method was based on Gel Permeation chromatography combined with solid-phase extractio...A GC-MS method for the determination of 27 organochlorine pesticides and 15 Pyrethroid pesticides in animal food is established.The method was based on Gel Permeation chromatography combined with solid-phase extraction for sample preparation.Rapid qualitative and quantitative analyses was carried out by gas chromatography-mass spectrometry under the selective-ion monitoring mode.The experimental results showed that the correlation coefficients were better than 0.99,the recoveries for spiked standards were 70%-104%,the relative standard deviations were 2.1%-15.9%.展开更多
文摘This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a marine type impeller was used.The impeller was set to rotate in the clockwise and counter clockwise directions with the same angular velocities in order to illustrate the effect of rotation direction on permeate flux.Consequently, permeate fluxes were measured at various impeller rotational speeds.The computational fluid dynamics(CFD)predicted dynamic pressure was related to the fluxes obtained in the experiments.Using the CFD modeling,it is proven that the change in dynamic pressure upon the membrane surface has direct effect on the permeate flux.
基金supported by the Fundamental Research Funds for the Central Universities(No.20822041B4013)Key Laboratory of Development and Application of Rural Renewable Energy,Ministry of Agriculture and Rural Affairs,China(No.18H0491)。
文摘A vacuum membrane distillation(VMD)process with permeate fractional condensation on membrane downstream has been developed for simultaneous recovery of phosphorus and nitrogen from liquid digestate.The polytetrafluoroethylene(PTFE)membrane flux could reach 6000 g·m-2·h-1 with the rejection efficiency of total phosphorus(TP)over 0.99,under the condition of flowrate being 120 L·h-1 and temperature being 40°C.Membrane fouling occurred with a film of organics and microorganism deposited on the surface of the membrane.Membrane flux could be reversed after the membrane was rinsed by water.Higher feed temperature and flowrate could improve the membrane flux,while hardly affect the rejection efficiency of total phosphorus.The concentration of TP could reach 1600 mg·L-1 after membrane distillation,which is about 5 times of that in initial liquid digestate.On the downstream of the membrane,some of the permeate vapor was condensed under the vacuum condition and most of water was collected here.The remaining vapor enriched with total nitrogen(TN)was compressed and pumped to the atmospheric condition to condense.The TN concentration in atmospheric condensate was as high as 7000 mg·L-1 with the process separation factor for ammonia being enhanced to 114.
基金This study was awarded and funded by American Dairy Products Institute(Elmhurst,IL,USA)Financial support was also provided by North Carolina Agricultural Foundation(Raleigh,NC,USA)USDA-NIFA Hatch(#02636)for this study.
文摘Background:Whey permeate is an effective lactose source for nursery pigs and the most benefits are obtained when pigs are at 7 to 11 kg BW.Altering weaning ages could cause different length of early-weaner phases until 7 kg BW and thus it would influence the dietary need of whey permeate during 7 to 11 kg BW of pigs.This study aimed to evaluate if weaning ages would affect the dietary needs of whey permeate for optimum growth performance of pigs at 7 to 11 kg BW.Methods:A total of 1,632 pigs were weaned at d 21(d 21.2±1.3)or d 25(d 24.6±1.1)after birth.All pigs had a common early-weaner feeds until they reached 7 kg BW.When pigs reached 7 kg BW within a weaning age group,they were allotted in a randomized complete block design(2×4 factorial).Two factors were weaning age groups(21 and 25 d of age)and varying whey permeate levels(7.50%,11.25%,15.00%,and 18.75%).Data were analyzed using the GLM and NLIN procedures of SAS for slope-ratio and broken-line analyses to determine the growth response to whey permeate and optimal daily whey permeate intake for the growth of the pigs weaned at different ages.Results:Pigs weaned at 21 d of age had a common diet for 11 d to reach 7 kg BW whereas pigs weaned at 25 d of age needed 2 d.The G:F of pigs weaned at 25 d of age responded to increased daily whey permeate intake greater(P<0.05)than pigs weaned at 21 d of age.Breakpoints were obtained(P<0.05)at 88 and 60 g/d daily whey permeate intake or 17.0%and 14.4%of whey permeate for G:F of pigs weaned at 21 and 25 d of age,respectively.Conclusion:Pigs weaned at an older age with a short early-weaner phase had a greater growth response to whey permeate intake compared with pigs weaned at a younger age with a long early-weaner phase.Altering weaning ages affected dietary needs of whey permeate for optimum growth performance of pigs from 7 to 11 kg BW.
文摘Aspergillus parasiticus, a common fungal contaminant in food, produces aflatoxin B1, which is classified as human carcinogen. Kefir is an ancient fermented beverage obtained by the fermentation of different substrates with kefir grains. A very important waste produced by the dairy cheese industry is the whey permeate, which nowadays is a strong ambient contaminant. The aim of this work was to assess the effect of whey permeates fermented with kefir grains against A. parasiticus growth, aflatoxin B1 biosynthesis, and the kefir microorganisms protection against the cell damage produced by aflatoxin B1. It was observed that kefir-cell-free-supernatants (CFS) produced fungal inhibition. A fungicidal effect was observed with 65% v/v of CFS in the culture medium (final pH 4.55 and total undissociated lactic and acetic acid concentration 34.08 mM). Under these conditions, aflatoxin production was not detected. Finally, it was found that non-viable kefir microorganisms protected HepG2 cells from the damage produced by aflatoxin B1.
文摘Fungal contamination by Aspergillus parasiticus and A. flavus causes negative effects on the production of food cereals. Kefir is an ancient fermented beverage obtained by the fermentation of different substrates with kefir grains. An important waste produced by the dairy cheese industry is the whey permeate, which nowadays is a strong ambient contaminant. The aim of this work was the standardization of the whey permeate fermenting conditions with kefir grains, the assessment of the antifungal activity of the cell-free-supernatants (CFS) from these fermentations and to compare it with that obtained with CFS of milk fermented with kefir grains. Finally, we studied if the addition of kefir fermented whey permeate to food (bread) and feed (poultry) could produce shelf life improvement. The optimal condition to obtain CFS with fungicidal effect was a fermentation with 10% w/v of kefir grains, at 30°C, for 24 hours until a pH 3.7. We found that CFS from whey permeate caused fungal inhibition, whereas CFS of kefir grains grown in milk showed lower antifungal activity. Additionally, the addition of kefir-fermented whey permeates in food (bread) and feed (poultry) improved their resistance to fungal contamination. This is the first report about the application of kefir-fermented whey permeate to improve the shelf life, suggesting its potential use as a biopreservative.
文摘It was proposed how the concentration distribution was calculated in the treble lager wall of hgdrogenation reactor according to the principle of hydrogen diffusion at the steady state in this paper. Based on the steady hydrogen permeation current density i∞ measund with the hydrogen probe at a given temperature, the hydmpen concentrationson the key interfaces and hydrogen distribution at any given mdial profile in the single, double or treble layer wall of hydrogenation reactor could be found by applying the presented equations throoph suitable parmeters ioput. The theoretical bases were provided for developing the nondestructive probing technique of the concentration of atomic hydmpen in the wallS of hydrogenation reactors.
基金support from the National Natural Science Foundation of China(No.52171080)。
文摘The recognition and monitoring of localized corrosion at the early stage on the inner wall surface of pipes are extremely difficult and simultaneously the reliable approach for recognition and monitoring is missing.Here we report a spatially resolved method to recognize and monitor the localized corrosion in a non-destructive way based on the permeating hydrogen signal generated from localized corrosion itself.A simulative localized corrosion was created on one side surface of the carbon steel specimen where a dot of wet elemental sulfur was introduced to accelerate the corrosion on the local region.While,the potential on the other side surface(the reverse side of the corrosion site)of the specimen was measured using a scanning Kelvin probe.The results show that the permeating hydrogen generated from localized corrosion easily arrives on the reverse side surface of the corrosion site and then causes a huge change in surface potential.The location resolution of potential distribution can be revealed with micron level.Therefore,it is thought that the location of localized corrosion can be recognized by the permeating hydrogen signal distribution on the reverse side surface of the corrosion site since the region of potential decreasing is highly corresponding to the corrosion site.Moreover,the strength of the permeating hydrogen signal is highly related to the corrosion depth and transient corrosion rate of localized corrosion.This means that the localized corrosion development can also be monitored using the permeating hydrogen signal.Therefore,it can be expected that the localized corrosion occurring on the inner wall surface of pipes or equipment can be recognized and monitored successfully on the outer wall surface in a non-destructive way once the permeating hydrogen is present during the localized corrosion proceeding.
基金funded by the National Natural Science Foundation of China Regional Innovation and Development Joint Fund(Sichuan)(No.U21A20417)the National Natural Science Foundation of China(No.31930067)。
文摘The androgenetic alopecia(AGA)is the most prevalent clinical manifestation of hair loss,believed to be associated with excessive dihydrotestosterone(DHT)caused by typeⅡ5α-reductase(5αR2).The utilization of oral finasteride(FNS),which selectively inhibits 5αR2,is frequently constrained by its adverse effects.Topical FNS formulations can mitigate adverse effects but often exhibit limited dermal permeability.Nanocarriers show great potential in augmenting the cutaneous permeation of loaded FNS due to their inherent properties of selective accumulation within the hair follicles(HFs).In this study,hollow mesoporous silica nanoparticles(HMSN)with varying sizes were utilized as the nanocarriers for FNS,following mixing with the Carbopol hydrogel(F@H/Gel)for direct topical application.Specifically,the influence of size on the targeted delivery of FNS to HFs,and its enhanced therapeutic efficacy for the AGA mice model was evaluated.Results showed that the HMSN,with a diameter of approximately 300 nm,exhibited significant enhancement in FNS retention within skin and HFs,as well as remarkably accelerated hair regrowth on an AGA mouse model.In conclusion,this FNS topical formulation has proved to be a viable approach in offering a secure and efficient treatment modality for AGA.
基金supported by the Politecnico di Torino and the CleanWaterCenter@PoliTo(58_DIM20TIRALB,58_DIM22TIRALB,and 01_TRIN_CI_CWC).
文摘In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various algae harvesting techniques,membrane-based filtration has shown numerous advantages.This study evaluated the reuse of permeate streams derived from Scenedesmus obliquus(S.obliquus)biomass filtration under bench-scale and pilot-scale conditions.In particular,this study identified a series of challenges and mechanisms that influence the water reuse potential and the robustness of the membrane harvesting system.In a preliminary phase of this investigation,the health status of the initial biomass was found to have important implications for the harvesting performance and quality of the permeate stream to be reused;healthy biomass ensured better dewatering performance(i.e.,higher water fluxes)and higher quality of the permeate water streams.A series of bench-scale filtration experiments with different combinations of cross-flow velocity and pressure values were performed to identify the operative conditions that would maximize water productivity.The selected conditions,2.4 m·s^(-1)and 1.4 bar(1 bar=105 Pa),respectively,were then applied to drive pilot-scale microfiltration tests to reuse the collected permeate as a new cultivation medium for S.obliquus growth in a pilot-scale photobioreactor.The investigation revealed key differences between the behavior of the membrane systems at the two scales(bench and pilot).It indicated the potential for beneficial reuse of the permeate stream as the pilot-scale experiments ensured high harvesting performance and growth rates of biomass in permeate water that were highly similar to those recorded in the ideal cultivation medium.Finally,different nutrient reintegration protocols were investigated,revealing that both macro-and micro-nutrient levels are critical for the success of the reuse approach.
基金the support of this research from the Serbian Ministry of Education,Science and Technological Development(Grant No.451-03-68/2023-14/200325)Ministry of Defense(Grant No.VA-TT/1/22-24)。
文摘Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.
基金Financial support by the Spanish Ministry of Science(PID2022139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AE I/10.13039/501100011033)with funding from Next Generation EU(PRTR-C17.I1)within the Planes Complementarios con CCAA(Area of Green Hydrogen and Energy)+2 种基金carried out in the CSIC Interdisciplinary Thematic Platform(PTI+)Transición Energética Sostenible+(PTI-TRANSENER+)the Universitat Politècnica de València(UPV)the support of the Servicio de Microscopía Elcectronica of the UPV。
文摘Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.
基金supported by the National Natural Science Foundation of China (No.41977377)。
文摘Passive sampling technology has good application prospects for monitoring trace pollutants in aquatic environments.Further research on the sampling mechanism of this technology is essential to improve the measurement accuracy and extend the application scope of this approach.In this study,adsorption and permeation experiments were performed to investigate the sorption and mass transfer properties of five chiral pharmaceuticals at the enantiomeric level on polyethersulfone(PES)and polytetrafluoroethylene(PTFE)membranes used in a polar organic chemical integrative sampler.Batch adsorption experiments showed that the PES membrane had an adsorption phenomenon for most selected pollutants and an insignificant sorption behavior was observed for all selected pharmaceuticals on the PTFE membrane except for R(S)-fluoxetine.The diffusion coefficients of selected pharmaceuticals onto the PTFE membrane were approximately one order of magnitude higher than those onto the PES membrane.The permeation experiment indicated that under different hydraulic conditions,the change of the relative pollutant concentration through the PTFE membrane for the composite pollutant system was more obvious than that for the single pollutant system,and mass transfer hysteresis exists for both contaminant systems through PES membranes.Using the first-order equation or 3-component model to estimate the overall mass transfer coefficients,the results showed that the overall mass transfer coefficient values of pollutants in the composite pollutant system onto both membranes were higher than those in the single pollutant system.This parameter was mainly influenced by the synergistic effects of the multi-analyte interaction and diminished water boundary layers during the mass transfer process.
基金supported by the PAPIIT-UNAM project numbers IN-205823 and IA-107123DGV thanks to PNPC–CONACyT for her Ph.D.scholarship。
文摘This work shows the synthesis,characterization and evaluation of dense-ceramic membranes made of Ce_(0.85)Gd_(0.15)O_(2-δ)-LaNiO_(3)(CG-LN)composites,where the fluorite-perovskite ratio(CG:LN)was varied as follows:75:25,80:20 and 85:15 wt.%.Supports were initially characterized by XRD,SEM and electrical conductivity(using vacuum and oxygen atmospheres),to determine the composition,microstructural and ionic-electronic conductivity properties.Later,supports were infiltrated with an eutectic carbonates mixture,producing the corresponding dense dual-phase membranes,in which CO_(2)permeation tests were conducted.Here,CO_(2)permeation experiments were performed from 900 to 700℃,in the presence and absence of oxygen(flowed in the sweep membrane side).Results showed that these composites possess high CO_(2)permeation properties,where the O_(2)addition significantly improves the ionic conduction on the sweep membrane side.Specifically,the GC80-LN20 composition presented the best results due to the following physicochemical characteristics:high electronic and ionic conductivity,appropriate porosity,interconnected porous channels,as well as thermal and chemical stabilities between the composite support and carbonate phases.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei Province.
文摘[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.
文摘NBS-LRR (nucleotide binding sites and leucine rich repeat) protein plays a crucial role as sentries and as defense activators in plants. The structure and function of NBS-LRR proteins are closely related. Previous articles have announced that the activated ZAR1 (HopZ-Activated Resistance 1) forms a pentamer in the plasma membrane, which is a calcium permeable channel that can trigger plant immune signaling and cell death. However, the structure of galore NBS-LRRs in Arabidopsis is not yet clear. The functional sites of distinct NBS-LRR in cells may vary. In addition, identifying pathogens and activating defense regions may occur in different subcellular compartments. Therefore, dissecting the specific structure and positioning of NBS-LRRs is an indispensable step in understanding their functions. In this article, we exploit AlphaFold to predict the structure of some designed NBS-LRRs, and utilize Agroinfiltration transient expression system, combined with biochemical fractionation, to dissect the localization of these NBS-LRR receptors from Arabidopsis. Structural data indicates that the identified NBS-LRRs share analogous conformation. Membrane fractionation assay demonstrates these NBS-LRRs are mainly associated with the membrane. These data show that the Ca2+-permeable channel activity may be evolutionarily conserved in NBS-LRR of Arabidopsis, and this study provides some reference clues for analyzing the structure and localization patterns of other plant immune receptors.
文摘Borneol, as a traditional natural permeation enhancer, has been widely used to promote the transdermal absorption of active ingredients. In this review, the mechanism of borneol in promoting permeation by destroying the highly ordered lipid structure of the lipid layer and by destroying the hydrogen-bond network was described. The application of borneol in promoting the transdermal absorption of the active ingredients of traditional Chinese medicine and chemical drugs was introduced. The application of borneol as a natural ingredient added to functional cosmetics was summarized, and its effects on skin-spot treatment, acne skin care, eczema skin care, skin repair and anti-oxidation were introduced. Finally, the possible problems in the application of borneol in cosmetics were put forward, and the application prospect of borneol in the development of cosmetics was given.
文摘This study investigated whether liposomes could enhance the permeation and penetration of diclofenac diethylammonium. For this, a 1.16% diclofenac diethylammonium liposome gel formulation was developed (Grupo Leti, S.A.V.). In vitro and ex vivo tests were conducted to analyze the diffusion and penetration profiles of the formulation. The profiles obtained were compared with a commercially available product, DiAnalper gel (Pharmetique Labs). The in vitro test was assessed in a Franz diffusion cell system using a dialysis membrane. The cumulative amount of drug permeated after 24 h demonstrated a significantly (p 2, whereas the commercial formulation yielded values of 371.00 ± 3.54 μg/cm2. These findings were further supported by consistent results in the percentage of drug release, flux, and permeability coefficient, all indicating a notable improvement in diffusion associated with the liposomal gel formulation. The tape stripping assay performed on pig ear skin demonstrates a statistically significant difference (p < 0.05) between the penetration transport of the diclofenac from liposome gel formulation (1413.95 ± 250.51 μg) and the conventional product (202.36 ± 18.07 μg) the liposomal formulation was able to cross de stratum corneum and deliver a high amount of drug to the skin. These findings demonstrated that incorporating diclofenac into a liposomal system significantly improved the drug delivery, which could confer an advantage for clinical uses.
文摘Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),which consists of a firming essence,an atomizer and a photoelectric penetrator,for facial anti-aging efficacy.Material and methods:In this work,in vitro cell experiments and human efficacy study were used to evaluate the firming and anti-wrinkle effects.Cell experiments were used to verify the effect of the firming essence on the cell proliferation,migration,and anti-inflammation in keratinocytes(HaCaT),and on the gene expression levels of type I and type III collagen(Col-1 and Col-3)and type I matrix metalloproteinase(MMP-1)in human skin fibroblasts(HSF).After in vitro test,60 women aged 35–60 years were enrolled in the randomized test,of which 30 subjects were randomly selected to be the experimental group and treated with the TPS system,while the left 30 subjects were treated with the firming essence only considered as control.After 28 days,skin elasticity,skin redness value,and skin wrinkles were measured to evaluate the efficacy of the TPS system.Results:Cell experiments showed that the firming essence can significantly improve the proliferation and the migration of HaCaT cells.It also promoted the expression level of Col-1 and Col-3 gene,and inhibited the expression level of MMP-1 gene in HSF cells.After confirming the efficacy of firming essence,the efficacy benefit of the TPS was further studied.The 28-day tests show that combined use firming essence with atomizer and penetrator can significantly increase skin elasticity,reduce skin hemoglobin value and skin wrinkles on Day 28.Moreover,all the mentioned improvements are significantly better than that in the control group.Conclusion:Through efficient delivery in the whole process,TPS boosts the efficacy of active components in the firming essence.TPS offers an efficient,non-invasive,and convenient way for enhanced facial rejuvenation efficacy.
文摘Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance.
文摘A GC-MS method for the determination of 27 organochlorine pesticides and 15 Pyrethroid pesticides in animal food is established.The method was based on Gel Permeation chromatography combined with solid-phase extraction for sample preparation.Rapid qualitative and quantitative analyses was carried out by gas chromatography-mass spectrometry under the selective-ion monitoring mode.The experimental results showed that the correlation coefficients were better than 0.99,the recoveries for spiked standards were 70%-104%,the relative standard deviations were 2.1%-15.9%.