The physical properties of hydrocarbon reservoirs are important factors affecting the percolation ability of the reservoirs.Tight-sand reservoirs exhibit complex pore throat connectivity due to the extensive developme...The physical properties of hydrocarbon reservoirs are important factors affecting the percolation ability of the reservoirs.Tight-sand reservoirs exhibit complex pore throat connectivity due to the extensive development of micro-and nano-scale pore and throat systems.Characterizing the microscopic properties of these reservoirs using nondestructive,quantitative methods serves as an important means to determine the characteristics of microscopic pores and throats in tight-sand reservoirs and the mechanism behind the influence of these characteristics on reservoir porosity and permeability.In this study,a low-permeability sandstone sample and two tight sandstone samples collected from the Ordos Basin were nondestructively tested using high-resolution nano-CT technology to quantitively characterize their microscopic pore throat structures and model them three-dimensionally(in 3D)based on CT threshold differences and gray models.A thorough analysis and comparison reveal that the three samples exhibit a certain positive correlation between their porosity and permeability but the most important factor affecting both porosity and permeability is the microscopic pore throat structure.Although the number of pores in tight sandstones shows a minor impact on their porosity,large pores(more than 20μm)contribute predominantly to porosity,suggesting that the permeability of tight sandstones is controlled primarily by large pore throats.For these samples,higher permeability corresponds to larger average throat sizes.Therefore,throats with average radii greater than 2μm can significantly improve the permeability of tight sandstones.展开更多
Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recen...Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recent years.However,studies on the radial-gradient design of irregular bionic scaffolds are limited.Therefore,this study aims to develop a radial-gradient structure similar to that of natural long bones,enhancing the development of bionic bone scaffolds.A novel gradient method was adopted to maintain constant porosity,control the seed site-specific distribution within the irregular porous structure,and vary the strut diameter to generate radial gradients.The irregular scaffolds were compared with four conventional scaffolds(cube,pillar BCC,vintiles,and diamond)in terms of permeability,stress concentration characteristics,and mechanical properties.The results indicate that the radial-gradient irregular porous structure boasts the widest permeability range and superior stress distribution compared to conventional scaffolds.With an elastic modulus ranging from 4.20 GPa to 22.96 GPa and a yield strength between 68.37 MPa and 149.40 MPa,it meets bone implant performance requirements and demonstrates significant application potential.展开更多
CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pe...CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field.展开更多
As the first gold mine discovered at the sea in China and the only coastal gold mine currently mined there,Sanshandao Gold Mine faces unique challenges.The mine's safety is under continual threat from its faulted ...As the first gold mine discovered at the sea in China and the only coastal gold mine currently mined there,Sanshandao Gold Mine faces unique challenges.The mine's safety is under continual threat from its faulted structure coupled with the overlying water.As the mining proceeds deeper,the risk of water inrush increases.The mine's maximum water yield reaches 15000 m3/day,which is attributable to water channels present in fault zones.Predominantly composed of soil–rock mixtures(SRM),these fault zones'seepage characteristics significantly impact water inrush risk.Consequently,investigating the seepage characteristics of SRM is of paramount importance.However,the existing literature mostly concentrates on a single stress state.Therefore,this study examined the characteristics of the permeability coefficient under three distinct stress states:osmotic,osmotic–uniaxial,and osmotic–triaxial pressure.The SRM samples utilized in this study were extracted from in situ fault zones and then reshaped in the laboratory.In addition,the micromechanical properties of the SRM samples were analyzed using computed tomography scanning.The findings reveal that the permeability coefficient is the highest under osmotic pressure and lowest under osmotic–triaxial pressure.The sensitivity coefficient shows a higher value when the rock block percentage ranges between 30%and 40%,but it falls below 1.0 when this percentage exceeds 50%under no confining pressure.Notably,rock block percentages of 40%and 60%represent the two peak points of the sensitivity coefficient under osmotic–triaxial pressure.However,SRM samples with a 40%rock block percentage consistently show the lowest permeability coefficient under all stress states.This study establishes that a power function can model the relationship between the permeability coefficient and osmotic pressure,while its relationship with axial pressure can be described using an exponential function.These insights are invaluable for developing water inrush prevention and control strategies in mining environments.展开更多
The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and...The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and the internal component of a landslide.Therefore,considering the strength changes of the sliding zone with seepage effects,they correspond with the actual hydrogeological circumstances.To investigate the shear behavior of sliding zone soil under various seepage pressures,24 samples were conducted by a self-developed apparatus to observe the shear strength and measure the permeability coefficients at different deformation stages.After seepage-shear tests,the composition of clay minerals and microscopic structure on the shear surface were analyzed through X-ray and scanning electron microscope(SEM)to understand the coupling effects of seepage on strength.The results revealed that the sliding zone soil exhibited strain-hardening without seepage pressure.However,the introduction of seepage caused a significant reduction in shear strength,resulting in strain-softening characterized by a three-stage process.Long-term seepage action softened clay particles and transported broken particles into effective seepage channels,causing continuous damage to the interior structure and reducing the permeability coefficient.Increased seepage pressure decreased the peak strength by disrupting occlusal and frictional forces between sliding zone soil particles,which carried away more clay particles,contributing to an overhead structure in the soil that raised the permeability coefficient and decreased residual strength.The internal friction angle was less sensitive to variations in seepage pressure than cohesion.展开更多
2'-Fucosyllactose(2'-FL)shows the potential to support intestinal health as a natural prebiotic that bridges the gap between infant formula feeding and breastfeeding.However,the effect and mechanism of 2'-...2'-Fucosyllactose(2'-FL)shows the potential to support intestinal health as a natural prebiotic that bridges the gap between infant formula feeding and breastfeeding.However,the effect and mechanism of 2'-FL in improving intestinal permeability are not clear.In this study,we constructed human microbiota-associated(HMA)mouse models by colonizing healthy infant feces in mice with antibiotic-depleted intestinal microbiota.The protective effect of 2'-FL on the intestinal permeability was explored using the HMA mouse models,and the combination of metagenomics was used to analyze the possible mechanisms by which the microorganisms reduced the intestinal permeability.The results showed that 2'-FL decreased the concentration of markers of intestinal permeability(enterotoxin and diamine oxidase(DAO))and increased the expression levels of tight junctions(occludin and claudin).Metagenomics revealed the enrichment of Bifidobacterium and increased the expression of glycoside hydrolases(GHs),including GH31,GH28,and GH5.In conclusion,2'-FL strengthened intestinal permeability function by improving microbiota composition to control the translocation of harmful substance.展开更多
Understanding the storage mechanisms in CO_(2)flooding is crucial,as many carbon capture,utilization,and storage(CCUS)projects are related to enhanced oil recovery(EOR).CO_(2)storage in reservoirs across large timesca...Understanding the storage mechanisms in CO_(2)flooding is crucial,as many carbon capture,utilization,and storage(CCUS)projects are related to enhanced oil recovery(EOR).CO_(2)storage in reservoirs across large timescales undergoes the two storage stages of oil displacement and well shut-in,which cover mul-tiple replacement processes of injection-production synchronization,injection only with no production,and injection-production stoppage.Because the controlling mechanism of CO_(2)storage in different stages is unknown,the evolution of CO_(2)storage mechanisms over large timescales is not understood.A math-ematical model for the evaluation of CO_(2)storage,including stratigraphic,residual,solubility,and mineral trapping in low-permeability tight sandstone reservoirs,was established using experimental and theoret-ical analyses.Based on a detailed geological model of the Huaziping Oilfield,calibrated with reservoir permeability and fracture characteristic parameters obtained from well test results,a dynamic simulation of CO_(2)storage for the entire reservoir life cycle under two scenarios of continuous injection and water-gas alternation were considered.The results show that CO_(2)storage exhibits the significant stage charac-teristics of complete storage,dynamic storage,and stable storage.The CO_(2)storage capacity and storage rate under the continuous gas injection scenario(scenario 1)were 6.34×10^(4)t and 61%,while those under the water-gas alternation scenario(scenario 2)were 4.62×10^(4)t and 46%.The proportions of stor-age capacity under scenarios 1 and 2 for structural or stratigraphic,residual,solubility,and mineral trap-ping were 33.36%,33.96%,32.43%,and 0.25%;and 15.09%,38.65%,45.77%,and 0.49%,respectively.The evolution of the CO_(2)storage mechanism showed an overall trend:stratigraphic and residual trapping first increased and then decreased,whereas solubility trapping gradually decreased,and mineral trapping continuously increased.Based on these results,an evolution diagram of the CO_(2)storage mechanism of low-permeability tight sandstone reservoirs across large timescales was established.展开更多
In subsurface projects where the host rock is of low permeability,fractures play an important role in fluid circulation.Both the geometrical and mechanical properties of the fracture are relevant to the permeability o...In subsurface projects where the host rock is of low permeability,fractures play an important role in fluid circulation.Both the geometrical and mechanical properties of the fracture are relevant to the permeability of the fracture.To evaluate this relationship,we numerically generated self-affine fractures reproducing the scaling relationship of the power spectral density(PSD)of the measured fracture surfaces.The fractures were then subjected to a uniform and stepwise increase in normal stress.A fast Fourier transform(FFT)-based elastic contact model was used to simulate the fracture closure.The evolution of fracture contact area,fracture closure,and fracture normal stiffness were determined throughout the whole process.In addition,the fracture permeability at each step was calculated by the local cubic law(LCL).The influences of roughness exponent and correlation length on the fracture hydraulic and mechanical behaviors were investigated.Based on the power law of normal stiffness versus normal stress,the corrected cubic law and the linear relationship between fracture closure and mechanical aperture were obtained from numerical modeling of a set of fractures.Then,we derived a fracture normal stiffness-permeability equation which incorporates fracture geometric parameters such as the root-mean-square(RMS),roughness exponent,and correlation length,which can describe the fracture flow under an effective medium regime and a percolation regime.Finally,we interpreted the flow transition behavior from the effective medium regime to the percolation regime during fracture closure with the established stiffness-permeability function.展开更多
In view of the increased focus on“green”and sustainable development and compliance with the national strategy for“carbon peak and carbon neutrality,”this study investigated the effect of replacing cement(0-20%)wit...In view of the increased focus on“green”and sustainable development and compliance with the national strategy for“carbon peak and carbon neutrality,”this study investigated the effect of replacing cement(0-20%)with limestone powder(stone powder)as a mineral admixture on the micro,meso,and macro properties of mortar.First,the applicability of stone powder was examined based on the physical filling and heat of hydration of stone powder-cement.Second,micro-meso testing methods,such as X-ray diffraction,scanning electron microscopy,thermogravimetry-differential scanning calorimetry,and nuclear magnetic resonance,were utilized to reveal the influencing mechanisms of stone powder on the microstructure of the mortar.Furthermore,the effect of stone powder on the compressive strength and gas permeability of the mortar was analyzed.Additionally,the time-dependent variations in the gas permeability and its functional relationship with the mechanical properties were determined.Finally,the correlation between the compressive strength and gas permeability with respect to the pore size of stone powder-doped mortar was established via gray-correlation analysis.The results show that an appropriate amount of stone powder(5%)can effectively improve the particle gradation,decelerate the release of the heat of hydration,increase the amount of hydration products,and improve the pore structure,thereby increasing the compressive strength and reducing the gas permeability coefficient.The gas permeability of stone powder-doped mortar was found to exhibit good time-dependent characteristics as well as a quadratic linear correlation with the compressive strength.The gray-correlation analysis results indicate that air pores exhibit the highest influence on the compressive strength and that the gas permeability coefficient is most significantly affected by large pores.展开更多
Reliable forecasting of coal seam gas production and gas injectivity(e.g.,CO_(2) or air)requires an accurate understanding of coal’s anisotropic permeability,which governs the directional flow of gas.Although the ani...Reliable forecasting of coal seam gas production and gas injectivity(e.g.,CO_(2) or air)requires an accurate understanding of coal’s anisotropic permeability,which governs the directional flow of gas.Although the anisotropic nature of coal permeability is well recognized,little attention has been paid to how this ratio evolves with changes in effective stress or with the injection of gases that have different affinities to coal.In this work,more than 600 permeability tests were conducted on eight cubic Australian coal samples using He,N_(2) and CO_(2) gases under varying effective stresses,providing a comprehensive dataset that allows the combined effects of effective stress and gas adsorption on permeability anisotropy to be robustly assessed on the same samples.The results demonstrated that all coal samples exhibited evident permeability anisotropy,with ratios ranging from 1.11 to 6.55.For the first time,quantitative relationships between the anisotropy ratio,effective stress,and initial permeability were established for each of the three injection gases,highlighting how gas adsorption and effective stress changes both anisotropic permeability magnitude and ratio.These findings provide new insights into the directional flow behavior of gases in coal seams,with implications for underground compressed air energy storage and CO_(2) sequestration.展开更多
BACKGROUND Although an association between gut microbiota and cholestatic liver disease(CLD)has been reported,the precise functional roles of these microbes in CLD pathogenesis remain largely unknown.AIM To explore th...BACKGROUND Although an association between gut microbiota and cholestatic liver disease(CLD)has been reported,the precise functional roles of these microbes in CLD pathogenesis remain largely unknown.AIM To explore the function of gut microbes in CLD pathogenesis and the effects of gut microbiota on intestinal barrier and bile acid(BA)metabolism in CLD.METHODS Male C57BL/6J mice were fed a 0.05%3,5-diethoxycarbonyl-1,4-dihydrocollidine diet for 2 weeks to induce CLD.The sterile liver tissues of mice were then meticulously harvested,and bacteria in homogenates were identified through culture methods.Furthermore,16S ribosomal DNA sequencing was employed to analyze sterile liver samples collected from eight patients with primary biliary cholangitis(PBC)and three control individuals with hepatic cysts.The functional roles of the identified bacteria in CLD pathogenesis were assessed through microbiota transfer experiments,involving the evaluation of changes in intestinal permeability and BA dynamics.RESULTS Ligilactobacillus murinus(L.murinus)and Lactococcus garvieae(L.garvieae)were isolated from the bacterial culture of livers from CLD mice.L.murinus was prevalently detected in PBC patients and controls,whereas L.garvieae was detected only in patients with PBC but not in controls.Mice inoculated with L.garvieae exhibited increased susceptibility to experimental CLD,with both in vitro and in vivo indicating that L.garvieae disrupted the intestinal barrier function by down-regulating the expression of occludin and zonula occludens-1.Moreover,L.garvieae administration significantly upregulated the expression of the apical sodium-dependent BA transporter in the terminal ileum and increased serum BA levels.CONCLUSION L.garvieae contributes to excessive BA-induced hepatobiliary injury and liver fibrosis by increasing intestinal permeability and enhancing BA reabsorption.展开更多
During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomen...During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomenon,a numerical simulation framework of the finite volume method and transient embedded discrete fracture model is proposed to establish a new constitutive model that links poroelastoplastic deformation,adsorption-induced swelling,and aperture compression.From this model,anisotropic permeability tensors were derived to further achieve the simulation of coevolution.Meanwhile,our permeability model was verified against the measured permeability data,and the history match of the numerical model showed better results where the mismatch was less than 5%.The results indicate that(1)the long-term permeability evolution clearly showed the competitive effects of multiple deformation mechanisms,which involves three stages:compaction-dominated decline,adsorption-dominated rebound,and creep-controlled loss.(2)The increased number of compressible cleats/fractures accelerated the initial permeability decline,while the increased desorption-induced strain promoted faster rebound and enhancement and higher viscosity coefficients enhanced the creep effect,which led to significant long-term permeability loss.(3)Massive hydraulic fracturing created a larger drainage area,accelerating methane desorption and causing sharp permeability rebound with reduced residual gas,which shows that the permeability remained higher than the initial values even after the extensive extraction via the fractured horizontal wells.The permeability evolution mechanisms displayed varying properties,such as coal rank and burial depth,and distinct characteristics.A precise understanding of multiple competitive stress effects is crucial for optimizing coalbed methane extraction techniques and improving recovery efficiency.展开更多
Based on the waterflooding development in carbonate reservoirs in the Middle East,this study analyzes the geological characteristics and waterflooding behaviors/patterns of different types of high permeability zones(H...Based on the waterflooding development in carbonate reservoirs in the Middle East,this study analyzes the geological characteristics and waterflooding behaviors/patterns of different types of high permeability zones(HPZs),and proposes rational waterflooding strategies and modes.Four types of HPZs,i.e.sedimentation-dominated,sedimentation-diagenesis coupling,biogenic and composite,are identified in the carbonate reservoirs in the Middle East.Based on their distribution patterns,flow mechanisms,and waterflooding behaviors/patterns,five waterflooding modes are established:(1)the mode with stepwise-infilled areal vertical well pattern,for composite HFZs in patchy distribution;(2)the mode with regular row vertical well pattern for TypeⅠchannel“network”HFZs(with dominant water flow pathways at the base),and the mode with irregular differentiated vertical well pattern for TypeⅡchannel“network”HFZs(where multi-stage superimposition leads to“layered flooding”),for sedimentation-diagenesis coupling HFZs;(3)the mode with row horizontal wells through bottom injection and top production,for biogenic HFZs characterized by thin,contiguous distribution and rapid advancing of injected water along a工-shaped path;and(4)the mode with progressive waterflooding through edge water injection via vertical well and oil production via horizontal well,for sedimentation-dominated HFZs characterized by thick,contiguous distribution and flood first in upper anti-rhythmic reservoirs.Development practices demonstrate that the proposed waterflooding modes are efficient in the highly heterogeneous carbonate reservoirs in the Middle East,with balanced employment of reserves in the adjacent reservoirs and enhanced oil recovery.展开更多
BACKGROUND Inflammatory bowel disease(IBD)is a group of chronic,inflammatory disorders that include Crohn’s disease and ulcerative colitis.IBD arises from the interaction of various environmental and genetic factors....BACKGROUND Inflammatory bowel disease(IBD)is a group of chronic,inflammatory disorders that include Crohn’s disease and ulcerative colitis.IBD arises from the interaction of various environmental and genetic factors.Altered gut permeability and mitochondrial stress in the colonic mucosa are two mechanisms previously implicated in IBD pathogenesis.We have previously demonstrated activation of the mitochondrial unfolded protein response(UPRmt)in the colonic mucosa of IBD patients and linked this activation to pro-inflammatory signaling.Growth differentiation factor 15(GDF15)is an important downstream mediator of the UPRmt.AIM To investigate whether GDF15 has a role in IBD and how GDF15 impacts colonic epithelium.METHODS Circulating levels of GDF15 were assessed in plasma samples from IBD patients and healthy controls using an enzyme-linked immunosorbent assay.To study the effects of GDF15 on the colonic mucosa,we employed two different in vitro culture models:Colonic organoids and T84 cells.RESULTS We found that circulating GDF15 Levels were elevated in IBD patients and correlated with markers of inflammation(C-reactive protein)and intestinal permeability[haptoglobin and lipopolysaccharide-binding protein(LBP)].Additionally,we demonstrated that GDF15 alters the intestinal barrier and increases permeability by decreasing the levels of zonula occludens 1 and claudin 1,critical components of tight junctions.Thus,our findings confirm previous reports of increased circulating GDF15 levels in IBD patients and the activation of UPR^(mt).CONCLUSION In the present study,we describe a novel mechanism in IBD pathophysiology,linking mitochondrial stress to the disruption of the intestinal barrier and increased intestinal permeability.展开更多
In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa...In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields.展开更多
Streptococcus suis serotype 2(SS2)is an emerging zoonotic pathogen that causes meningitis in humans and pigs.This pathogen generates substantial economic losses in the swine industry while posing a significant threat ...Streptococcus suis serotype 2(SS2)is an emerging zoonotic pathogen that causes meningitis in humans and pigs.This pathogen generates substantial economic losses in the swine industry while posing a significant threat to public health security.The mechanisms through which SS2 penetrates the brain and induces meningitis remain incompletely understood.This study examines the role and mechanism of SS2 collagenase-like protease(Clp)in facilitating bacterial passage across the blood-brain barrier(BBB).The research demonstrates that SS2 Clp enhanced virulence and tissue colonization while promoting BBB degradation in mice.The Δclp mutant exhibited reduced ability to traverse human brain microvascular endothelial(hCMEC/D3)cell monolayers compared to wild-type SS2,while the addition of recombinant protein rClp increased permeability.Furthermore,rClp significantly enhanced SS2 adhesion to hCMEC/D3,suppressed the expression of intercellular tight junction proteins ZO-1,Occludin,and Claudin-5 independent of its enzyme activity,and triggered hCMEC/D3 apoptosis through cell receptor ligand apoptosis and mitochondrial apoptosis pathways,partially dependent on its enzyme activity,leading to BBB disruption and enhanced permeability.Additionally,Clp enhanced the infiltration of macrophages(F4/80+),monocytes(F4/80-Ly6C+),and neutrophils(Ly6G+)into the brain following SS2 infection.These findings establish that SS2 Clp is essential for bacterial passage across the BBB,offering a theoretical foundation for improved prevention and treatment strategies for SS2-induced meningitis.展开更多
Deep underground excavation causes considerable unloading effects,leading to a pronounced bias pressure phenomenon.The deformation and seepage characteristics of rock masses under different gas and confining pressures...Deep underground excavation causes considerable unloading effects,leading to a pronounced bias pressure phenomenon.The deformation and seepage characteristics of rock masses under different gas and confining pressures were investigated via triaxial loading and unloading seepage tests.When the influential coefficient of effective confining pressure(β)is less than 0.065,the seepage force considerably weakens the strength of fractured rock masses.Conversely,whenβis greater than 0.065,the opposite is true.Moreover,the increase in the axial load leads to an increase in the precast fracture volumetric strain,which is the main reason for the increase in fracture permeability.This effect is particularly significant during the unloading stage.Based on the test results,a method for calculating the dynamic seepage evolution of rock masses,considering the effects of rock mass damage and fracture deformation,is introduced,and the effectiveness of the calculation is validated.The entire description of the seepage under loading and unloading was accomplished.The equivalent relationship between the lateral and normal stresses on fracture surfaces ranges from 0.001 to 0.1,showing an exponential variation between the lateral stress influence coefficient on normal deformation(χ)and seepage pressure.Before the failure of the rock mass,the seepage in the fractures was in a linear laminar flow state.However,after the failure,when the gas pressure reached 2 MPa,the flow state in the fractures transitioned to nonlinear laminar flow.The results are important for predicting hazardous gas leaks during deep underground engineering excavation.展开更多
In contrast to conventional reservoirs,tight formations have more complex pore structures and significant boundary layer effect,making it difficult to determine the effective permeability.To address this,this paper fi...In contrast to conventional reservoirs,tight formations have more complex pore structures and significant boundary layer effect,making it difficult to determine the effective permeability.To address this,this paper first proposes a semi-empirical model for calculating boundary layer thickness based on dimensional analysis,using published experimental data on microcapillary flow.Furthermore,considering the non-uniform distribution of fluid viscosity in the flow channels of tight reservoirs,a theoretical model for boundary layer thickness is established based on fractal theory,and permeability predictions are conducted through Monte Carlo simulations.Finally,sensitivity analyses of various influencing parameters are performed.The results show that,compared to other fractal-based analytical models,the proposed permeability probabilistic model integrates parameters affecting fluid flow with random numbers,reflecting both the fractal and randomness characteristics of capillary size distribution.The computational results exhibit the highest consistency with experimental data.Among the factors affecting the boundary layer,in addition to certain conventional physical and mechanical parameters,different microstructure parameters significantly influence the boundary layer as well.A higher tortuosity fractal dimension results in a thicker boundary layer,while increases in pore fractal dimension,porosity,and maximum capillary size help mitigate the boundary layer effect.It is also observed that the permeability of large pores exhibits greater sensitivity to changes in various influencing parameters.Considering micro-scale flow effects,the proposed model enhances the understanding of the physical mechanisms of fluid transport in dense porous media.展开更多
Triggered seismicity is a key hazard where fluids are injected or withdrawn from the subsurface and may impact permeability. Understanding the mechanisms that control fluid injection-triggered seismicity allows its mi...Triggered seismicity is a key hazard where fluids are injected or withdrawn from the subsurface and may impact permeability. Understanding the mechanisms that control fluid injection-triggered seismicity allows its mitigation. Key controls on seismicity are defined in terms of fault and fracture strength, second-order frictional response and stability, and competing fluid-driven mechanisms for arrest. We desire to constrain maximum event magnitudes in triggered earthquakes by relating pre-existing critical stresses to fluid injection volume to explain why some recorded events are significantly larger than anticipated seismic moment thresholds. This formalism is consistent with several uncharacteristically large fluid injection-triggered earthquakes. Such methods of reactivating fractures and faults by hydraulic stimulation in shear or tensile fracturing are routinely used to create permeability in the subsurface. Microearthquakes (MEQs) generated by such stimulations can be used to diagnose permeability evolution. Although high-fidelity data sets are scarce, the EGS-Collab and Utah FORGE hydraulic stimulation field demonstration projects provide high-fidelity data sets that concurrently track permeability evolution and triggered seismicity. Machine learning deciphers the principal features of MEQs and the resulting permeability evolution that best track permeability changes – with transfer learning methods allowing robust predictions across multiple eological settings. Changes in permeability at reactivated fractures in both shear and extensional modes suggest that permeability change (Δk) scales with the seismic moment (M) of individual MEQs as Δk∝M. This scaling relation is exact at early times but degrades with successive MEQs, but provides a method for characterizing crustal permeability evolution using MEQs, alone. Importantly, we quantify for the first time the role of prestress in defining the elevated magnitude and seismic moment of fluid injection-triggered events, and demonstrate that such MEQs can also be used as diagnostic in quantifying permeability evolution in the crust.展开更多
Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensiona...Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensional(3D)benchmark model of a laboratory experiment on graywacke to examine the dynamic hydraulic fracturing process under a polyaxial stress state.In the numerical model,injection pressures after breakdown(postbreakdown)are varied to study the impact on fracture growth.The fluid pressure front and crack front are identified in the numerical model to analyze the dynamic relationship between fluid diffusion and fracture propagation.Following the hydraulic fracturing test,the polyaxial stresses are rotated to investigate the influence of the stress field rotation on the fracture slip behavior and permeability.The results show that fracture propagation guides fluid diffusion under a high postbreakdown injection pressure.The crack front runs ahead of the fluid pressure front.Under a low postbreakdown injection pressure,the fluid pressure front gradually reaches the crack front,and fluid diffusion is the main driving factor of fracture propagation.Under polyaxial stress conditions,fluid injection not only opens tensile fractures but also induces hydroshearing.When the polyaxial stress is rotated,the fracture slip direction of a fully extended fracture is consistent with the shear stress direction.The fracture slip direction of a partly extended fracture is influenced by the increase in shear stress.Normal stress affects the permeability evolution by changing the average mechanical aperture.Shear stress can induce shearing and sliding on the fracture plane,thereby increasing permeability.展开更多
文摘The physical properties of hydrocarbon reservoirs are important factors affecting the percolation ability of the reservoirs.Tight-sand reservoirs exhibit complex pore throat connectivity due to the extensive development of micro-and nano-scale pore and throat systems.Characterizing the microscopic properties of these reservoirs using nondestructive,quantitative methods serves as an important means to determine the characteristics of microscopic pores and throats in tight-sand reservoirs and the mechanism behind the influence of these characteristics on reservoir porosity and permeability.In this study,a low-permeability sandstone sample and two tight sandstone samples collected from the Ordos Basin were nondestructively tested using high-resolution nano-CT technology to quantitively characterize their microscopic pore throat structures and model them three-dimensionally(in 3D)based on CT threshold differences and gray models.A thorough analysis and comparison reveal that the three samples exhibit a certain positive correlation between their porosity and permeability but the most important factor affecting both porosity and permeability is the microscopic pore throat structure.Although the number of pores in tight sandstones shows a minor impact on their porosity,large pores(more than 20μm)contribute predominantly to porosity,suggesting that the permeability of tight sandstones is controlled primarily by large pore throats.For these samples,higher permeability corresponds to larger average throat sizes.Therefore,throats with average radii greater than 2μm can significantly improve the permeability of tight sandstones.
基金the National Natural Science Foundation of China(No.52165026)。
文摘Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recent years.However,studies on the radial-gradient design of irregular bionic scaffolds are limited.Therefore,this study aims to develop a radial-gradient structure similar to that of natural long bones,enhancing the development of bionic bone scaffolds.A novel gradient method was adopted to maintain constant porosity,control the seed site-specific distribution within the irregular porous structure,and vary the strut diameter to generate radial gradients.The irregular scaffolds were compared with four conventional scaffolds(cube,pillar BCC,vintiles,and diamond)in terms of permeability,stress concentration characteristics,and mechanical properties.The results indicate that the radial-gradient irregular porous structure boasts the widest permeability range and superior stress distribution compared to conventional scaffolds.With an elastic modulus ranging from 4.20 GPa to 22.96 GPa and a yield strength between 68.37 MPa and 149.40 MPa,it meets bone implant performance requirements and demonstrates significant application potential.
基金project was supported by the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China)(No.SKLDOG2024-ZYRC-06)Key Program of National Natural Science Foundation of China(52130401)+1 种基金National Natural Science Foundation of China(52104055,52374058)Shandong Provincial Natural Science Foundation,China(ZR2021ME171,ZR2024YQ043)。
文摘CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field.
基金State Key Research Development Program of China,Grant/Award Number:2021YFC3001301。
文摘As the first gold mine discovered at the sea in China and the only coastal gold mine currently mined there,Sanshandao Gold Mine faces unique challenges.The mine's safety is under continual threat from its faulted structure coupled with the overlying water.As the mining proceeds deeper,the risk of water inrush increases.The mine's maximum water yield reaches 15000 m3/day,which is attributable to water channels present in fault zones.Predominantly composed of soil–rock mixtures(SRM),these fault zones'seepage characteristics significantly impact water inrush risk.Consequently,investigating the seepage characteristics of SRM is of paramount importance.However,the existing literature mostly concentrates on a single stress state.Therefore,this study examined the characteristics of the permeability coefficient under three distinct stress states:osmotic,osmotic–uniaxial,and osmotic–triaxial pressure.The SRM samples utilized in this study were extracted from in situ fault zones and then reshaped in the laboratory.In addition,the micromechanical properties of the SRM samples were analyzed using computed tomography scanning.The findings reveal that the permeability coefficient is the highest under osmotic pressure and lowest under osmotic–triaxial pressure.The sensitivity coefficient shows a higher value when the rock block percentage ranges between 30%and 40%,but it falls below 1.0 when this percentage exceeds 50%under no confining pressure.Notably,rock block percentages of 40%and 60%represent the two peak points of the sensitivity coefficient under osmotic–triaxial pressure.However,SRM samples with a 40%rock block percentage consistently show the lowest permeability coefficient under all stress states.This study establishes that a power function can model the relationship between the permeability coefficient and osmotic pressure,while its relationship with axial pressure can be described using an exponential function.These insights are invaluable for developing water inrush prevention and control strategies in mining environments.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant No.42090055)the National Major Scientific Instruments and Equipment Development Projects of China (Grant No.41827808)the National Nature Science Foundation of China (Grant No.42207216).
文摘The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and the internal component of a landslide.Therefore,considering the strength changes of the sliding zone with seepage effects,they correspond with the actual hydrogeological circumstances.To investigate the shear behavior of sliding zone soil under various seepage pressures,24 samples were conducted by a self-developed apparatus to observe the shear strength and measure the permeability coefficients at different deformation stages.After seepage-shear tests,the composition of clay minerals and microscopic structure on the shear surface were analyzed through X-ray and scanning electron microscope(SEM)to understand the coupling effects of seepage on strength.The results revealed that the sliding zone soil exhibited strain-hardening without seepage pressure.However,the introduction of seepage caused a significant reduction in shear strength,resulting in strain-softening characterized by a three-stage process.Long-term seepage action softened clay particles and transported broken particles into effective seepage channels,causing continuous damage to the interior structure and reducing the permeability coefficient.Increased seepage pressure decreased the peak strength by disrupting occlusal and frictional forces between sliding zone soil particles,which carried away more clay particles,contributing to an overhead structure in the soil that raised the permeability coefficient and decreased residual strength.The internal friction angle was less sensitive to variations in seepage pressure than cohesion.
基金financially supported by the National Key Research and Development Program of China(2022YFF1100402)National Center of Technology Innovation for Dairy(2022-Open subject-11)+1 种基金Young Elite Scientist Sponsorship Program by CAST(YESS20200271)the National Natural Science Foundation of China(32101919)。
文摘2'-Fucosyllactose(2'-FL)shows the potential to support intestinal health as a natural prebiotic that bridges the gap between infant formula feeding and breastfeeding.However,the effect and mechanism of 2'-FL in improving intestinal permeability are not clear.In this study,we constructed human microbiota-associated(HMA)mouse models by colonizing healthy infant feces in mice with antibiotic-depleted intestinal microbiota.The protective effect of 2'-FL on the intestinal permeability was explored using the HMA mouse models,and the combination of metagenomics was used to analyze the possible mechanisms by which the microorganisms reduced the intestinal permeability.The results showed that 2'-FL decreased the concentration of markers of intestinal permeability(enterotoxin and diamine oxidase(DAO))and increased the expression levels of tight junctions(occludin and claudin).Metagenomics revealed the enrichment of Bifidobacterium and increased the expression of glycoside hydrolases(GHs),including GH31,GH28,and GH5.In conclusion,2'-FL strengthened intestinal permeability function by improving microbiota composition to control the translocation of harmful substance.
基金supported by the National Key Research and Development Program of China(2022YFE0206700).
文摘Understanding the storage mechanisms in CO_(2)flooding is crucial,as many carbon capture,utilization,and storage(CCUS)projects are related to enhanced oil recovery(EOR).CO_(2)storage in reservoirs across large timescales undergoes the two storage stages of oil displacement and well shut-in,which cover mul-tiple replacement processes of injection-production synchronization,injection only with no production,and injection-production stoppage.Because the controlling mechanism of CO_(2)storage in different stages is unknown,the evolution of CO_(2)storage mechanisms over large timescales is not understood.A math-ematical model for the evaluation of CO_(2)storage,including stratigraphic,residual,solubility,and mineral trapping in low-permeability tight sandstone reservoirs,was established using experimental and theoret-ical analyses.Based on a detailed geological model of the Huaziping Oilfield,calibrated with reservoir permeability and fracture characteristic parameters obtained from well test results,a dynamic simulation of CO_(2)storage for the entire reservoir life cycle under two scenarios of continuous injection and water-gas alternation were considered.The results show that CO_(2)storage exhibits the significant stage charac-teristics of complete storage,dynamic storage,and stable storage.The CO_(2)storage capacity and storage rate under the continuous gas injection scenario(scenario 1)were 6.34×10^(4)t and 61%,while those under the water-gas alternation scenario(scenario 2)were 4.62×10^(4)t and 46%.The proportions of stor-age capacity under scenarios 1 and 2 for structural or stratigraphic,residual,solubility,and mineral trap-ping were 33.36%,33.96%,32.43%,and 0.25%;and 15.09%,38.65%,45.77%,and 0.49%,respectively.The evolution of the CO_(2)storage mechanism showed an overall trend:stratigraphic and residual trapping first increased and then decreased,whereas solubility trapping gradually decreased,and mineral trapping continuously increased.Based on these results,an evolution diagram of the CO_(2)storage mechanism of low-permeability tight sandstone reservoirs across large timescales was established.
基金supported by the China Postdoctoral Science Foundation Funded Project(Grant No.2023M740385)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20233326)the support by the Helmholtz Association's Initiative and Networking Fund for the Helmholtz Young Investigator Group ARES(Contract No.VH-NG-1516).
文摘In subsurface projects where the host rock is of low permeability,fractures play an important role in fluid circulation.Both the geometrical and mechanical properties of the fracture are relevant to the permeability of the fracture.To evaluate this relationship,we numerically generated self-affine fractures reproducing the scaling relationship of the power spectral density(PSD)of the measured fracture surfaces.The fractures were then subjected to a uniform and stepwise increase in normal stress.A fast Fourier transform(FFT)-based elastic contact model was used to simulate the fracture closure.The evolution of fracture contact area,fracture closure,and fracture normal stiffness were determined throughout the whole process.In addition,the fracture permeability at each step was calculated by the local cubic law(LCL).The influences of roughness exponent and correlation length on the fracture hydraulic and mechanical behaviors were investigated.Based on the power law of normal stiffness versus normal stress,the corrected cubic law and the linear relationship between fracture closure and mechanical aperture were obtained from numerical modeling of a set of fractures.Then,we derived a fracture normal stiffness-permeability equation which incorporates fracture geometric parameters such as the root-mean-square(RMS),roughness exponent,and correlation length,which can describe the fracture flow under an effective medium regime and a percolation regime.Finally,we interpreted the flow transition behavior from the effective medium regime to the percolation regime during fracture closure with the established stiffness-permeability function.
基金Funded by the National Natural Science Foundation of China project(Nos.52108219 and U21A20150)the Lanzhou University of Technology Hongliu Outstanding Young Talent Program,China(No.04-062407)the Research on Quality Control Technology of High-performance Concrete Prepared by Manufactured Sand(No.2020Y21)。
文摘In view of the increased focus on“green”and sustainable development and compliance with the national strategy for“carbon peak and carbon neutrality,”this study investigated the effect of replacing cement(0-20%)with limestone powder(stone powder)as a mineral admixture on the micro,meso,and macro properties of mortar.First,the applicability of stone powder was examined based on the physical filling and heat of hydration of stone powder-cement.Second,micro-meso testing methods,such as X-ray diffraction,scanning electron microscopy,thermogravimetry-differential scanning calorimetry,and nuclear magnetic resonance,were utilized to reveal the influencing mechanisms of stone powder on the microstructure of the mortar.Furthermore,the effect of stone powder on the compressive strength and gas permeability of the mortar was analyzed.Additionally,the time-dependent variations in the gas permeability and its functional relationship with the mechanical properties were determined.Finally,the correlation between the compressive strength and gas permeability with respect to the pore size of stone powder-doped mortar was established via gray-correlation analysis.The results show that an appropriate amount of stone powder(5%)can effectively improve the particle gradation,decelerate the release of the heat of hydration,increase the amount of hydration products,and improve the pore structure,thereby increasing the compressive strength and reducing the gas permeability coefficient.The gas permeability of stone powder-doped mortar was found to exhibit good time-dependent characteristics as well as a quadratic linear correlation with the compressive strength.The gray-correlation analysis results indicate that air pores exhibit the highest influence on the compressive strength and that the gas permeability coefficient is most significantly affected by large pores.
基金funded by industry members APLNG,Arrow Energy,and Santos through The Gas and Energy Transition Research Centre in The University of Queensland.
文摘Reliable forecasting of coal seam gas production and gas injectivity(e.g.,CO_(2) or air)requires an accurate understanding of coal’s anisotropic permeability,which governs the directional flow of gas.Although the anisotropic nature of coal permeability is well recognized,little attention has been paid to how this ratio evolves with changes in effective stress or with the injection of gases that have different affinities to coal.In this work,more than 600 permeability tests were conducted on eight cubic Australian coal samples using He,N_(2) and CO_(2) gases under varying effective stresses,providing a comprehensive dataset that allows the combined effects of effective stress and gas adsorption on permeability anisotropy to be robustly assessed on the same samples.The results demonstrated that all coal samples exhibited evident permeability anisotropy,with ratios ranging from 1.11 to 6.55.For the first time,quantitative relationships between the anisotropy ratio,effective stress,and initial permeability were established for each of the three injection gases,highlighting how gas adsorption and effective stress changes both anisotropic permeability magnitude and ratio.These findings provide new insights into the directional flow behavior of gases in coal seams,with implications for underground compressed air energy storage and CO_(2) sequestration.
基金Supported by Tianjin Health Research Project,No.TJWJ2024QN005Beijing iGandan Public Welfare Foundation Artificial Liver Special Fund,No.iGandanF-1082024-RGG122.
文摘BACKGROUND Although an association between gut microbiota and cholestatic liver disease(CLD)has been reported,the precise functional roles of these microbes in CLD pathogenesis remain largely unknown.AIM To explore the function of gut microbes in CLD pathogenesis and the effects of gut microbiota on intestinal barrier and bile acid(BA)metabolism in CLD.METHODS Male C57BL/6J mice were fed a 0.05%3,5-diethoxycarbonyl-1,4-dihydrocollidine diet for 2 weeks to induce CLD.The sterile liver tissues of mice were then meticulously harvested,and bacteria in homogenates were identified through culture methods.Furthermore,16S ribosomal DNA sequencing was employed to analyze sterile liver samples collected from eight patients with primary biliary cholangitis(PBC)and three control individuals with hepatic cysts.The functional roles of the identified bacteria in CLD pathogenesis were assessed through microbiota transfer experiments,involving the evaluation of changes in intestinal permeability and BA dynamics.RESULTS Ligilactobacillus murinus(L.murinus)and Lactococcus garvieae(L.garvieae)were isolated from the bacterial culture of livers from CLD mice.L.murinus was prevalently detected in PBC patients and controls,whereas L.garvieae was detected only in patients with PBC but not in controls.Mice inoculated with L.garvieae exhibited increased susceptibility to experimental CLD,with both in vitro and in vivo indicating that L.garvieae disrupted the intestinal barrier function by down-regulating the expression of occludin and zonula occludens-1.Moreover,L.garvieae administration significantly upregulated the expression of the apical sodium-dependent BA transporter in the terminal ileum and increased serum BA levels.CONCLUSION L.garvieae contributes to excessive BA-induced hepatobiliary injury and liver fibrosis by increasing intestinal permeability and enhancing BA reabsorption.
基金support of the National Natural Science Foundation of China(U23B6004 and 52404045)the CAST Young Talent Support Program,Doctoral Student Special Project.
文摘During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomenon,a numerical simulation framework of the finite volume method and transient embedded discrete fracture model is proposed to establish a new constitutive model that links poroelastoplastic deformation,adsorption-induced swelling,and aperture compression.From this model,anisotropic permeability tensors were derived to further achieve the simulation of coevolution.Meanwhile,our permeability model was verified against the measured permeability data,and the history match of the numerical model showed better results where the mismatch was less than 5%.The results indicate that(1)the long-term permeability evolution clearly showed the competitive effects of multiple deformation mechanisms,which involves three stages:compaction-dominated decline,adsorption-dominated rebound,and creep-controlled loss.(2)The increased number of compressible cleats/fractures accelerated the initial permeability decline,while the increased desorption-induced strain promoted faster rebound and enhancement and higher viscosity coefficients enhanced the creep effect,which led to significant long-term permeability loss.(3)Massive hydraulic fracturing created a larger drainage area,accelerating methane desorption and causing sharp permeability rebound with reduced residual gas,which shows that the permeability remained higher than the initial values even after the extensive extraction via the fractured horizontal wells.The permeability evolution mechanisms displayed varying properties,such as coal rank and burial depth,and distinct characteristics.A precise understanding of multiple competitive stress effects is crucial for optimizing coalbed methane extraction techniques and improving recovery efficiency.
基金Supported by the China National Petroleum Corporation Major Science and Technology Project(2023ZZ19-01,2023ZZ19-07).
文摘Based on the waterflooding development in carbonate reservoirs in the Middle East,this study analyzes the geological characteristics and waterflooding behaviors/patterns of different types of high permeability zones(HPZs),and proposes rational waterflooding strategies and modes.Four types of HPZs,i.e.sedimentation-dominated,sedimentation-diagenesis coupling,biogenic and composite,are identified in the carbonate reservoirs in the Middle East.Based on their distribution patterns,flow mechanisms,and waterflooding behaviors/patterns,five waterflooding modes are established:(1)the mode with stepwise-infilled areal vertical well pattern,for composite HFZs in patchy distribution;(2)the mode with regular row vertical well pattern for TypeⅠchannel“network”HFZs(with dominant water flow pathways at the base),and the mode with irregular differentiated vertical well pattern for TypeⅡchannel“network”HFZs(where multi-stage superimposition leads to“layered flooding”),for sedimentation-diagenesis coupling HFZs;(3)the mode with row horizontal wells through bottom injection and top production,for biogenic HFZs characterized by thin,contiguous distribution and rapid advancing of injected water along a工-shaped path;and(4)the mode with progressive waterflooding through edge water injection via vertical well and oil production via horizontal well,for sedimentation-dominated HFZs characterized by thick,contiguous distribution and flood first in upper anti-rhythmic reservoirs.Development practices demonstrate that the proposed waterflooding modes are efficient in the highly heterogeneous carbonate reservoirs in the Middle East,with balanced employment of reserves in the adjacent reservoirs and enhanced oil recovery.
基金Supported by the Ministerio de Ciencia,Innovación y Universidades(Spain),No.IJCI-2017-31466the Consejería de Salud y Familia de la Junta de Andalucía,Spain,No.PI-0244-2021+12 种基金No.PI-0245-2021No.PI-0131-2020FEDER funds/Consejería de Economía y Conocimiento,Empresas y Universidad,de la Junta de Andalucía(“A way to make Europe”)(“Andalucía se mueve con Europa”,University of Málaga,No.UMA20-FEDERJA-081No.UMA20-FEDERJA-074the Consejería de Empleo,Empresa y Trabajo Autónomo de la Junta de Andalucía(Investigo program),No.MA-INV-0031-2022-04Sara Borrell grant from the Instituto de Salud Carlos III(ISCIII),No.CD23/00117PFIS contract from the ISCIII,No.FI23-00016Juan Rodés contract from the ISCIII,No.JR22/00067the Miguel Servet program from the ISCIII,No.CP23/00088the Nicolas Monardes Program from the Consejería de Salud de la Junta de Andalucía(Spain),No.RC-0005-2020the Consejería Salud y Familias-Junta de Andalucía,No.RH-0078-2021the University of Málaga(Incorporación de Doctores del II Plan Propio de Investigación,Transferencia y Divulgación Científica de la Universidad de Málaga en 2023)the Miguel Servet program from ISCIII,Spain,No.CP22/00050.
文摘BACKGROUND Inflammatory bowel disease(IBD)is a group of chronic,inflammatory disorders that include Crohn’s disease and ulcerative colitis.IBD arises from the interaction of various environmental and genetic factors.Altered gut permeability and mitochondrial stress in the colonic mucosa are two mechanisms previously implicated in IBD pathogenesis.We have previously demonstrated activation of the mitochondrial unfolded protein response(UPRmt)in the colonic mucosa of IBD patients and linked this activation to pro-inflammatory signaling.Growth differentiation factor 15(GDF15)is an important downstream mediator of the UPRmt.AIM To investigate whether GDF15 has a role in IBD and how GDF15 impacts colonic epithelium.METHODS Circulating levels of GDF15 were assessed in plasma samples from IBD patients and healthy controls using an enzyme-linked immunosorbent assay.To study the effects of GDF15 on the colonic mucosa,we employed two different in vitro culture models:Colonic organoids and T84 cells.RESULTS We found that circulating GDF15 Levels were elevated in IBD patients and correlated with markers of inflammation(C-reactive protein)and intestinal permeability[haptoglobin and lipopolysaccharide-binding protein(LBP)].Additionally,we demonstrated that GDF15 alters the intestinal barrier and increases permeability by decreasing the levels of zonula occludens 1 and claudin 1,critical components of tight junctions.Thus,our findings confirm previous reports of increased circulating GDF15 levels in IBD patients and the activation of UPR^(mt).CONCLUSION In the present study,we describe a novel mechanism in IBD pathophysiology,linking mitochondrial stress to the disruption of the intestinal barrier and increased intestinal permeability.
基金Projects(12072102,12102129)supported by the National Natural Science Foundation of ChinaProject(DM2022B01)supported by the Key Laboratory of Safe Mining of Deep Metal Mines,Ministry of Education,ChinaProject(JZ-008)supported by the Six Talent Peaks Project in Jiangsu Province,China。
文摘In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields.
基金supported by the National Key Research and Development Program of China(2021FYD1800405)the National Natural Science Foundation of China(32072823).
文摘Streptococcus suis serotype 2(SS2)is an emerging zoonotic pathogen that causes meningitis in humans and pigs.This pathogen generates substantial economic losses in the swine industry while posing a significant threat to public health security.The mechanisms through which SS2 penetrates the brain and induces meningitis remain incompletely understood.This study examines the role and mechanism of SS2 collagenase-like protease(Clp)in facilitating bacterial passage across the blood-brain barrier(BBB).The research demonstrates that SS2 Clp enhanced virulence and tissue colonization while promoting BBB degradation in mice.The Δclp mutant exhibited reduced ability to traverse human brain microvascular endothelial(hCMEC/D3)cell monolayers compared to wild-type SS2,while the addition of recombinant protein rClp increased permeability.Furthermore,rClp significantly enhanced SS2 adhesion to hCMEC/D3,suppressed the expression of intercellular tight junction proteins ZO-1,Occludin,and Claudin-5 independent of its enzyme activity,and triggered hCMEC/D3 apoptosis through cell receptor ligand apoptosis and mitochondrial apoptosis pathways,partially dependent on its enzyme activity,leading to BBB disruption and enhanced permeability.Additionally,Clp enhanced the infiltration of macrophages(F4/80+),monocytes(F4/80-Ly6C+),and neutrophils(Ly6G+)into the brain following SS2 infection.These findings establish that SS2 Clp is essential for bacterial passage across the BBB,offering a theoretical foundation for improved prevention and treatment strategies for SS2-induced meningitis.
基金supported by the National Natural Science Foundation of China(Grant No.52374079)Chongqing Graduate Research Innovation Project(Grant No.CYB22032)Chongqing Talents and Outstanding Scientists Project(Grant No.cstc2024ycjhbgzxm0032).
文摘Deep underground excavation causes considerable unloading effects,leading to a pronounced bias pressure phenomenon.The deformation and seepage characteristics of rock masses under different gas and confining pressures were investigated via triaxial loading and unloading seepage tests.When the influential coefficient of effective confining pressure(β)is less than 0.065,the seepage force considerably weakens the strength of fractured rock masses.Conversely,whenβis greater than 0.065,the opposite is true.Moreover,the increase in the axial load leads to an increase in the precast fracture volumetric strain,which is the main reason for the increase in fracture permeability.This effect is particularly significant during the unloading stage.Based on the test results,a method for calculating the dynamic seepage evolution of rock masses,considering the effects of rock mass damage and fracture deformation,is introduced,and the effectiveness of the calculation is validated.The entire description of the seepage under loading and unloading was accomplished.The equivalent relationship between the lateral and normal stresses on fracture surfaces ranges from 0.001 to 0.1,showing an exponential variation between the lateral stress influence coefficient on normal deformation(χ)and seepage pressure.Before the failure of the rock mass,the seepage in the fractures was in a linear laminar flow state.However,after the failure,when the gas pressure reached 2 MPa,the flow state in the fractures transitioned to nonlinear laminar flow.The results are important for predicting hazardous gas leaks during deep underground engineering excavation.
基金supported by the Hebei Provincial Natural Science Foundation of China(No.D2023402012)the Major Science and Technology Project of China National Petroleum Corporation(No.2024DJ87).
文摘In contrast to conventional reservoirs,tight formations have more complex pore structures and significant boundary layer effect,making it difficult to determine the effective permeability.To address this,this paper first proposes a semi-empirical model for calculating boundary layer thickness based on dimensional analysis,using published experimental data on microcapillary flow.Furthermore,considering the non-uniform distribution of fluid viscosity in the flow channels of tight reservoirs,a theoretical model for boundary layer thickness is established based on fractal theory,and permeability predictions are conducted through Monte Carlo simulations.Finally,sensitivity analyses of various influencing parameters are performed.The results show that,compared to other fractal-based analytical models,the proposed permeability probabilistic model integrates parameters affecting fluid flow with random numbers,reflecting both the fractal and randomness characteristics of capillary size distribution.The computational results exhibit the highest consistency with experimental data.Among the factors affecting the boundary layer,in addition to certain conventional physical and mechanical parameters,different microstructure parameters significantly influence the boundary layer as well.A higher tortuosity fractal dimension results in a thicker boundary layer,while increases in pore fractal dimension,porosity,and maximum capillary size help mitigate the boundary layer effect.It is also observed that the permeability of large pores exhibits greater sensitivity to changes in various influencing parameters.Considering micro-scale flow effects,the proposed model enhances the understanding of the physical mechanisms of fluid transport in dense porous media.
基金Derek Elsworth acknowledges the support from a Gledden Visiting Fellowship from the Institute of Advanced Studies at the University of Western Australia,Australia,and the G.Albert Shoemaker Endowment at Pennsylvania State University,USA.
文摘Triggered seismicity is a key hazard where fluids are injected or withdrawn from the subsurface and may impact permeability. Understanding the mechanisms that control fluid injection-triggered seismicity allows its mitigation. Key controls on seismicity are defined in terms of fault and fracture strength, second-order frictional response and stability, and competing fluid-driven mechanisms for arrest. We desire to constrain maximum event magnitudes in triggered earthquakes by relating pre-existing critical stresses to fluid injection volume to explain why some recorded events are significantly larger than anticipated seismic moment thresholds. This formalism is consistent with several uncharacteristically large fluid injection-triggered earthquakes. Such methods of reactivating fractures and faults by hydraulic stimulation in shear or tensile fracturing are routinely used to create permeability in the subsurface. Microearthquakes (MEQs) generated by such stimulations can be used to diagnose permeability evolution. Although high-fidelity data sets are scarce, the EGS-Collab and Utah FORGE hydraulic stimulation field demonstration projects provide high-fidelity data sets that concurrently track permeability evolution and triggered seismicity. Machine learning deciphers the principal features of MEQs and the resulting permeability evolution that best track permeability changes – with transfer learning methods allowing robust predictions across multiple eological settings. Changes in permeability at reactivated fractures in both shear and extensional modes suggest that permeability change (Δk) scales with the seismic moment (M) of individual MEQs as Δk∝M. This scaling relation is exact at early times but degrades with successive MEQs, but provides a method for characterizing crustal permeability evolution using MEQs, alone. Importantly, we quantify for the first time the role of prestress in defining the elevated magnitude and seismic moment of fluid injection-triggered events, and demonstrate that such MEQs can also be used as diagnostic in quantifying permeability evolution in the crust.
基金supported by the Knowledge Innovation Program of Wuhan-Basic Research (Grant No.2022010801010159)support from the Helmholtz Association's Initiative and Networking Fund for the Helmholtz Young Investigator Group ARES (Contract number VH-NG-1516)supported by the Swedish Radiation Safety Authority (Project SSM2020-2758).
文摘Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensional(3D)benchmark model of a laboratory experiment on graywacke to examine the dynamic hydraulic fracturing process under a polyaxial stress state.In the numerical model,injection pressures after breakdown(postbreakdown)are varied to study the impact on fracture growth.The fluid pressure front and crack front are identified in the numerical model to analyze the dynamic relationship between fluid diffusion and fracture propagation.Following the hydraulic fracturing test,the polyaxial stresses are rotated to investigate the influence of the stress field rotation on the fracture slip behavior and permeability.The results show that fracture propagation guides fluid diffusion under a high postbreakdown injection pressure.The crack front runs ahead of the fluid pressure front.Under a low postbreakdown injection pressure,the fluid pressure front gradually reaches the crack front,and fluid diffusion is the main driving factor of fracture propagation.Under polyaxial stress conditions,fluid injection not only opens tensile fractures but also induces hydroshearing.When the polyaxial stress is rotated,the fracture slip direction of a fully extended fracture is consistent with the shear stress direction.The fracture slip direction of a partly extended fracture is influenced by the increase in shear stress.Normal stress affects the permeability evolution by changing the average mechanical aperture.Shear stress can induce shearing and sliding on the fracture plane,thereby increasing permeability.