During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomen...During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomenon,a numerical simulation framework of the finite volume method and transient embedded discrete fracture model is proposed to establish a new constitutive model that links poroelastoplastic deformation,adsorption-induced swelling,and aperture compression.From this model,anisotropic permeability tensors were derived to further achieve the simulation of coevolution.Meanwhile,our permeability model was verified against the measured permeability data,and the history match of the numerical model showed better results where the mismatch was less than 5%.The results indicate that(1)the long-term permeability evolution clearly showed the competitive effects of multiple deformation mechanisms,which involves three stages:compaction-dominated decline,adsorption-dominated rebound,and creep-controlled loss.(2)The increased number of compressible cleats/fractures accelerated the initial permeability decline,while the increased desorption-induced strain promoted faster rebound and enhancement and higher viscosity coefficients enhanced the creep effect,which led to significant long-term permeability loss.(3)Massive hydraulic fracturing created a larger drainage area,accelerating methane desorption and causing sharp permeability rebound with reduced residual gas,which shows that the permeability remained higher than the initial values even after the extensive extraction via the fractured horizontal wells.The permeability evolution mechanisms displayed varying properties,such as coal rank and burial depth,and distinct characteristics.A precise understanding of multiple competitive stress effects is crucial for optimizing coalbed methane extraction techniques and improving recovery efficiency.展开更多
Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensiona...Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensional(3D)benchmark model of a laboratory experiment on graywacke to examine the dynamic hydraulic fracturing process under a polyaxial stress state.In the numerical model,injection pressures after breakdown(postbreakdown)are varied to study the impact on fracture growth.The fluid pressure front and crack front are identified in the numerical model to analyze the dynamic relationship between fluid diffusion and fracture propagation.Following the hydraulic fracturing test,the polyaxial stresses are rotated to investigate the influence of the stress field rotation on the fracture slip behavior and permeability.The results show that fracture propagation guides fluid diffusion under a high postbreakdown injection pressure.The crack front runs ahead of the fluid pressure front.Under a low postbreakdown injection pressure,the fluid pressure front gradually reaches the crack front,and fluid diffusion is the main driving factor of fracture propagation.Under polyaxial stress conditions,fluid injection not only opens tensile fractures but also induces hydroshearing.When the polyaxial stress is rotated,the fracture slip direction of a fully extended fracture is consistent with the shear stress direction.The fracture slip direction of a partly extended fracture is influenced by the increase in shear stress.Normal stress affects the permeability evolution by changing the average mechanical aperture.Shear stress can induce shearing and sliding on the fracture plane,thereby increasing permeability.展开更多
In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa...In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields.展开更多
Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to ex...Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to explore deformation characteristics and permeability properties and provide some parameters to character the rock under unloading conditions.A series of triaxial tests with permeability and acoustic emission signal measurement were conducted under the path of confining pressure unloading prior to the peak stress.Deformation behavior and permeability evolution in the whole stress–strain process based on these experimental results were analyzed in detail.Results demonstrate that,under the confining pressure unloading conditions,a good correspondence relationship among the stress–axial strain curve,permeability–axial strain curve and acoustic emission activity pattern was obtained.After the confining pressure was unloaded,the radial strain grew much faster than the axial strain,which induced the volumetric strain growing rapidly.All failures under confining pressure unloading conditions featured brittle shear failure with a single macro shear rupture surface.With the decrease in deformation modulus during the confining pressure unloading process,the damage variable gradually increases,indicating that confining pressure unloading was a process of damage accumulation and strength degradation.From the entire loading and unloading process,there was a certain positive correlation between the permeability and volumetric strain.展开更多
Triaxial creep tests were carried out under seepage pressure by using rock servo-controlled triaxial rheology testing equipment. Based on experimental results, rock rheological properties influenced by seepage-stress ...Triaxial creep tests were carried out under seepage pressure by using rock servo-controlled triaxial rheology testing equipment. Based on experimental results, rock rheological properties influenced by seepage-stress coupling were studied, and variations of seepage rate with time in complete creep processes of rock were analyzed. It is shown that, when the applied stress is less than failure stress level, the creep deformation is not obvious, and its main form is steady-state creep. When applied stress level is greater than or less than but close to fracture stress, it is easier to see the increase of creep deformation and the more obvious accelerative creep characteristics. The circumferential creep deformation is obviously higher than the axial creep deformation. At the stage of steady-state creep, the average of seepage flow rate is about 4.7×10-9 rn/s at confining pressure (tr3) of 2 MPa, and is about 3.9×10-9 m/s at a3 of 6 MPa. It is seen that the seepage flow rate at or3 of 2 MPa in this case is obviously larger than that at tr3 of 6 MPa. At the stage of creep acceleration, the seepage flow rate is markedly increased with the increase of time. The variation of rock permeability is directly connected to the growth and evolution of creep crack. It is suggested that the permeability coefficient in complete creep processes of rock is not a constant, but is a function of rock creep strain, confining pressure, damage variable and pore water pressure. The results can be considered to provide a reliable reference for the establishment of rock rheological model and parameter identification.展开更多
How to model the permeability evolution of rock subjected to liquid nitrogen cooling is a key issue. This paper proposes a simple but practical method to study the permeability evolution of rocks subject to liquid nit...How to model the permeability evolution of rock subjected to liquid nitrogen cooling is a key issue. This paper proposes a simple but practical method to study the permeability evolution of rocks subject to liquid nitrogen cooling. FLAC with FISH function was employed to numerically model the rock behavior under cooling. The enhanced perme- ability of the volumetric strain was defined, and the permeability was directly evaluated based on element's volumetric strain. Detailed procedures for implementing the evolution model of permeability in this paper were presented. A case study was carried out to simulate a coal bed where liquid nitrogen was injected in the bore hole. And a semi-submerged test of liquid nitrogen was performed. The method to model the permeability evolution of rocks subject to liquid nitrogen shock in this paper was proved to be right by the test results. This simulation results are discussed with the hope to provide some insight into understanding the nitrogen cooling practice.展开更多
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani...Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.展开更多
The permeability evolution of rock during the progressive failure process is described. In combination with the strength degradation index, the degradation formulas of s and a, which are dependent on the plastic confi...The permeability evolution of rock during the progressive failure process is described. In combination with the strength degradation index, the degradation formulas of s and a, which are dependent on the plastic confining strain component, the material constants of Hock-Brown failure criterion are presented, and a modified elemental scale elastic-brittle-plastic constitutive model of rock is established. The rela- tionship between volumetric strain and permeability through tri-axial compression is investigated. Based on the above, a permeability evolution model is established. The model incorporates confining pressure- dependent degradation of strength, dilatancy and corresponding permeability evolution. The model is implemented in FLAC by the FISH function method. The permeability evolution behavior of rock is inves-tigated during the progressive failure process in a numerical case. The results show that the model is cap- able of reproducing, and allowing visualization of a range of hydro-mechanical responses of rock. The effects of confining pressure on degradation of strength, dilatancy and permeability evolution are also reflected.展开更多
Fracture/fault instability induced by fluid injection in deep geothermal reservoirs could not only vary the reservoir permeability but also trigger hazardous seismicity.To address this,we conducted triaxial shear expe...Fracture/fault instability induced by fluid injection in deep geothermal reservoirs could not only vary the reservoir permeability but also trigger hazardous seismicity.To address this,we conducted triaxial shear experiments on granite fractures with different architected roughnesses reactivated under fluid injection,to investigate the controls on permeability evolution linked to reactivation.Our results indicate that the fracture roughness and injection strategies are two main factors affecting permeability evolution.For fractures with dif-ferent roughnesses,a rougher fracture leads to a lower peak reactivated permeability(k_(max)),and varying the fluid injection strategy(in-cluding the confining pressure and injection rate)has a less impact on kmax,indicating that the evolution of permeability during fluid pressurization is likely to be determined by the fracture roughness along the shear direction.Both the fracture roughness and injection strategies affect the average rates of permeability change and this parameter also reflects the long-term reservoir recovery.Our results have important implications for understanding the permeability evolution and the injection-induced fracture/fault slips in granite reser-voirs during the deep geothermal energy extraction.展开更多
Fluid injection into rock masses is involved during various subsurface engineering applications.However,elevated fluid pressure,induced by injection,can trigger shear slip(s)of pre-existing natural fractures,resulting...Fluid injection into rock masses is involved during various subsurface engineering applications.However,elevated fluid pressure,induced by injection,can trigger shear slip(s)of pre-existing natural fractures,resulting in changes of the rock mass permeability and thus injectivity.However,the mechanism of slip-induced permeability variation,particularly when subjected to multiple slips,is still not fully understood.In this study,we performed laboratory experiments to investigate the fracture permeability evolution induced by shear slip in both saw-cut and natural fractures with rough surfaces.Our experiments show that compared to saw-cut fractures,natural fractures show much small effective stress when the slips induced by triggering fluid pressures,likely due to the much rougher surface of the natural fractures.For natural fractures,we observed that a critical shear displacement value in the relationship between permeability and accumulative shear displacement:the permeability of natural fractures initially increases,followed by a permeability decrease after the accumulative shear displacement reaches a critical shear displacement value.For the saw-cut fractures,there is no consistent change in the measured permeability versus the accumulative shear displacement,but the first slip event often induces the largest shear displacement and associated permeability changes.The produced gouge material suggests that rock surface damage occurs during multiple slips,although,unfortunately,our experiments did not allow quantitatively continuous monitoring of fracture surface property changes.Thus,we attribute the slip-induced permeability evolution to the interplay between permeability reductions,due to damages of fracture asperities,and permeability enhancements,caused by shear dilation,depending on the scale of the shear displacement.展开更多
Retasking existing subsurface abandoned mines as infrastructure for solar energy storage could be a feasible approach in overcoming the low thermal gradient present in shallow formations. In this work, the potential f...Retasking existing subsurface abandoned mines as infrastructure for solar energy storage could be a feasible approach in overcoming the low thermal gradient present in shallow formations. In this work, the potential for thermal storage in the high permeability goaf of abandoned mines through diurnal cyclic injection-thenextraction using coupled thermo-hydro-mechanical modeling was explored by coupling FLAC^(3D) with TOUGH2.The temperature sensibility of reservoir during 30 days of cyclic injection-then-production was examined at various injection temperatures(ranging from 50℃ to 250℃) and rates(ranging from 1 kg/s to 10 kg/s) and for representative reservoir physical and thermal properties, including variable thermal expansion coefficients. The simulation results reveal that: The principal mechanisms driving reservoir deformation result from the combined influence of thermal poroelastic and thermal effects. With the change of reservoir temperature, the reservoir is perturbed by pressure and thermal stresses causing permeability evolution. Permeability reduces ~10% for a maximum injection temperature of 250℃ – although effects are reduced the lower injection temperatures. The pore pressure fluctuations for an injection rate of 10 kg/s is ~6.5 times that for a rate of 1 kg/s. The pressure perturbation of the reservoir during the injection process decreases with the injection rate, and the reservoir is relatively more stable. When the thermal stress becomes predominant, the reservoir volume expands. Uplift displacements 220 m above the hot injection well are trivial an of the order of ~1.5 mm at a mean temperature of 163℃.展开更多
The utilization of coalbed methane(CBM)cannot only alleviate the energy crisis,but also reduce greenhouse gas emissions.Gas injection is an effective method to enhance CBM recovery.Compared to single-gas injection,the...The utilization of coalbed methane(CBM)cannot only alleviate the energy crisis,but also reduce greenhouse gas emissions.Gas injection is an effective method to enhance CBM recovery.Compared to single-gas injection,the injection of CO_(2)/N_(2) mixtures can balance the sharp decline in permeability caused by pure CO_(2) and the premature breakthrough by pure N_(2).In this study,a more comprehensive thermo-hydro-mechanical(THM)coupled mathematical model was developed,incorporating processes such as ternary gas non-isothermal adsorption,gas dissolution in water,gas-water two-phase flow,energy exchange,and coal deformation.After experimental validation,the model was applied to simulate the entire process of gas mixtures for enhanced CBM recovery(GM-ECBM).Results indicate that the permeability near the production well(Pw)initially decreases due to increased effective stress,then increases as a result of CH_(4) desorption.Near the injection well(Iw),the permeability first increases due to reduced effective stress and later stabilizes under the combined effects of effective stress and CO_(2)/N_(2) adsorption.The initial CH_(4) pressure and coal seam permeability have the most significant impact on CH_(4) production,while the coal seam permeability and temperature significantly affect CO_(2)/N_(2) injection.As the coal seam permeability increases,the optimal CO_(2)/N_(2) ratio also increases accordingly.These findings provide important theoretical guidance for improving GM-ECBM efficiency in coal seams with varying permeabilities.展开更多
Subsurface fluid injections can disturb the effective stress regime by elevating pore pressure and potentially reactivate faults and fractures.Laboratory studies indicate that fracture rheology and permeability in suc...Subsurface fluid injections can disturb the effective stress regime by elevating pore pressure and potentially reactivate faults and fractures.Laboratory studies indicate that fracture rheology and permeability in such reactivation events are linked to the roughness of the fracture surfaces.In this study,we construct numerical models using discrete element method(DEM)to explore the influence of fracture surface roughness on the shear strength,slip stability,and permeability evolution during such slip events.For each simulation,a pair of analog rock coupons(three-dimensional bonded quartz particle analogs)representing a mated fracture is sheared under a velocity-stepping scheme.The roughness of the fracture is defined in terms of asperity height and asperity wavelength.Results show that(1)Samples with larger asperity heights(rougher),when sheared,exhibit a higher peak strength which quickly devolves to a residual strength after reaching a threshold shear displacement;(2)These rougher samples also exhibit greater slip stability due to a high degree of asperity wear and resultant production of wear products;(3)Long-term suppression of permeability is observed with rougher fractures,possibly due to the removal of asperities and redistribution of wear products,which locally reduces porosity in the dilating fracture;and(4)Increasing shear-parallel asperity wavelength reduces magnitudes of stress drops after peak strength and enhances fracture permeability,while increasing shear-perpendicular asperity wavelength results in sequential stress drops and a delay in permeability enhancement.This study provides insights into understanding of the mechanisms of frictional and rheological evolution of rough fractures anticipated during reactivation events.展开更多
Injecting external CO_(2) into soft and low-permeability coal seams can improve CH4 extacctinn efficiency, and also benefit in CO_(2) sequestration. However, the distribution law of damage zone around borehole in soft...Injecting external CO_(2) into soft and low-permeability coal seams can improve CH4 extacctinn efficiency, and also benefit in CO_(2) sequestration. However, the distribution law of damage zone around borehole in soft coal seam and its effect on the efficiency of CO_(2) injection promoted CH4 extraction are not clear. In this paper, a multi-physics coupling mathematical model considering damage effect is established for simulating the process of CO_(2) injection promoted CH4 extraction in soft and low-permeability coal seam. The distribution of damage zone and permeability around boreholes under different diameters and coal strengths are analyzed. The gas pressure and gas content in coal seam during CO_(2) injection promoted CH4 extraction when the model considered damage effect are compared with that of ignored. The results show that small borehole diameter corresponds to narrow damage zone around the borehole in coal seam. The damage zone expands with the increase of the borehole diameter. The damage zone increases exponentially with the borehole diameter, while decreases exponentially with the compressive strength of coal seam. The highest permeability in the damage zone has increased by nearly 300 times under the condition of simulated case. CH4 pressure around the extraction borehole reduces, and the reduction area expands with the increase of time. Compared with the result of considering the damage effect, the reduction area of ignoring it is smaller, and the reducing speed is slower. The integrated effect of CO_(2) injection and CH4 extraction leads to rapid decrease of CH4 content in coal seam near the boreholes. The CO_(2) pressure and content increase around the injection borehole, and the increasing area gradually extends to the whole coal seam. In soft coal seams, failure to consider the damage effect will underestimate the efficiency of CH4 extraction and CO_(2) sequestration, resulting conservative layout of boreholes.展开更多
Since Mollema and Antonellini observed compaction bands in the field in 1996,different patterns of compaction bands have been found in laboratory experiments.There are some discrepancies between the laboratory experim...Since Mollema and Antonellini observed compaction bands in the field in 1996,different patterns of compaction bands have been found in laboratory experiments.There are some discrepancies between the laboratory experiments and the field observations:compared to the field observation,the stress levels required to induce compaction bands in laboratory experiments are usually higher than the inferred in the field,and the grain crushing are more intense in the laboratory experiments.In this paper,compaction bands were observed at the maximal principal stresses below 8 MPa,which is lower than the stress level inferred in the field,and there was no severe comminution inside the compaction bands.Experimental results indicate that the porosity and confining pressure have great impacts on the types of localization bands.Lower porosity and confining pressure can promote the growth of shear bands and high-angle shear bands.Higher porosity and confining pressure can promote the growth of discrete compaction bands.Intermediate porosity and confining pressure are favorable for the growth of hybrid modes involving two of the three,i.e.,discrete compaction band,diffuse compaction band and high-angle shear band.The formation of discrete compaction bands is more unstable compared to diffuse compaction bands.The two types of compaction bands can appear in the same type rocks,and diffuse compaction bands are formed under lower confining pressure compared to discrete compaction bands.The reduction of permeability was within 2 orders of magnitude in this study,and it is 2 3 orders of magnitude lower than those obtained by other researchers.展开更多
基金support of the National Natural Science Foundation of China(U23B6004 and 52404045)the CAST Young Talent Support Program,Doctoral Student Special Project.
文摘During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomenon,a numerical simulation framework of the finite volume method and transient embedded discrete fracture model is proposed to establish a new constitutive model that links poroelastoplastic deformation,adsorption-induced swelling,and aperture compression.From this model,anisotropic permeability tensors were derived to further achieve the simulation of coevolution.Meanwhile,our permeability model was verified against the measured permeability data,and the history match of the numerical model showed better results where the mismatch was less than 5%.The results indicate that(1)the long-term permeability evolution clearly showed the competitive effects of multiple deformation mechanisms,which involves three stages:compaction-dominated decline,adsorption-dominated rebound,and creep-controlled loss.(2)The increased number of compressible cleats/fractures accelerated the initial permeability decline,while the increased desorption-induced strain promoted faster rebound and enhancement and higher viscosity coefficients enhanced the creep effect,which led to significant long-term permeability loss.(3)Massive hydraulic fracturing created a larger drainage area,accelerating methane desorption and causing sharp permeability rebound with reduced residual gas,which shows that the permeability remained higher than the initial values even after the extensive extraction via the fractured horizontal wells.The permeability evolution mechanisms displayed varying properties,such as coal rank and burial depth,and distinct characteristics.A precise understanding of multiple competitive stress effects is crucial for optimizing coalbed methane extraction techniques and improving recovery efficiency.
基金supported by the Knowledge Innovation Program of Wuhan-Basic Research (Grant No.2022010801010159)support from the Helmholtz Association's Initiative and Networking Fund for the Helmholtz Young Investigator Group ARES (Contract number VH-NG-1516)supported by the Swedish Radiation Safety Authority (Project SSM2020-2758).
文摘Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensional(3D)benchmark model of a laboratory experiment on graywacke to examine the dynamic hydraulic fracturing process under a polyaxial stress state.In the numerical model,injection pressures after breakdown(postbreakdown)are varied to study the impact on fracture growth.The fluid pressure front and crack front are identified in the numerical model to analyze the dynamic relationship between fluid diffusion and fracture propagation.Following the hydraulic fracturing test,the polyaxial stresses are rotated to investigate the influence of the stress field rotation on the fracture slip behavior and permeability.The results show that fracture propagation guides fluid diffusion under a high postbreakdown injection pressure.The crack front runs ahead of the fluid pressure front.Under a low postbreakdown injection pressure,the fluid pressure front gradually reaches the crack front,and fluid diffusion is the main driving factor of fracture propagation.Under polyaxial stress conditions,fluid injection not only opens tensile fractures but also induces hydroshearing.When the polyaxial stress is rotated,the fracture slip direction of a fully extended fracture is consistent with the shear stress direction.The fracture slip direction of a partly extended fracture is influenced by the increase in shear stress.Normal stress affects the permeability evolution by changing the average mechanical aperture.Shear stress can induce shearing and sliding on the fracture plane,thereby increasing permeability.
基金Projects(12072102,12102129)supported by the National Natural Science Foundation of ChinaProject(DM2022B01)supported by the Key Laboratory of Safe Mining of Deep Metal Mines,Ministry of Education,ChinaProject(JZ-008)supported by the Six Talent Peaks Project in Jiangsu Province,China。
文摘In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields.
基金Project(2014CB047100)supported by the National Basic Research Program of China(973 Program)Projects(51679093/E090705,51774147/E0409)supported by the National Natural Science Foundation of ChinaProject(2017J01094)supported by the Natural Science Foundation of Fujian Province,China
文摘Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to explore deformation characteristics and permeability properties and provide some parameters to character the rock under unloading conditions.A series of triaxial tests with permeability and acoustic emission signal measurement were conducted under the path of confining pressure unloading prior to the peak stress.Deformation behavior and permeability evolution in the whole stress–strain process based on these experimental results were analyzed in detail.Results demonstrate that,under the confining pressure unloading conditions,a good correspondence relationship among the stress–axial strain curve,permeability–axial strain curve and acoustic emission activity pattern was obtained.After the confining pressure was unloaded,the radial strain grew much faster than the axial strain,which induced the volumetric strain growing rapidly.All failures under confining pressure unloading conditions featured brittle shear failure with a single macro shear rupture surface.With the decrease in deformation modulus during the confining pressure unloading process,the damage variable gradually increases,indicating that confining pressure unloading was a process of damage accumulation and strength degradation.From the entire loading and unloading process,there was a certain positive correlation between the permeability and volumetric strain.
基金Projects(11172090,51009052,51109069) supported by the National Natural Science Foundation of ChinaProject(2011CB013504) supported by the National Basic Research Program of China
文摘Triaxial creep tests were carried out under seepage pressure by using rock servo-controlled triaxial rheology testing equipment. Based on experimental results, rock rheological properties influenced by seepage-stress coupling were studied, and variations of seepage rate with time in complete creep processes of rock were analyzed. It is shown that, when the applied stress is less than failure stress level, the creep deformation is not obvious, and its main form is steady-state creep. When applied stress level is greater than or less than but close to fracture stress, it is easier to see the increase of creep deformation and the more obvious accelerative creep characteristics. The circumferential creep deformation is obviously higher than the axial creep deformation. At the stage of steady-state creep, the average of seepage flow rate is about 4.7×10-9 rn/s at confining pressure (tr3) of 2 MPa, and is about 3.9×10-9 m/s at a3 of 6 MPa. It is seen that the seepage flow rate at or3 of 2 MPa in this case is obviously larger than that at tr3 of 6 MPa. At the stage of creep acceleration, the seepage flow rate is markedly increased with the increase of time. The variation of rock permeability is directly connected to the growth and evolution of creep crack. It is suggested that the permeability coefficient in complete creep processes of rock is not a constant, but is a function of rock creep strain, confining pressure, damage variable and pore water pressure. The results can be considered to provide a reliable reference for the establishment of rock rheological model and parameter identification.
文摘How to model the permeability evolution of rock subjected to liquid nitrogen cooling is a key issue. This paper proposes a simple but practical method to study the permeability evolution of rocks subject to liquid nitrogen cooling. FLAC with FISH function was employed to numerically model the rock behavior under cooling. The enhanced perme- ability of the volumetric strain was defined, and the permeability was directly evaluated based on element's volumetric strain. Detailed procedures for implementing the evolution model of permeability in this paper were presented. A case study was carried out to simulate a coal bed where liquid nitrogen was injected in the bore hole. And a semi-submerged test of liquid nitrogen was performed. The method to model the permeability evolution of rocks subject to liquid nitrogen shock in this paper was proved to be right by the test results. This simulation results are discussed with the hope to provide some insight into understanding the nitrogen cooling practice.
基金supported by the National Natural Science Foundation of China(Grant No.11705086)the National Science Foundation of Hunan Province,China(Grant No.2018JJ3424)the Foundation of Hunan Educational Committee(Grant No.16C1387).
文摘Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.
基金the National Natural Science Foundation of China (Nos.51274079,51274110 and 51574139)the Natural Science Foundation of Hebei Province (No.E2013208148)
文摘The permeability evolution of rock during the progressive failure process is described. In combination with the strength degradation index, the degradation formulas of s and a, which are dependent on the plastic confining strain component, the material constants of Hock-Brown failure criterion are presented, and a modified elemental scale elastic-brittle-plastic constitutive model of rock is established. The rela- tionship between volumetric strain and permeability through tri-axial compression is investigated. Based on the above, a permeability evolution model is established. The model incorporates confining pressure- dependent degradation of strength, dilatancy and corresponding permeability evolution. The model is implemented in FLAC by the FISH function method. The permeability evolution behavior of rock is inves-tigated during the progressive failure process in a numerical case. The results show that the model is cap- able of reproducing, and allowing visualization of a range of hydro-mechanical responses of rock. The effects of confining pressure on degradation of strength, dilatancy and permeability evolution are also reflected.
基金the National Natural Science Foundation of China(Grant Nos.42077247 and 42107163)the Fundamental Research Funds for the Central Universities.
文摘Fracture/fault instability induced by fluid injection in deep geothermal reservoirs could not only vary the reservoir permeability but also trigger hazardous seismicity.To address this,we conducted triaxial shear experiments on granite fractures with different architected roughnesses reactivated under fluid injection,to investigate the controls on permeability evolution linked to reactivation.Our results indicate that the fracture roughness and injection strategies are two main factors affecting permeability evolution.For fractures with dif-ferent roughnesses,a rougher fracture leads to a lower peak reactivated permeability(k_(max)),and varying the fluid injection strategy(in-cluding the confining pressure and injection rate)has a less impact on kmax,indicating that the evolution of permeability during fluid pressurization is likely to be determined by the fracture roughness along the shear direction.Both the fracture roughness and injection strategies affect the average rates of permeability change and this parameter also reflects the long-term reservoir recovery.Our results have important implications for understanding the permeability evolution and the injection-induced fracture/fault slips in granite reser-voirs during the deep geothermal energy extraction.
基金supported by the National Natural Science Foundation of China(41877239)the Natural Science Foundation of Shandong Province(ZR2022QD014)+2 种基金the Postdoctoral Innovation Project of Shandong Province(SDCX-ZG-202203030)the China Scholarship Council(201806220196)the ZoDrEx project under the grant agreement No.731117.
文摘Fluid injection into rock masses is involved during various subsurface engineering applications.However,elevated fluid pressure,induced by injection,can trigger shear slip(s)of pre-existing natural fractures,resulting in changes of the rock mass permeability and thus injectivity.However,the mechanism of slip-induced permeability variation,particularly when subjected to multiple slips,is still not fully understood.In this study,we performed laboratory experiments to investigate the fracture permeability evolution induced by shear slip in both saw-cut and natural fractures with rough surfaces.Our experiments show that compared to saw-cut fractures,natural fractures show much small effective stress when the slips induced by triggering fluid pressures,likely due to the much rougher surface of the natural fractures.For natural fractures,we observed that a critical shear displacement value in the relationship between permeability and accumulative shear displacement:the permeability of natural fractures initially increases,followed by a permeability decrease after the accumulative shear displacement reaches a critical shear displacement value.For the saw-cut fractures,there is no consistent change in the measured permeability versus the accumulative shear displacement,but the first slip event often induces the largest shear displacement and associated permeability changes.The produced gouge material suggests that rock surface damage occurs during multiple slips,although,unfortunately,our experiments did not allow quantitatively continuous monitoring of fracture surface property changes.Thus,we attribute the slip-induced permeability evolution to the interplay between permeability reductions,due to damages of fracture asperities,and permeability enhancements,caused by shear dilation,depending on the scale of the shear displacement.
基金the National Key Research and Development Program of China(Grant No.2021YFC3000603)the General Program of National Natural Science Foundation of China(Grant No.5217041034)Science&Technology Department of Sichuan Province(Grant No.2022YFSY0008).
文摘Retasking existing subsurface abandoned mines as infrastructure for solar energy storage could be a feasible approach in overcoming the low thermal gradient present in shallow formations. In this work, the potential for thermal storage in the high permeability goaf of abandoned mines through diurnal cyclic injection-thenextraction using coupled thermo-hydro-mechanical modeling was explored by coupling FLAC^(3D) with TOUGH2.The temperature sensibility of reservoir during 30 days of cyclic injection-then-production was examined at various injection temperatures(ranging from 50℃ to 250℃) and rates(ranging from 1 kg/s to 10 kg/s) and for representative reservoir physical and thermal properties, including variable thermal expansion coefficients. The simulation results reveal that: The principal mechanisms driving reservoir deformation result from the combined influence of thermal poroelastic and thermal effects. With the change of reservoir temperature, the reservoir is perturbed by pressure and thermal stresses causing permeability evolution. Permeability reduces ~10% for a maximum injection temperature of 250℃ – although effects are reduced the lower injection temperatures. The pore pressure fluctuations for an injection rate of 10 kg/s is ~6.5 times that for a rate of 1 kg/s. The pressure perturbation of the reservoir during the injection process decreases with the injection rate, and the reservoir is relatively more stable. When the thermal stress becomes predominant, the reservoir volume expands. Uplift displacements 220 m above the hot injection well are trivial an of the order of ~1.5 mm at a mean temperature of 163℃.
基金supported by the National Natural Science Foundation of China(Grant No.52174117)the Universitylocal Government Scientific and Technical Cooperation Cultivation Project of Ordos Institute-LNTU(Grant No.YJY-XD-2024-A-009)+2 种基金the Basic Scientific Research Project of Liaoning Provincial Department of Education(Grant No.JYTZD2023073)the Liaoning Revitalization Talents Program(XLYC2203139)the Liaoning Provincial Natural Science Foundation Program(Excellent Youth Fund)(Grant No.2024JH3/10200043).
文摘The utilization of coalbed methane(CBM)cannot only alleviate the energy crisis,but also reduce greenhouse gas emissions.Gas injection is an effective method to enhance CBM recovery.Compared to single-gas injection,the injection of CO_(2)/N_(2) mixtures can balance the sharp decline in permeability caused by pure CO_(2) and the premature breakthrough by pure N_(2).In this study,a more comprehensive thermo-hydro-mechanical(THM)coupled mathematical model was developed,incorporating processes such as ternary gas non-isothermal adsorption,gas dissolution in water,gas-water two-phase flow,energy exchange,and coal deformation.After experimental validation,the model was applied to simulate the entire process of gas mixtures for enhanced CBM recovery(GM-ECBM).Results indicate that the permeability near the production well(Pw)initially decreases due to increased effective stress,then increases as a result of CH_(4) desorption.Near the injection well(Iw),the permeability first increases due to reduced effective stress and later stabilizes under the combined effects of effective stress and CO_(2)/N_(2) adsorption.The initial CH_(4) pressure and coal seam permeability have the most significant impact on CH_(4) production,while the coal seam permeability and temperature significantly affect CO_(2)/N_(2) injection.As the coal seam permeability increases,the optimal CO_(2)/N_(2) ratio also increases accordingly.These findings provide important theoretical guidance for improving GM-ECBM efficiency in coal seams with varying permeabilities.
基金support provided by United States Department of Energy Grant DE-FE0023354。
文摘Subsurface fluid injections can disturb the effective stress regime by elevating pore pressure and potentially reactivate faults and fractures.Laboratory studies indicate that fracture rheology and permeability in such reactivation events are linked to the roughness of the fracture surfaces.In this study,we construct numerical models using discrete element method(DEM)to explore the influence of fracture surface roughness on the shear strength,slip stability,and permeability evolution during such slip events.For each simulation,a pair of analog rock coupons(three-dimensional bonded quartz particle analogs)representing a mated fracture is sheared under a velocity-stepping scheme.The roughness of the fracture is defined in terms of asperity height and asperity wavelength.Results show that(1)Samples with larger asperity heights(rougher),when sheared,exhibit a higher peak strength which quickly devolves to a residual strength after reaching a threshold shear displacement;(2)These rougher samples also exhibit greater slip stability due to a high degree of asperity wear and resultant production of wear products;(3)Long-term suppression of permeability is observed with rougher fractures,possibly due to the removal of asperities and redistribution of wear products,which locally reduces porosity in the dilating fracture;and(4)Increasing shear-parallel asperity wavelength reduces magnitudes of stress drops after peak strength and enhances fracture permeability,while increasing shear-perpendicular asperity wavelength results in sequential stress drops and a delay in permeability enhancement.This study provides insights into understanding of the mechanisms of frictional and rheological evolution of rough fractures anticipated during reactivation events.
基金the National Natural Science Foundation of China(Grant No.52104195)the Liaoning Revitalization Talents Program(No.XLYC2008021).
文摘Injecting external CO_(2) into soft and low-permeability coal seams can improve CH4 extacctinn efficiency, and also benefit in CO_(2) sequestration. However, the distribution law of damage zone around borehole in soft coal seam and its effect on the efficiency of CO_(2) injection promoted CH4 extraction are not clear. In this paper, a multi-physics coupling mathematical model considering damage effect is established for simulating the process of CO_(2) injection promoted CH4 extraction in soft and low-permeability coal seam. The distribution of damage zone and permeability around boreholes under different diameters and coal strengths are analyzed. The gas pressure and gas content in coal seam during CO_(2) injection promoted CH4 extraction when the model considered damage effect are compared with that of ignored. The results show that small borehole diameter corresponds to narrow damage zone around the borehole in coal seam. The damage zone expands with the increase of the borehole diameter. The damage zone increases exponentially with the borehole diameter, while decreases exponentially with the compressive strength of coal seam. The highest permeability in the damage zone has increased by nearly 300 times under the condition of simulated case. CH4 pressure around the extraction borehole reduces, and the reduction area expands with the increase of time. Compared with the result of considering the damage effect, the reduction area of ignoring it is smaller, and the reducing speed is slower. The integrated effect of CO_(2) injection and CH4 extraction leads to rapid decrease of CH4 content in coal seam near the boreholes. The CO_(2) pressure and content increase around the injection borehole, and the increasing area gradually extends to the whole coal seam. In soft coal seams, failure to consider the damage effect will underestimate the efficiency of CH4 extraction and CO_(2) sequestration, resulting conservative layout of boreholes.
基金supported the National Natural Science Foundation of China(Grant No.51009079)National Basic Research Program of China("973" Project)(Grant Nos.2011CB013503,2013CB035902)Open Research Fund Program of State key Laboratory of Hydroscience and Engineering(Grant No.2013-KY 6)
文摘Since Mollema and Antonellini observed compaction bands in the field in 1996,different patterns of compaction bands have been found in laboratory experiments.There are some discrepancies between the laboratory experiments and the field observations:compared to the field observation,the stress levels required to induce compaction bands in laboratory experiments are usually higher than the inferred in the field,and the grain crushing are more intense in the laboratory experiments.In this paper,compaction bands were observed at the maximal principal stresses below 8 MPa,which is lower than the stress level inferred in the field,and there was no severe comminution inside the compaction bands.Experimental results indicate that the porosity and confining pressure have great impacts on the types of localization bands.Lower porosity and confining pressure can promote the growth of shear bands and high-angle shear bands.Higher porosity and confining pressure can promote the growth of discrete compaction bands.Intermediate porosity and confining pressure are favorable for the growth of hybrid modes involving two of the three,i.e.,discrete compaction band,diffuse compaction band and high-angle shear band.The formation of discrete compaction bands is more unstable compared to diffuse compaction bands.The two types of compaction bands can appear in the same type rocks,and diffuse compaction bands are formed under lower confining pressure compared to discrete compaction bands.The reduction of permeability was within 2 orders of magnitude in this study,and it is 2 3 orders of magnitude lower than those obtained by other researchers.