Permanent magnet synchronous motor(PMSM),known for their compact size and high-power density,is widely used in fields such as electric vehicles and servo drives.However,traditional PID control methods for PMSM cannot ...Permanent magnet synchronous motor(PMSM),known for their compact size and high-power density,is widely used in fields such as electric vehicles and servo drives.However,traditional PID control methods for PMSM cannot dynamically adjust parameters according to varying operating conditions.To address this issue,this paper proposes a PID control method based on a radial basis function(RBF)neural network,which adaptively tunes the PID controller parameters.First,an offline RBF neural network with optimal structural parameters is trained using the current and speed data of the PMSM,and then employed to construct the RBF-PID controller.During online training,the Jacobian information calculated via the RBF neural network is used to adaptively adjust the PID parameters.Simultaneously,the structural parameters of the RBF network are updated in reverse based on the error between the predicted and reference speed values.Finally,numerical simulations and experiments in the context of electric vehicle drive control show that the maximum speed errors of the SMC controller and the RBF-PID controller are 1.97 km/h and 0.17 km/h,respectively.Moreover,the RBF-PID controller outperforms both the SMC and traditional PID controllers in handling sudden speed changes.展开更多
This paper introduces a novel chattering-free terminal sliding mode control(SMC)strategy to address chaotic behavior in permanent magnet synchronous generators(PMSG)for offshore wind turbine systems.By integrating an ...This paper introduces a novel chattering-free terminal sliding mode control(SMC)strategy to address chaotic behavior in permanent magnet synchronous generators(PMSG)for offshore wind turbine systems.By integrating an adaptive exponential reaching law with a continuous barrier function,the proposed approach eliminates chattering and ensures robust performance under model uncertainties.The methodology combines adaptive SMC with dynamic switching to estimate and compensates for unknown uncertainties,providing smooth and stable control.Finally,the performance and effectiveness of the proposed approach are compared with those of a previous study.展开更多
Objective:To investigate the distribution of health literacy(HL)levels and the association of HL with proactive personality in patients with permanent colostomy.Methods:A cross-sectional study was conducted to measure...Objective:To investigate the distribution of health literacy(HL)levels and the association of HL with proactive personality in patients with permanent colostomy.Methods:A cross-sectional study was conducted to measure proactive personality and HL using validated scales.A total of 172 patients with permanent colostomy were selected from January 2021 to May 2022 in Yantai City,China.Descriptive statistics,t-test,ANOVA,Pearson correlation analysis,and multiple linear regression analysis techniques were used.Results:The results obtained from the study showed that the HL status of the participants was moderate.The correlation between participants’total HL scores and proactive personality scores was 0.417(P-value<0.001).In addition,HL showed statistically significant differences according to education level,place of residence,profession,and average monthly household income.Conclusions:This study showed that patients with higher proactive personality scores had higher HL.The key stakeholders require several positive strategies to improve the HL of patients with permanent colostomy by cultivating their proactive personalities,and these important policies will help to improve patient health and quality of life.展开更多
BACKGROUND Autoimmune myocarditis(AM)associated with autoimmune diseases can cause complete atrioventricular block(CAVB),but the related autoantigens and the underlying mechanisms are unclear.Anti-SSA/Ro antibodies ma...BACKGROUND Autoimmune myocarditis(AM)associated with autoimmune diseases can cause complete atrioventricular block(CAVB),but the related autoantigens and the underlying mechanisms are unclear.Anti-SSA/Ro antibodies may play an important role in this process,but cases of AM with positive anti-SSA/Ro antibodies are rare.In addition,arrhythmias,such as atrioventricular block,are very common in patients with autoimmune diseases,but severe atrioventricular block requiring permanent pacemaker implantation is extremely rare.CASE SUMMARY The patient in this case had AM with anti-SSA/Ro antibody positivity,which was associated with connective tissue disease,and the patient subsequently developed CAVB.After intensive immunosuppressive therapy,the antibody test results became negative,and pulmonary hypertension significantly improved.However,the outcome of permanent pacemaker implantation did not change.CONCLUSION In clinical practice,the awareness of adult AM associated with autoimmune diseases combined with CAVB should be strengthened in clinicians,and anti-SSA/Ro antibodies may play a role in this process.Therefore,improving the detection of antibodies and early intervention,such as active immunosuppression therapy,may be very important for improving disease prognosis.For patients who do not respond to immunosuppressive therapy,implantation of a permanent pacemaker may become an essential treatment option.展开更多
Collapses of seismic slopes demonstrate the characteristics of three-dimensional(3D)shapes.Conducting a 3D analysis of seismic slope stability is more complicated than doing a simplified two-dimensional(2D)analysis.Th...Collapses of seismic slopes demonstrate the characteristics of three-dimensional(3D)shapes.Conducting a 3D analysis of seismic slope stability is more complicated than doing a simplified two-dimensional(2D)analysis.The upper-bound solutions derived from limit analysis of seismic slopes using the pseudo-static method are used to generate an approximate solution for the factor of 3D safety through regression analysis.Such a solution can degenerate to a 2D result when the slope width tends to infinity.The approximation method also can be extended for determining the permanent displacements of 3D slopes under seismic loading.The method is non-iterative and relatively accurate through comparisons with analytical results.Involving stochastic ground motions could easily be used to assess the distribution of permanent displacement that is induced in 3D slopes.展开更多
A new flow control technology in continuous casting process named permanent magnet flow control-mold(PMFC-Mold)was proposed,in which the permanent magnets are arranged in Halbach array near the narrow region of the mo...A new flow control technology in continuous casting process named permanent magnet flow control-mold(PMFC-Mold)was proposed,in which the permanent magnets are arranged in Halbach array near the narrow region of the mold.The behavior of molten steel flow and the fluctuation of molten steel/slag interface in the PMFC-Mold under different continuous casting speeds were investigated.Firstly,a physical experiment of liquid Ga-In-Sn alloy circulating flow was carried out in Perspex mold with Halbach’s permanent magnets(HPMs)to investigate the magnetic field distribution of HPMs and its impactful electromagnetic braking effect.The numerical simulation of 1450 mm×230 mm slab shows that a stronger magnetic field over 0.3-0.625 T is formed at the wide surface and the narrow surface of the mold,which provides an effective electromagnetic braking for controlling the impingement of molten steel jet and suppressing the fluctuation of molten steel/slag interface.The numerical simulation results show that in the PMFC-Mold,the region with the turbulent kinetic energy greater than 0.01 and 0.04 m^(2)s^(-2)on the upper backflow zone and near the narrow surface of the mold are significantly reduced.The maximum turbulent kinetic energy of the submerged entry nozzle(SEN)jet in front of the narrow surface is significantly reduced,and the SEN jet moves downward before impacting the narrow surface of the mold.In the PMFC-Mold,the region with the surface velocity greater than 0.2 m s^(-1)on the steel/slag interface is eliminated,the flow pattern and fluctuation profiles on the molten steel/slag interface become regular on both sides of SEN,and the vortex near SEN disappears.The maximum fluctuation height of molten steel/slag interface is controlled below 2.59 and 5.40 mm corresponding to the casting speed of 1.6 and 2.0 m min-1,respectively.展开更多
Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on ...Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on magnetic circuit saturation,so this paper proposes a novel analytical method(AM)considering this problem.The key of this new AM is to consider armature reaction flux and armature leakage flux,which are closely related to output torque.Firstly,the expressions,including magnetomotive force(MMF)generated by permanent magnets(PMs)and armature windings are derived,and meanwhile slotting effect is considered by planning flux path.In addition,the expression of leakage flux density generated by armature windings are calculated,and flux density equivalence coefficient of tooth is calculated to be 2/3,which is used to solve the problem of uneven saturation of each tooth.Then,based on main flux factor and leakage flux factor proposed,an improved iteration process is proposed,and by this new process,the flux density of each yoke and tooth can be obtained,which is beneficial to obtain more accurate air-gap flux density and flux linkage.Finally,a prototype of 60-pole 54-slot is fabricated,and the performances of the electric machine,such as back electromotive force(EMF)and output torque,are calculated by this new AM and finite element method(FEM).The results of FEM and experimental test show that this new AM is good enough to calculate the performance of PMTM.展开更多
The coupling effect of dual-parallel rotor connected stator permanent magnet synchronous motor not only affects the magnetic field in the coupling area, but also generates an additional magnetic field in the uncoupled...The coupling effect of dual-parallel rotor connected stator permanent magnet synchronous motor not only affects the magnetic field in the coupling area, but also generates an additional magnetic field in the uncoupled area.The characteristics of the additional magnetic field and its influence on electromagnetic torque are studied in this paper.The topology and parameters of motor are described briefly.The existence of additional magnetic field is proved by the simulation models under two boundary conditions, and its characteristics and source are analyzed. The analytical model is established, and the influence of key parameters on the additional magnetic field is discussed. On this basis, the influence of the additional magnetic field on the electromagnetic torque of the motor is studied, and the analytical expression of the additional torque is constructed.The fluctuation rule is analyzed, and the additional magnetic field separation model is proposed. The theoretical analysis and simulation results reveal and improve the internal mechanism of reducing motor torque ripple by optimizing the duty angle and coupling distance. Finally, a prototype test platform is built to verify the correctness of the proposed theory and the accuracy of the simulation model.展开更多
The axial field hybrid permanent magnet memory machine(AFHPM-MM)employs a hybrid permanent magnet excitation combining NdFeB and AlNiCo,achieving high torque density and a wide flux adjustment range.A separated stator...The axial field hybrid permanent magnet memory machine(AFHPM-MM)employs a hybrid permanent magnet excitation combining NdFeB and AlNiCo,achieving high torque density and a wide flux adjustment range.A separated stator structure is adopted to enhance its antidemagnetization capability.To analyze the contributions of AlNiCo and NdFeB to the induced electromotive force(EMF)in the AFHPM-MM,a frozen permeability-based induced EMF calculation method is proposed.Theoretical analysis reveals that the conventional method exhibits substantial errors in calculating the AlNiCo-induced EMF,primarily attributed to its failure to adequately account for the dynamic magnetization characteristic discrepancies of AlNiCo under varying magnetization states.Through the analysis of magnetization variations in AlNiCo during the flux adjustment process under different magnetization states,an improved induced EMF calculation method is proposed.Comparative results indicate that,during the flux enhancement process,the average calculation error of the AlNiCo-induced EMF is reduced from 19.84%to 2.09%,whereas during the flux weakening process,the error is reduced from 3.87%to 1.67%.The proposed method achieves accurate induced EMF calculation for the AFHPM-MM.展开更多
The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification pro...The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification process of the Al—2Sc alloy controlled by a novel PMS using NdFeB permanent magnets under various rotation speeds(0,50,100 and 150 r/min).The simulated results reveal that the maximum electromagnetic force increases proportionally from 4.14 to 12.39 kN/m^(3)and the maximum tangential velocity increases from 0.13 to 0.36 m/s when the rotation speed of PMS enhances from 50 to 150 r/min in the ingot melt.Besides,the experimental results demonstrate that PMS can achieve a uniform distribution of blocky Al_(3)Sc precipitated phase in the longitudinal direction under the impact of a forced fluid flow.Moreover,increasing rotation speed of PMS is beneficial to refining aluminum grain size significantly and decreasing the texture intensity in the alloy.In addition,the Brinell hardness of Al-2Sc alloy is increased by 33%to 27.8 HB and the tensile strength is enhanced by 34%-128.2 MPa,due to the improved distribution of the strengthening Al_(3)SC phase and the grain refinement of Al matrix under the impact of PMS.This work provides an effective application of NdFeB permanent magnets in the metal cast field.展开更多
Alloying with transition metal elements akin to Sm(CoFeCuZr)z can effectively enhance the magnetic properties of SmCo-based permanent magnets.However,the effects of transition metals doping on its magnetic properties,...Alloying with transition metal elements akin to Sm(CoFeCuZr)z can effectively enhance the magnetic properties of SmCo-based permanent magnets.However,the effects of transition metals doping on its magnetic properties,detailed atomic occupancy and the mechanism for structural stability remain unclear.Specifically,for SmCo3 magnets,there is minimal theoretical study available.Herein,based on first-principles calculations,we systematically investigated the influence of 3d transition metals(TMs)doping on the structural stability,magnetic properties and electronic characteristics of SmCo3 magnets.Our results show that Sc,Ti,V,Fe,Ni,Cu and Zn preferentially occupy the 18h lattice site,while Cr and Mn occupy the 3b and 6c lattice sites,respectively.Doping with Ti,Cr,Mn,Fe,Ni,Cu and Zn contributes to enhancing the stability of SmCo3,whereas the doping of Sc and V adversely affects structural stability.The magnetic calculations reveal that Cr,Mn and Fe doping significantly enhances the total magnetic moment.It is also found that lower concentrations of Cr doping can significantly enhance the magnetocrystalline anisotropy energy(MAE).More intriguingly,when the doping concentrations of Sc,Ni and Cu reach 14.81 at%,22.22 at%and 22.22 at%,respectively,the magnetic easy axis of the system shifts from out-of-plane to in-plane.The optimal doping concentration of Fe in the SmCo_(3) system is determined to be 37.04 at%.The Curie temperature of pure SmCo_(3) is 483.9 K.Our theoretical study offers valuable theoretical guidance for experimental exploration toward SmCo-based permanent magnets with higher performance.展开更多
Permanently shadowed regions(PSRs)on the Moon are potential reservoirs for water ice,making them hot spots for future lunar exploration.The water ice in PSRs would cause distinctive changes in space weathering there,i...Permanently shadowed regions(PSRs)on the Moon are potential reservoirs for water ice,making them hot spots for future lunar exploration.The water ice in PSRs would cause distinctive changes in space weathering there,in particular reduction-oxidation processes that diff er from those in illuminated regions.To determine the characteristics of products formed during space weathering in PSRs,the lunar meteorite NWA 10203 with artifi cially added water was irradiated with a nanosecond laser to simulate a micro-meteorite bombardment of lunar soil containing water ice.The TEM results of the water-incorporated sample showed distinct amorphous rims that exhibited irregular thickness,poor stratifi cation,the appearance of bubbles,and a reduced number of npFe^(0).Additionally,EELS analysis showed the presence of ferric iron at the rim of the nanophase metallic iron particles(npFe^(0))in the amorphous rim with the involvement of water.The results suggest that water ice is another possible factor contributing to oxidation during micrometeorite bombardment on the lunar surface.In addition,it off ers a reference for a new space weathering model that incorporates water in PSRs,which could be widespread on asteroids with volatiles.展开更多
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands...Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.展开更多
Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a...Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.展开更多
Current research on Digital Twin(DT)based Prognostics and Health Management(PHM)focuses on establishment of DT through integration of real-time data from various sources to facilitate comprehensive product monitoring ...Current research on Digital Twin(DT)based Prognostics and Health Management(PHM)focuses on establishment of DT through integration of real-time data from various sources to facilitate comprehensive product monitoring and health management.However,there still exist gaps in the seamless integration of DT and PHM,as well as in the development of DT multi-field coupling modeling and its dynamic update mechanism.When the product experiences long-period degradation under load spectrum,it is challenging to describe the dynamic evolution of the health status and degradation progression accurately.In addition,DT update algorithms are difficult to be integrated simultaneously by current methods.This paper proposes an innovative dual loop DT based PHM framework,in which the first loop establishes the basic dynamic DT with multi-filed coupling,and the second loop implements the PHM and the abnormal detection to provide the interaction between the dual loops through updating mechanism.The proposed method pays attention to the internal state changes with degradation and interactive mapping with dynamic parameter updating.Furthermore,the Independence Principle for the abnormal detection is proposed to refine the theory of DT.Events at the first loop focus on accurate modeling of multi-field coupling,while the events at the second loop focus on real-time occurrence of anomalies and the product degradation trend.The interaction and collaboration between different loop models are also discussed.Finally,the Permanent Magnet Synchronous Motor(PMSM)is used to verify the proposed method.The results show that the modeling method proposed can accurately track the lifecycle performance changes of the entity and carry out remaining life prediction and health management effectively.展开更多
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
Permanent magnets that can maintain a constant magnetic flux over a wide temperature range are highly desirable in certain applications such as precision instruments.2:17-type SmCo permanent magnets are promising for ...Permanent magnets that can maintain a constant magnetic flux over a wide temperature range are highly desirable in certain applications such as precision instruments.2:17-type SmCo permanent magnets are promising for such instruments owing to their excellent high-temperature magnetic properties that can be further manipulated byadding heavy rare earth elements (HREs).展开更多
In this editorial,we comprehensively summarized the preoperative risk factors of early permanent pacemaker implantation after transcatheter aortic valve replacement(TAVR)among patients with severe aortic stenosis from...In this editorial,we comprehensively summarized the preoperative risk factors of early permanent pacemaker implantation after transcatheter aortic valve replacement(TAVR)among patients with severe aortic stenosis from several renowned clinical studies and focused on the primary prevention of managing the modifiable factors,e.g.,paroxysmal atrial fibrillation before the TAVR.展开更多
文摘Permanent magnet synchronous motor(PMSM),known for their compact size and high-power density,is widely used in fields such as electric vehicles and servo drives.However,traditional PID control methods for PMSM cannot dynamically adjust parameters according to varying operating conditions.To address this issue,this paper proposes a PID control method based on a radial basis function(RBF)neural network,which adaptively tunes the PID controller parameters.First,an offline RBF neural network with optimal structural parameters is trained using the current and speed data of the PMSM,and then employed to construct the RBF-PID controller.During online training,the Jacobian information calculated via the RBF neural network is used to adaptively adjust the PID parameters.Simultaneously,the structural parameters of the RBF network are updated in reverse based on the error between the predicted and reference speed values.Finally,numerical simulations and experiments in the context of electric vehicle drive control show that the maximum speed errors of the SMC controller and the RBF-PID controller are 1.97 km/h and 0.17 km/h,respectively.Moreover,the RBF-PID controller outperforms both the SMC and traditional PID controllers in handling sudden speed changes.
文摘This paper introduces a novel chattering-free terminal sliding mode control(SMC)strategy to address chaotic behavior in permanent magnet synchronous generators(PMSG)for offshore wind turbine systems.By integrating an adaptive exponential reaching law with a continuous barrier function,the proposed approach eliminates chattering and ensures robust performance under model uncertainties.The methodology combines adaptive SMC with dynamic switching to estimate and compensates for unknown uncertainties,providing smooth and stable control.Finally,the performance and effectiveness of the proposed approach are compared with those of a previous study.
文摘Objective:To investigate the distribution of health literacy(HL)levels and the association of HL with proactive personality in patients with permanent colostomy.Methods:A cross-sectional study was conducted to measure proactive personality and HL using validated scales.A total of 172 patients with permanent colostomy were selected from January 2021 to May 2022 in Yantai City,China.Descriptive statistics,t-test,ANOVA,Pearson correlation analysis,and multiple linear regression analysis techniques were used.Results:The results obtained from the study showed that the HL status of the participants was moderate.The correlation between participants’total HL scores and proactive personality scores was 0.417(P-value<0.001).In addition,HL showed statistically significant differences according to education level,place of residence,profession,and average monthly household income.Conclusions:This study showed that patients with higher proactive personality scores had higher HL.The key stakeholders require several positive strategies to improve the HL of patients with permanent colostomy by cultivating their proactive personalities,and these important policies will help to improve patient health and quality of life.
文摘BACKGROUND Autoimmune myocarditis(AM)associated with autoimmune diseases can cause complete atrioventricular block(CAVB),but the related autoantigens and the underlying mechanisms are unclear.Anti-SSA/Ro antibodies may play an important role in this process,but cases of AM with positive anti-SSA/Ro antibodies are rare.In addition,arrhythmias,such as atrioventricular block,are very common in patients with autoimmune diseases,but severe atrioventricular block requiring permanent pacemaker implantation is extremely rare.CASE SUMMARY The patient in this case had AM with anti-SSA/Ro antibody positivity,which was associated with connective tissue disease,and the patient subsequently developed CAVB.After intensive immunosuppressive therapy,the antibody test results became negative,and pulmonary hypertension significantly improved.However,the outcome of permanent pacemaker implantation did not change.CONCLUSION In clinical practice,the awareness of adult AM associated with autoimmune diseases combined with CAVB should be strengthened in clinicians,and anti-SSA/Ro antibodies may play a role in this process.Therefore,improving the detection of antibodies and early intervention,such as active immunosuppression therapy,may be very important for improving disease prognosis.For patients who do not respond to immunosuppressive therapy,implantation of a permanent pacemaker may become an essential treatment option.
基金National Natural Science Foundation of China under Grant No.52322808the Fundamental Research Funds for the Central Universities under Grant No.B220202013。
文摘Collapses of seismic slopes demonstrate the characteristics of three-dimensional(3D)shapes.Conducting a 3D analysis of seismic slope stability is more complicated than doing a simplified two-dimensional(2D)analysis.The upper-bound solutions derived from limit analysis of seismic slopes using the pseudo-static method are used to generate an approximate solution for the factor of 3D safety through regression analysis.Such a solution can degenerate to a 2D result when the slope width tends to infinity.The approximation method also can be extended for determining the permanent displacements of 3D slopes under seismic loading.The method is non-iterative and relatively accurate through comparisons with analytical results.Involving stochastic ground motions could easily be used to assess the distribution of permanent displacement that is induced in 3D slopes.
基金the National Natural Science Foundation of China(Grant No.U1760206 and Grant No.51574083)the 111 Project(2.0)of China(No.BP0719037)for the financial support.
文摘A new flow control technology in continuous casting process named permanent magnet flow control-mold(PMFC-Mold)was proposed,in which the permanent magnets are arranged in Halbach array near the narrow region of the mold.The behavior of molten steel flow and the fluctuation of molten steel/slag interface in the PMFC-Mold under different continuous casting speeds were investigated.Firstly,a physical experiment of liquid Ga-In-Sn alloy circulating flow was carried out in Perspex mold with Halbach’s permanent magnets(HPMs)to investigate the magnetic field distribution of HPMs and its impactful electromagnetic braking effect.The numerical simulation of 1450 mm×230 mm slab shows that a stronger magnetic field over 0.3-0.625 T is formed at the wide surface and the narrow surface of the mold,which provides an effective electromagnetic braking for controlling the impingement of molten steel jet and suppressing the fluctuation of molten steel/slag interface.The numerical simulation results show that in the PMFC-Mold,the region with the turbulent kinetic energy greater than 0.01 and 0.04 m^(2)s^(-2)on the upper backflow zone and near the narrow surface of the mold are significantly reduced.The maximum turbulent kinetic energy of the submerged entry nozzle(SEN)jet in front of the narrow surface is significantly reduced,and the SEN jet moves downward before impacting the narrow surface of the mold.In the PMFC-Mold,the region with the surface velocity greater than 0.2 m s^(-1)on the steel/slag interface is eliminated,the flow pattern and fluctuation profiles on the molten steel/slag interface become regular on both sides of SEN,and the vortex near SEN disappears.The maximum fluctuation height of molten steel/slag interface is controlled below 2.59 and 5.40 mm corresponding to the casting speed of 1.6 and 2.0 m min-1,respectively.
基金supported in part by the National Natural Science Foundation of China under Grant 52125701.
文摘Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on magnetic circuit saturation,so this paper proposes a novel analytical method(AM)considering this problem.The key of this new AM is to consider armature reaction flux and armature leakage flux,which are closely related to output torque.Firstly,the expressions,including magnetomotive force(MMF)generated by permanent magnets(PMs)and armature windings are derived,and meanwhile slotting effect is considered by planning flux path.In addition,the expression of leakage flux density generated by armature windings are calculated,and flux density equivalence coefficient of tooth is calculated to be 2/3,which is used to solve the problem of uneven saturation of each tooth.Then,based on main flux factor and leakage flux factor proposed,an improved iteration process is proposed,and by this new process,the flux density of each yoke and tooth can be obtained,which is beneficial to obtain more accurate air-gap flux density and flux linkage.Finally,a prototype of 60-pole 54-slot is fabricated,and the performances of the electric machine,such as back electromotive force(EMF)and output torque,are calculated by this new AM and finite element method(FEM).The results of FEM and experimental test show that this new AM is good enough to calculate the performance of PMTM.
基金supported in part by the Natural Science Foundation of Heilongjiang Province under Grant LH2023E084by the National Natural Science Foundation of China under Grant 51777048。
文摘The coupling effect of dual-parallel rotor connected stator permanent magnet synchronous motor not only affects the magnetic field in the coupling area, but also generates an additional magnetic field in the uncoupled area.The characteristics of the additional magnetic field and its influence on electromagnetic torque are studied in this paper.The topology and parameters of motor are described briefly.The existence of additional magnetic field is proved by the simulation models under two boundary conditions, and its characteristics and source are analyzed. The analytical model is established, and the influence of key parameters on the additional magnetic field is discussed. On this basis, the influence of the additional magnetic field on the electromagnetic torque of the motor is studied, and the analytical expression of the additional torque is constructed.The fluctuation rule is analyzed, and the additional magnetic field separation model is proposed. The theoretical analysis and simulation results reveal and improve the internal mechanism of reducing motor torque ripple by optimizing the duty angle and coupling distance. Finally, a prototype test platform is built to verify the correctness of the proposed theory and the accuracy of the simulation model.
基金The National Natural Science Foundation of China(No.52107039)the Fujian Provincial Natural Science Foundation for Youth(No.2021J05133)the Key Project of the National Natural Science Foundation of China(No.51937002)。
文摘The axial field hybrid permanent magnet memory machine(AFHPM-MM)employs a hybrid permanent magnet excitation combining NdFeB and AlNiCo,achieving high torque density and a wide flux adjustment range.A separated stator structure is adopted to enhance its antidemagnetization capability.To analyze the contributions of AlNiCo and NdFeB to the induced electromotive force(EMF)in the AFHPM-MM,a frozen permeability-based induced EMF calculation method is proposed.Theoretical analysis reveals that the conventional method exhibits substantial errors in calculating the AlNiCo-induced EMF,primarily attributed to its failure to adequately account for the dynamic magnetization characteristic discrepancies of AlNiCo under varying magnetization states.Through the analysis of magnetization variations in AlNiCo during the flux adjustment process under different magnetization states,an improved induced EMF calculation method is proposed.Comparative results indicate that,during the flux enhancement process,the average calculation error of the AlNiCo-induced EMF is reduced from 19.84%to 2.09%,whereas during the flux weakening process,the error is reduced from 3.87%to 1.67%.The proposed method achieves accurate induced EMF calculation for the AFHPM-MM.
基金Project supported by the Natural Science Foundation of Hunan Province(2024JJ4056)the Key Project of Guangxi Zhuang Autonomous Region(AB22080089)the Government of Chongzuo,Guangxi Zhuang Autonomous Region(FA20210716)。
文摘The rapid development of magnetic materials provides the possibility for the application of permanent magnet stirring(PMS).Numerical and experimental investigations were employed with respect to the solidification process of the Al—2Sc alloy controlled by a novel PMS using NdFeB permanent magnets under various rotation speeds(0,50,100 and 150 r/min).The simulated results reveal that the maximum electromagnetic force increases proportionally from 4.14 to 12.39 kN/m^(3)and the maximum tangential velocity increases from 0.13 to 0.36 m/s when the rotation speed of PMS enhances from 50 to 150 r/min in the ingot melt.Besides,the experimental results demonstrate that PMS can achieve a uniform distribution of blocky Al_(3)Sc precipitated phase in the longitudinal direction under the impact of a forced fluid flow.Moreover,increasing rotation speed of PMS is beneficial to refining aluminum grain size significantly and decreasing the texture intensity in the alloy.In addition,the Brinell hardness of Al-2Sc alloy is increased by 33%to 27.8 HB and the tensile strength is enhanced by 34%-128.2 MPa,due to the improved distribution of the strengthening Al_(3)SC phase and the grain refinement of Al matrix under the impact of PMS.This work provides an effective application of NdFeB permanent magnets in the metal cast field.
基金supported by the National Key Research and Development Program of China(No.2022YFB3505301)the National Key Research and Development Program of Shanxi Province(No.202302050201014)+2 种基金the National Natural Science Foundation of China(No.12304148)the Natural Science Basic Research Program of Shanxi Province(No.202203021222219)the China Postdoctoral Science Foundation(No.2023M731452).
文摘Alloying with transition metal elements akin to Sm(CoFeCuZr)z can effectively enhance the magnetic properties of SmCo-based permanent magnets.However,the effects of transition metals doping on its magnetic properties,detailed atomic occupancy and the mechanism for structural stability remain unclear.Specifically,for SmCo3 magnets,there is minimal theoretical study available.Herein,based on first-principles calculations,we systematically investigated the influence of 3d transition metals(TMs)doping on the structural stability,magnetic properties and electronic characteristics of SmCo3 magnets.Our results show that Sc,Ti,V,Fe,Ni,Cu and Zn preferentially occupy the 18h lattice site,while Cr and Mn occupy the 3b and 6c lattice sites,respectively.Doping with Ti,Cr,Mn,Fe,Ni,Cu and Zn contributes to enhancing the stability of SmCo3,whereas the doping of Sc and V adversely affects structural stability.The magnetic calculations reveal that Cr,Mn and Fe doping significantly enhances the total magnetic moment.It is also found that lower concentrations of Cr doping can significantly enhance the magnetocrystalline anisotropy energy(MAE).More intriguingly,when the doping concentrations of Sc,Ni and Cu reach 14.81 at%,22.22 at%and 22.22 at%,respectively,the magnetic easy axis of the system shifts from out-of-plane to in-plane.The optimal doping concentration of Fe in the SmCo_(3) system is determined to be 37.04 at%.The Curie temperature of pure SmCo_(3) is 483.9 K.Our theoretical study offers valuable theoretical guidance for experimental exploration toward SmCo-based permanent magnets with higher performance.
基金support from the Youth Innovation Promotion Association,Chinese Academy of Sciences(2020395)Strategic Priority Research Program of the Chinese Academy of Sciences grant XDB 41000000(Y.L.)+4 种基金National Natural Science Foundation of China(Nos.42273042 and 41931077)"From 0 to 1"Original Exploration Cultivation Project,Institute of Geochemistry,Chinese Academy of Sciences(DHSZZ2023-3)Guizhou Provincial Foundation for Excellent Scholars Program(No.GCC[2023]088)Guizhou Provincial Science and Technology Projects:QKHJCZK[2023]-General 473NSFC Young Scientist Fund(Nos.42303041 and 42403043)。
文摘Permanently shadowed regions(PSRs)on the Moon are potential reservoirs for water ice,making them hot spots for future lunar exploration.The water ice in PSRs would cause distinctive changes in space weathering there,in particular reduction-oxidation processes that diff er from those in illuminated regions.To determine the characteristics of products formed during space weathering in PSRs,the lunar meteorite NWA 10203 with artifi cially added water was irradiated with a nanosecond laser to simulate a micro-meteorite bombardment of lunar soil containing water ice.The TEM results of the water-incorporated sample showed distinct amorphous rims that exhibited irregular thickness,poor stratifi cation,the appearance of bubbles,and a reduced number of npFe^(0).Additionally,EELS analysis showed the presence of ferric iron at the rim of the nanophase metallic iron particles(npFe^(0))in the amorphous rim with the involvement of water.The results suggest that water ice is another possible factor contributing to oxidation during micrometeorite bombardment on the lunar surface.In addition,it off ers a reference for a new space weathering model that incorporates water in PSRs,which could be widespread on asteroids with volatiles.
文摘Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.
基金Project(1053320222852)supported by the Graduate Student Innovation Program of Central South University,China。
文摘Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.
基金co-supported by the National Natural Science Foundation of China(Nos.U223321251875014)+1 种基金the Beijing Natural Science Foundation,China(No.L221008)the China Scholarship Council(No.202106020001).
文摘Current research on Digital Twin(DT)based Prognostics and Health Management(PHM)focuses on establishment of DT through integration of real-time data from various sources to facilitate comprehensive product monitoring and health management.However,there still exist gaps in the seamless integration of DT and PHM,as well as in the development of DT multi-field coupling modeling and its dynamic update mechanism.When the product experiences long-period degradation under load spectrum,it is challenging to describe the dynamic evolution of the health status and degradation progression accurately.In addition,DT update algorithms are difficult to be integrated simultaneously by current methods.This paper proposes an innovative dual loop DT based PHM framework,in which the first loop establishes the basic dynamic DT with multi-filed coupling,and the second loop implements the PHM and the abnormal detection to provide the interaction between the dual loops through updating mechanism.The proposed method pays attention to the internal state changes with degradation and interactive mapping with dynamic parameter updating.Furthermore,the Independence Principle for the abnormal detection is proposed to refine the theory of DT.Events at the first loop focus on accurate modeling of multi-field coupling,while the events at the second loop focus on real-time occurrence of anomalies and the product degradation trend.The interaction and collaboration between different loop models are also discussed.Finally,the Permanent Magnet Synchronous Motor(PMSM)is used to verify the proposed method.The results show that the modeling method proposed can accurately track the lifecycle performance changes of the entity and carry out remaining life prediction and health management effectively.
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
基金financially supported by the National Key R&D Program of China (Nos.2021YFB3501600 and 2022YFB 3505302)the National Natural Science Foundation of China (Nos.52121001 and 52031001)the Young Elite Scientists Sponsorship Program by CAST (No.2023QNRC001)。
文摘Permanent magnets that can maintain a constant magnetic flux over a wide temperature range are highly desirable in certain applications such as precision instruments.2:17-type SmCo permanent magnets are promising for such instruments owing to their excellent high-temperature magnetic properties that can be further manipulated byadding heavy rare earth elements (HREs).
文摘In this editorial,we comprehensively summarized the preoperative risk factors of early permanent pacemaker implantation after transcatheter aortic valve replacement(TAVR)among patients with severe aortic stenosis from several renowned clinical studies and focused on the primary prevention of managing the modifiable factors,e.g.,paroxysmal atrial fibrillation before the TAVR.