The pain-relieving effect of acupuncture is known to involve primary afferent nerves(PANs) via their roles in signal transmission to the CNS.Using single-unit recording in rats,we characterized the generation and tran...The pain-relieving effect of acupuncture is known to involve primary afferent nerves(PANs) via their roles in signal transmission to the CNS.Using single-unit recording in rats,we characterized the generation and transmission of electrical signals in Aβ and Aδ fibers induced by acupuncture-like stimuli.Acupuncture-like signals were elicited in PANs using three techniques:manual acupuncture(MAc),emulated acupuncture(EAc),and electro-acupuncture(EA)-like peripheral electrical stimulation(PES).The discharges evoked by MAc and EAc were mostly in a burst pattern with average intra-burst and inter-burst firing rates of 90 Hz and 2 Hz,respectively.The frequency of discharges in PANs was correlated with the frequency of PES.The highest discharge frequency was 246 Hz in Aβ fibers and 180 Hz in Aδ fibers.Therefore,EA in a dense-disperse mode(at alternating frequency between 2 Hz and 15 Hz or between 2 Hz and 100 Hz) best mimics MAc.Frequencies of EA output>250 Hz appear to be obsolete for pain relief.展开更多
Objective:To study the effect of repetitive peripheral magnetic stimulation(rPMS)combined with conventional rehabilitation measures on shoulder dysfunction in early stroke.Methods:60 patients with shoulder dysfunction...Objective:To study the effect of repetitive peripheral magnetic stimulation(rPMS)combined with conventional rehabilitation measures on shoulder dysfunction in early stroke.Methods:60 patients with shoulder dysfunction in early stroke were selected,and all of them were admitted to our hospital from August 2021 to August 2023.The patients were randomly grouped into a control group(conventional rehabilitation measures intervention,30 cases)and an intervention group(rPMS and conventional rehabilitation measures intervention,30 cases)according to the lottery method.The pain scores,shoulder mobility,and motor function scores of the two groups were compared.Results:The pain score was lower in the intervention group,and the shoulder mobility and motor function scores were higher in the intervention group(P<0.05)as compared to that of the control group.Conclusion:The effect of combining rPMS and conventional rehabilitation measures in treating shoulder dysfunction in early stroke was remarkable and should be popularized.展开更多
Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximat...Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 m A and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers.展开更多
BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can no...BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can nourish nerve, postpone muscular atrophy, and help the postoperative neuromuscular function. OBJECTIVE: To observe the effects of low-frequency pulse percutaneous electric stimulation on the functional recovery of postoperative patients with peripheral nerve injury, and quantitatively evaluate the results of electromyogram (EMG) examination before and after treatment. DESIGN : A retrospective case analysis SETTING: The Sixth People's Hospital affiliated to Shanghai Jiaotong University PARTICIPANTS: Nineteen postoperative inpatients with peripheral nerve injury were selected from the De- partment of Orthopaedics, the Sixth People's Hospital affiliated to Shanghai Jiaotong University from June 2005 to January 2006, including 13 males and 6 females aged 24-62 years with an average of 36 years old. There were 3 cases of brachial plexus nerve injury, 3 of median nerve injury, 7 of radial nerve injury, 3 of ul- nar nerve injury and 3 of common peroneal nerve injury, and all the patients received probing nerve fiber restoration. Their main preoperative manifestations were dennervation, pain in limbs, motor and sensory disturbances. All the 19 patients were informed with the therapeutic program and items for evaluation. METHODS: ① Low-frequency pulse percutaneous electric stimulation apparatus: The patients were given electric stimulation with the TERESA cantata instrument (TERESA-0, Shanghai Teresa Health Technology, Co., Ltd.). The patients were stimulated with symmetric square waves of 1-111 Hz, and the intensity was 1.2-5.0 mA, and it was gradually adjusted according to the recovered conditions of neural regeneration following the principle that the intensity was strong enough and the patients felt no obvious upset. They were treated for 4- 24 weeks, 10-30 minutes for each time, 1-3 times a day, and 6 weeks as a course. ② EMG examination was applied to evaluate the recoveries of recruitment, motor conduction velocity (MCV) and sensory conduction velocity (SCV) before and after treatment. The patients were examined with the EMG apparatus (DIS- A2000C, Danmark) before and after the treatment of percutaneous electric stimulation. ③Standards for evaluating the effects included cured (complete recovery of motor functions, muscle strength of grade 5, no abnormality in EMG examination), obviously effective [general recovery of motor function, muscle strength of grade 4, no or a few denervation potentials, motor conduction velocity (MCV) and sensory conduction velocity (SCV)], improved (partial recovery of motor function, muscle strength of grade 3, denervation potentials and reinneration potentials, slowed MCV and SCV, invalid (no obvious changes of motor function). MAIN OUTCOME MEASURES: ① Ameliorated degree of the nerve function of the postoperative patients with peripheral nerve injury treated with percutaneous electric stimulation; ② Changes of EMG examination before and after treatment. RESULTS: All the 19 postoperative patients with peripheral nerve injury were involved in the analysis of results. ① Comparison of nerve function before and after treatment in 19 patients with peripheral nerve injury of different sites: For the patients with radial nerve injury (n=7), the nerve functions all completely recovered after 8-week treatment, and the cured and obvious rate was 100% (7/7); For the patients with brachial plexus nerve injury (n=3), 1 case had no obvious improvement, and the cured and obvious rate was 67% (2/3); For the patients with common peroneal nerve injury (n=3), the extension of foot dorsum generally recovered in 1 case of nerve contusion after 4-week treatment, and the cured and obvious rate was 67% (2/3); For the patients with median nerve injury (n=3), muscle strength was obviously recovered, and the cured and obvious rate was 100% (3/3); For the patients with ulnar nerve injury (n=3), 1 case only had recovery of partial senses, and the cured and obvious rate was 67% (2/3). Totally 9 cases were cured, 7 were obviously effective, 1 was improved, and only 2 were invalid. After 4 courses, the cured rate of damaged nerve function after four courses was 47% (9/19), and effective rate was 89% (17/19).② Comparison of EMG examination before and after treatment: Before and after percutaneous electric stimulation, he effective rates of recruitment, MCV and SCV were 89% (17/19), 58% (11/19), 47% (9/19) respectively, and there were extremely obvious differences (P〈 0.01). CONCLUSION: ①Low-frequency pulse percutaneous electric stimulation can improve the nerve function of postoperative patients with peripheral nerve injury of different sites, especially that the injuries of radial nerve and median nerve recover more obviously. ②Percutaneous electric stimulation can ameliorate the indexes of EMG examination, especially the recruitment, in postoperative patients with peripheral nerve injury.展开更多
Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implante...Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implanted pulse generators.These facto rs necessitate invasive surgical implantation and limit potential applications.Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications.However,device miniaturization presents a serious engineering challenge.This review presents significant advancements from several groups that have overcome this challenge and developed millimetricsized nerve stimulation devices.These are based on antennas,mini-coils,magneto-electric and optoelectronic materials,or receive ultrasound power.We highlight key design elements,findings from pilot studies,and present several considerations for future applications of these devices.展开更多
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim...After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.展开更多
Loss of sensory function for upper-limb amputees inevitably devastates their life qualities, and lack of reliable sensory feedback is the biggest defect to sophisticated prosthetic hands, greatly hindering their usefu...Loss of sensory function for upper-limb amputees inevitably devastates their life qualities, and lack of reliable sensory feedback is the biggest defect to sophisticated prosthetic hands, greatly hindering their usefulness and perceptual embodiment. Thus, it is extremely necessary to accomplish an intelligent prosthetic hand with effective tactile sensory feedback for an upper-limb amputee. This paper presents an overview of three kinds of existing sensory feedback approaches, including cutaneous mechanical stimulation(CMS), transcutaneous electrical nerve stimulation(TENS) and direct peripheral nerve electrical stimulation(DPNES). The emphasis concentrates on major scientific achievements, advantages and disadvantages. The TENS on the skin areas with evoked finger sensation(EFS) at upper-limb amputees' residual limbs might be one of the most promising approaches to realize natural sensory feedback.展开更多
Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow ove...Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts(cross-bridges) into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ‘protect' chronically denervated Schwa nn cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.展开更多
Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke,spinal cord injury,or other diseases.However,most current studies on rehabilitat...Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke,spinal cord injury,or other diseases.However,most current studies on rehabilitation using sciatic nerve stimulation focus solely on ankle motor regulation through stimulation of common peroneal and tibial nerves.Using the electrical nerve stimulation method,we here achieved muscle control via different sciatic nerve branches to facilitate the regulation of lower limb movements during stepping and standing.A map of relationships between muscles and nerve segments was established to artificially activate specific nerve fibers with the biomimetic stimulation waveform.Then,characteristic curves depicting the relationship between neural electrical stimulation intensity and joint control were established.Finally,by testing the selected stimulation parameters in anesthetized rats,we confirmed that single-cathode extraneural electrical stimulation could activate combined movements to promote lower limb movements.Thus,this method is effective and reliable for use in treatment for improving and rehabilitating lower limb motor dysfunction.展开更多
Objective:To explore the Intervention effect of central peripheral cooperative training on post-stroke dysarthria.Methods:A total of 30 patients with poststroke dysarthria admitted to the Department of Rehabilitation ...Objective:To explore the Intervention effect of central peripheral cooperative training on post-stroke dysarthria.Methods:A total of 30 patients with poststroke dysarthria admitted to the Department of Rehabilitation Medicine at the First Affiliated Hospital of Yangtze University from September 2020 to December 2022 were selected as the coordination group.Another 30 patients with post-stroke dysarthria admitted from September 2018 to September 2020 were selected as the sequential group.There were no statistically significant differences between the two groups in terms of age,gender,or severity of the primary disease.The sequential group was given sequential treatment of speech training,vocal electromyographic stimulation and transcranial direct current stimulation in chronological order.The coordination group was given transcranial direct current stimulation in addition to speech training and vocal electromyographic stimulation.The Frenchay articulation disorder grades and intervention effects of the two groups were compared.Results:The Frenchay Dysarthria Assessment scores in both the sequential group and the coordination group were significantly higher after the intervention compared to before the intervention.The Frenchay Dysarthria Assessment scores in the coordination group after the intervention were significantly higher than those in the sequential group,with a statistically significant difference(P<0.05).Conclusion:Central-peripheral coordination training can effectively improve dysarthria symptoms in stroke patients,enhancing intervention outcomes and quality of life.展开更多
Sacral neuromodulation(SNM)therapy has revolutionized the management of many forms of anal incontinence,with an expanded use and a medium-term efficacy of 75%overall.This review discusses the technique of SNM therapy,...Sacral neuromodulation(SNM)therapy has revolutionized the management of many forms of anal incontinence,with an expanded use and a medium-term efficacy of 75%overall.This review discusses the technique of SNM therapy,along with its complications and troubleshooting and a discussion of the early data pertaining to peripheral posterior tibial nerve stimulation in incontinent patients.Future work needs to define the predictive factors for neurostimulatory success,along with the likely mechanisms of action of their therapeutic action.展开更多
Background The use of traditional techniques (such as landmark techniques, paresthesia and peripheral nerve stimulator) for upper-limb anesthesia has often been restricted to the expert or enthusiast, which was blin...Background The use of traditional techniques (such as landmark techniques, paresthesia and peripheral nerve stimulator) for upper-limb anesthesia has often been restricted to the expert or enthusiast, which was blind. Recently, ultrasound (US) has been applied to differ blood vessel, pleura and nerve, thus may reduce the risk of complications while have a high rate of success. The aim of this study was to determine if the use of ultrasound guidance (vs. peripheral nerve stimulator, (PNS)) decreases risk of vascular puncture, risk of hemi-diaphragmatic paresis and risk of Homer syndrome and improves the success rate of nerve block. Methods A search strategy was developed to identify randomized control trials (RCTs) reporting on complications of US and PNS guidance for upper-extremity peripheral nerve blocks (brachial plexus) in adults available through PubMed databases, the Cochrane Central Register of Controlled Trials, Embase databases, SinoMed databases and Wanfang data (date up to 2011-12-20). Two independent reviewers appraised eligible studies and extracted data. Risk ratios (OR) were calculated for each outcome and presented with 95% confidence intervals (CI) with the software of Review Manager 5.1.0 System (Cochrane Library). Results Sixteen trials involving 1321 adults met our criteria were included for analysis. Blocks performed using US guidance were more likely to be successful (risk ratio (RR) for block success 0.36, 95% CI 0.23-0.56, P 〈0.00001), decreased incidence of vascular puncture during block performance (RR 0.13, 95% CI 0.06-0.27, P 〈0.00001), decreased the risk of complete hemi-diaphragmatic paresis (RR 0.09, 95% CI 0.03-0.52, P=-0.0001). Conclusions US decreases risks of complete hemi-diaphragmatic paresis or vascular puncture and improves success rate of brachial plexus nerve block compared with techniques that utilize PNS for nerve localization. Larger studies are needed to determine whether or not the use of US can decrease risk of neurologic complications.展开更多
Phantom limb pain(PLP),a common sequela of amputation,affects up to 86%of amputees and significantly impairs quality of life.PLP is thought to stem from complex central and peripheral nervous system plasticity.Current...Phantom limb pain(PLP),a common sequela of amputation,affects up to 86%of amputees and significantly impairs quality of life.PLP is thought to stem from complex central and peripheral nervous system plasticity.Current treatments,including pharmacological and non-pharmacological approaches,have limited efficacy.Recently,extended reality technologies have emerged as promising tools for PLP management,leveraging immersive sensory input to modulate cortical reorganization.Of note,emerging neural modulation techniques also offer promising alternatives,including peripheral nerve stimulation,repetitive transcranial magnetic stimulation and transcranial direct current stimulation.These approaches demonstrate clinical efficacy in relieving pain,improving functional outcomes and reducing opioid usage.Future research could prioritize large-scale trials to validate the efficacy of nerve stimulation techniques and explore their integration with extended reality technologies for PLP.展开更多
基金supported by the National Key Research and Development Program of the Ministry of Science and Technology,China (2016YFC0105501,2019YFC1712104 and 2016YFF0202802)the National Natural Science Foundation of China (81974169, 81671085 and 61527815)。
文摘The pain-relieving effect of acupuncture is known to involve primary afferent nerves(PANs) via their roles in signal transmission to the CNS.Using single-unit recording in rats,we characterized the generation and transmission of electrical signals in Aβ and Aδ fibers induced by acupuncture-like stimuli.Acupuncture-like signals were elicited in PANs using three techniques:manual acupuncture(MAc),emulated acupuncture(EAc),and electro-acupuncture(EA)-like peripheral electrical stimulation(PES).The discharges evoked by MAc and EAc were mostly in a burst pattern with average intra-burst and inter-burst firing rates of 90 Hz and 2 Hz,respectively.The frequency of discharges in PANs was correlated with the frequency of PES.The highest discharge frequency was 246 Hz in Aβ fibers and 180 Hz in Aδ fibers.Therefore,EA in a dense-disperse mode(at alternating frequency between 2 Hz and 15 Hz or between 2 Hz and 100 Hz) best mimics MAc.Frequencies of EA output>250 Hz appear to be obsolete for pain relief.
文摘Objective:To study the effect of repetitive peripheral magnetic stimulation(rPMS)combined with conventional rehabilitation measures on shoulder dysfunction in early stroke.Methods:60 patients with shoulder dysfunction in early stroke were selected,and all of them were admitted to our hospital from August 2021 to August 2023.The patients were randomly grouped into a control group(conventional rehabilitation measures intervention,30 cases)and an intervention group(rPMS and conventional rehabilitation measures intervention,30 cases)according to the lottery method.The pain scores,shoulder mobility,and motor function scores of the two groups were compared.Results:The pain score was lower in the intervention group,and the shoulder mobility and motor function scores were higher in the intervention group(P<0.05)as compared to that of the control group.Conclusion:The effect of combining rPMS and conventional rehabilitation measures in treating shoulder dysfunction in early stroke was remarkable and should be popularized.
基金supported by the Key Scientific and Technological Program of Linyi City of China,No.201313026
文摘Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 m A and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers.
基金grants from Sci-entific Research Fund of theMinistry of Health, No.20040801 Shanghai Ris-ing-Star Program of Technologi-cal Committee, No.05QMX1438
文摘BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can nourish nerve, postpone muscular atrophy, and help the postoperative neuromuscular function. OBJECTIVE: To observe the effects of low-frequency pulse percutaneous electric stimulation on the functional recovery of postoperative patients with peripheral nerve injury, and quantitatively evaluate the results of electromyogram (EMG) examination before and after treatment. DESIGN : A retrospective case analysis SETTING: The Sixth People's Hospital affiliated to Shanghai Jiaotong University PARTICIPANTS: Nineteen postoperative inpatients with peripheral nerve injury were selected from the De- partment of Orthopaedics, the Sixth People's Hospital affiliated to Shanghai Jiaotong University from June 2005 to January 2006, including 13 males and 6 females aged 24-62 years with an average of 36 years old. There were 3 cases of brachial plexus nerve injury, 3 of median nerve injury, 7 of radial nerve injury, 3 of ul- nar nerve injury and 3 of common peroneal nerve injury, and all the patients received probing nerve fiber restoration. Their main preoperative manifestations were dennervation, pain in limbs, motor and sensory disturbances. All the 19 patients were informed with the therapeutic program and items for evaluation. METHODS: ① Low-frequency pulse percutaneous electric stimulation apparatus: The patients were given electric stimulation with the TERESA cantata instrument (TERESA-0, Shanghai Teresa Health Technology, Co., Ltd.). The patients were stimulated with symmetric square waves of 1-111 Hz, and the intensity was 1.2-5.0 mA, and it was gradually adjusted according to the recovered conditions of neural regeneration following the principle that the intensity was strong enough and the patients felt no obvious upset. They were treated for 4- 24 weeks, 10-30 minutes for each time, 1-3 times a day, and 6 weeks as a course. ② EMG examination was applied to evaluate the recoveries of recruitment, motor conduction velocity (MCV) and sensory conduction velocity (SCV) before and after treatment. The patients were examined with the EMG apparatus (DIS- A2000C, Danmark) before and after the treatment of percutaneous electric stimulation. ③Standards for evaluating the effects included cured (complete recovery of motor functions, muscle strength of grade 5, no abnormality in EMG examination), obviously effective [general recovery of motor function, muscle strength of grade 4, no or a few denervation potentials, motor conduction velocity (MCV) and sensory conduction velocity (SCV)], improved (partial recovery of motor function, muscle strength of grade 3, denervation potentials and reinneration potentials, slowed MCV and SCV, invalid (no obvious changes of motor function). MAIN OUTCOME MEASURES: ① Ameliorated degree of the nerve function of the postoperative patients with peripheral nerve injury treated with percutaneous electric stimulation; ② Changes of EMG examination before and after treatment. RESULTS: All the 19 postoperative patients with peripheral nerve injury were involved in the analysis of results. ① Comparison of nerve function before and after treatment in 19 patients with peripheral nerve injury of different sites: For the patients with radial nerve injury (n=7), the nerve functions all completely recovered after 8-week treatment, and the cured and obvious rate was 100% (7/7); For the patients with brachial plexus nerve injury (n=3), 1 case had no obvious improvement, and the cured and obvious rate was 67% (2/3); For the patients with common peroneal nerve injury (n=3), the extension of foot dorsum generally recovered in 1 case of nerve contusion after 4-week treatment, and the cured and obvious rate was 67% (2/3); For the patients with median nerve injury (n=3), muscle strength was obviously recovered, and the cured and obvious rate was 100% (3/3); For the patients with ulnar nerve injury (n=3), 1 case only had recovery of partial senses, and the cured and obvious rate was 67% (2/3). Totally 9 cases were cured, 7 were obviously effective, 1 was improved, and only 2 were invalid. After 4 courses, the cured rate of damaged nerve function after four courses was 47% (9/19), and effective rate was 89% (17/19).② Comparison of EMG examination before and after treatment: Before and after percutaneous electric stimulation, he effective rates of recruitment, MCV and SCV were 89% (17/19), 58% (11/19), 47% (9/19) respectively, and there were extremely obvious differences (P〈 0.01). CONCLUSION: ①Low-frequency pulse percutaneous electric stimulation can improve the nerve function of postoperative patients with peripheral nerve injury of different sites, especially that the injuries of radial nerve and median nerve recover more obviously. ②Percutaneous electric stimulation can ameliorate the indexes of EMG examination, especially the recruitment, in postoperative patients with peripheral nerve injury.
基金funded by Western Sydney University and The University of Adelaidesupported by the Morton Cure Paralysis Fund and the Neurosurgical Research Foundation。
文摘Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implanted pulse generators.These facto rs necessitate invasive surgical implantation and limit potential applications.Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications.However,device miniaturization presents a serious engineering challenge.This review presents significant advancements from several groups that have overcome this challenge and developed millimetricsized nerve stimulation devices.These are based on antennas,mini-coils,magneto-electric and optoelectronic materials,or receive ultrasound power.We highlight key design elements,findings from pilot studies,and present several considerations for future applications of these devices.
基金supported by the National Key Research and Development Program of China,No.2023YFC3603705(to DX)the National Natural Science Foundation of China,No.82302866(to YZ).
文摘After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.
基金the National Basic Research Program(973) of China(No.2011CB013304)the Medical-Engineering Cross Project of Shanghai Jiao Tong University(No.YG2013MS76)
文摘Loss of sensory function for upper-limb amputees inevitably devastates their life qualities, and lack of reliable sensory feedback is the biggest defect to sophisticated prosthetic hands, greatly hindering their usefulness and perceptual embodiment. Thus, it is extremely necessary to accomplish an intelligent prosthetic hand with effective tactile sensory feedback for an upper-limb amputee. This paper presents an overview of three kinds of existing sensory feedback approaches, including cutaneous mechanical stimulation(CMS), transcutaneous electrical nerve stimulation(TENS) and direct peripheral nerve electrical stimulation(DPNES). The emphasis concentrates on major scientific achievements, advantages and disadvantages. The TENS on the skin areas with evoked finger sensation(EFS) at upper-limb amputees' residual limbs might be one of the most promising approaches to realize natural sensory feedback.
文摘Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts(cross-bridges) into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ‘protect' chronically denervated Schwa nn cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.
基金supported by National Key R&D Program of China(grant nos.2018YFB1307301 and 2017YFE0117000).
文摘Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke,spinal cord injury,or other diseases.However,most current studies on rehabilitation using sciatic nerve stimulation focus solely on ankle motor regulation through stimulation of common peroneal and tibial nerves.Using the electrical nerve stimulation method,we here achieved muscle control via different sciatic nerve branches to facilitate the regulation of lower limb movements during stepping and standing.A map of relationships between muscles and nerve segments was established to artificially activate specific nerve fibers with the biomimetic stimulation waveform.Then,characteristic curves depicting the relationship between neural electrical stimulation intensity and joint control were established.Finally,by testing the selected stimulation parameters in anesthetized rats,we confirmed that single-cathode extraneural electrical stimulation could activate combined movements to promote lower limb movements.Thus,this method is effective and reliable for use in treatment for improving and rehabilitating lower limb motor dysfunction.
文摘Objective:To explore the Intervention effect of central peripheral cooperative training on post-stroke dysarthria.Methods:A total of 30 patients with poststroke dysarthria admitted to the Department of Rehabilitation Medicine at the First Affiliated Hospital of Yangtze University from September 2020 to December 2022 were selected as the coordination group.Another 30 patients with post-stroke dysarthria admitted from September 2018 to September 2020 were selected as the sequential group.There were no statistically significant differences between the two groups in terms of age,gender,or severity of the primary disease.The sequential group was given sequential treatment of speech training,vocal electromyographic stimulation and transcranial direct current stimulation in chronological order.The coordination group was given transcranial direct current stimulation in addition to speech training and vocal electromyographic stimulation.The Frenchay articulation disorder grades and intervention effects of the two groups were compared.Results:The Frenchay Dysarthria Assessment scores in both the sequential group and the coordination group were significantly higher after the intervention compared to before the intervention.The Frenchay Dysarthria Assessment scores in the coordination group after the intervention were significantly higher than those in the sequential group,with a statistically significant difference(P<0.05).Conclusion:Central-peripheral coordination training can effectively improve dysarthria symptoms in stroke patients,enhancing intervention outcomes and quality of life.
文摘Sacral neuromodulation(SNM)therapy has revolutionized the management of many forms of anal incontinence,with an expanded use and a medium-term efficacy of 75%overall.This review discusses the technique of SNM therapy,along with its complications and troubleshooting and a discussion of the early data pertaining to peripheral posterior tibial nerve stimulation in incontinent patients.Future work needs to define the predictive factors for neurostimulatory success,along with the likely mechanisms of action of their therapeutic action.
文摘Background The use of traditional techniques (such as landmark techniques, paresthesia and peripheral nerve stimulator) for upper-limb anesthesia has often been restricted to the expert or enthusiast, which was blind. Recently, ultrasound (US) has been applied to differ blood vessel, pleura and nerve, thus may reduce the risk of complications while have a high rate of success. The aim of this study was to determine if the use of ultrasound guidance (vs. peripheral nerve stimulator, (PNS)) decreases risk of vascular puncture, risk of hemi-diaphragmatic paresis and risk of Homer syndrome and improves the success rate of nerve block. Methods A search strategy was developed to identify randomized control trials (RCTs) reporting on complications of US and PNS guidance for upper-extremity peripheral nerve blocks (brachial plexus) in adults available through PubMed databases, the Cochrane Central Register of Controlled Trials, Embase databases, SinoMed databases and Wanfang data (date up to 2011-12-20). Two independent reviewers appraised eligible studies and extracted data. Risk ratios (OR) were calculated for each outcome and presented with 95% confidence intervals (CI) with the software of Review Manager 5.1.0 System (Cochrane Library). Results Sixteen trials involving 1321 adults met our criteria were included for analysis. Blocks performed using US guidance were more likely to be successful (risk ratio (RR) for block success 0.36, 95% CI 0.23-0.56, P 〈0.00001), decreased incidence of vascular puncture during block performance (RR 0.13, 95% CI 0.06-0.27, P 〈0.00001), decreased the risk of complete hemi-diaphragmatic paresis (RR 0.09, 95% CI 0.03-0.52, P=-0.0001). Conclusions US decreases risks of complete hemi-diaphragmatic paresis or vascular puncture and improves success rate of brachial plexus nerve block compared with techniques that utilize PNS for nerve localization. Larger studies are needed to determine whether or not the use of US can decrease risk of neurologic complications.
基金Supported by the Project of Science and Technology of Xuzhou,No.KC23185.
文摘Phantom limb pain(PLP),a common sequela of amputation,affects up to 86%of amputees and significantly impairs quality of life.PLP is thought to stem from complex central and peripheral nervous system plasticity.Current treatments,including pharmacological and non-pharmacological approaches,have limited efficacy.Recently,extended reality technologies have emerged as promising tools for PLP management,leveraging immersive sensory input to modulate cortical reorganization.Of note,emerging neural modulation techniques also offer promising alternatives,including peripheral nerve stimulation,repetitive transcranial magnetic stimulation and transcranial direct current stimulation.These approaches demonstrate clinical efficacy in relieving pain,improving functional outcomes and reducing opioid usage.Future research could prioritize large-scale trials to validate the efficacy of nerve stimulation techniques and explore their integration with extended reality technologies for PLP.