期刊文献+
共找到4,445篇文章
< 1 2 223 >
每页显示 20 50 100
Symmetric Periodic Solution of Linear Periodic Matrix Equations via BCR Algorithm
1
作者 MA Changfeng XIE Yajun 《数学进展》 北大核心 2025年第4期881-890,共10页
Analysis and design of linear periodic control systems are closely related to the periodic matrix equations.The biconjugate residual method(BCR for short)have been introduced by Vespucci and Broyden for efficiently so... Analysis and design of linear periodic control systems are closely related to the periodic matrix equations.The biconjugate residual method(BCR for short)have been introduced by Vespucci and Broyden for efficiently solving linear systems Aα=b.The objective of this paper is to provide one new iterative algorithm based on BCR method to find the symmetric periodic solutions of linear periodic matrix equations.This kind of periodic matrix equations has not been dealt with yet.This iterative method is guaranteed to converge in a finite number of steps in the absence of round-off errors.Some numerical results are performed to illustrate the efficiency and feasibility of new method. 展开更多
关键词 periodic matrix equation biconjugate residual method symmetric periodic solution convergence analysis
原文传递
Insulin-induced severe thyrotoxic periodic paralysis:A case report
2
作者 Yan-Li Wang Jian Li 《World Journal of Clinical Cases》 SCIE 2025年第7期46-51,共6页
BACKGROUND Thyrotoxic periodic paralysis(TPP)is an endocrine emergency caused by thyrotoxicosis,manifesting mainly as periodic myasthenia and hypokalemia,and posing a serious threat to the patient's health.Fatigue... BACKGROUND Thyrotoxic periodic paralysis(TPP)is an endocrine emergency caused by thyrotoxicosis,manifesting mainly as periodic myasthenia and hypokalemia,and posing a serious threat to the patient's health.Fatigue,strenuous exercise,alcohol abuse,high carbohydrate intake and insulin injections are common triggers of paralysis.This article reports a case of severe TPP induced by insulin injection,elucidates the characteristics and pathogenesis of the disease,analyses the risk factors for triggering TPP,and hopefully provides more clinical data for TPP patients.CASE SUMMARY A 38-year-old Asian man presented to the emergency department with a oneweek history of limb weakness and worsening half-day.His medical history included poorly controlled type 2 diabetes and he had been switched to Aspart50 a week earlier.He was alert and oriented with upper extremity strength grade 3 and lower extremity strength grade 1.Emergency department tests showed hypokalemia of 1.6 mmol/L.The paramedics administered 1.5 g of potassium intravenously,followed by 4.0 g orally.Weakness in the arms and legs improved.He was referred to endocrinology where he was diagnosed with Graves'disease,with suboptimal control and insulin injections possibly causing TPP.We stopped his insulin and he was discharged with a potassium level of 4.0 mmol/L.CONCLUSION Insulin is a trigger for TPP and should be avoided in patients with hyperthyroidism.Early recognition and treatment of TPP is crucial,especially in patients presenting with hypokalemic periodic paralysis. 展开更多
关键词 Thyrotoxic periodic paralysis Potassium metabolism disorders INSULIN Triggers of paralysis Case report
暂未订购
Stochastic Periodic Solutions for Two Populations Game Models with Impulses
3
作者 HOU Meiting QIU Xiaoling 《应用数学》 北大核心 2025年第2期453-467,共15页
The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding sto... The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change. 展开更多
关键词 periodic solution Stochastic game IMPULSES Strategy extinct
在线阅读 下载PDF
Periodic Traveling Wave Solutions of a Single Population Model with Advection and Distributed Delay
4
作者 GUO Zilin YU Tao TANG Xiaosong 《应用数学》 北大核心 2025年第4期988-995,共8页
In this paper,we investigate the periodic traveling wave solutions problem for a single population model with advection and distributed delay.By the bifurcation analysis method,we can obtain periodic traveling wave so... In this paper,we investigate the periodic traveling wave solutions problem for a single population model with advection and distributed delay.By the bifurcation analysis method,we can obtain periodic traveling wave solutions for this model under the influence of advection term and distributed delay.The obtained results indicate that weak kernel and strong kernel can both deduce the existence of periodic traveling wave solutions.Finally,we apply the main results in this paper to Logistic model and Nicholson’s blowflies model. 展开更多
关键词 Single population model Advection Distributed delay periodic traveling wave solution
在线阅读 下载PDF
A vibration isolation method based on local resonance theory:A novel local resonance periodic structure block(LRPB)
5
作者 Gao Meng Tang Zhonghai +2 位作者 Chen Qingsheng Xu Lihui Gao Guangyun 《Earthquake Engineering and Engineering Vibration》 2025年第4期1125-1142,共18页
With the acceleration of urbanization,environmental vibration and noise pollution have become increasingly severe,and traditional vibration and noise reduction technologies are insufficient to meet current vibration c... With the acceleration of urbanization,environmental vibration and noise pollution have become increasingly severe,and traditional vibration and noise reduction technologies are insufficient to meet current vibration control requirements.This study,based on locally resonant theory,designed a novel local resonance periodic block(LRPB).Using the plane wave expansion method(PWEM)and the finite element method(FEM),this study investigated the bandgap characteristics,formation mechanisms,and vibration and acoustic performance of an LRPB under different periodic structures and material selection.The vibration reduction and noise reduction performance of LRPB has been validated through the Qingdao metro project.The research results show that the LRPB is superior to other periodic structures in terms of wide bandgap.Furthermore,configuring soft scatterer material,increasing the unit size,enhancing the material filling rate,and adopting a honeycomb arrangement can effectively reduce bandgap frequency.In structural design,non-high symmetry demonstrates greater advantages.In a study of a subway tunnel,the LRPB demonstrated superior vibration and noise mitigation performance compared to wave impeding block(WIB),thereby demonstrating potential for use in the field of vibration and noise reduction with regard to structures. 展开更多
关键词 local resonant periodic structure bandgap vibration reduction WIB
在线阅读 下载PDF
Mechanical Behavior of Sliding Zone Soil under Compression Considering Periodic Saturation-Drying:Example from a Giant Reservoir Landslide
6
作者 Sha Lu Huiming Tang +2 位作者 Liangqing Wang Xuexue Su Bing Lyu 《Journal of Earth Science》 2025年第5期1936-1947,共12页
The reservoir landslide undergoes periodic saturation-drying cycles affected by reservoir fluctuation in hydropower project area,leading to the irreversible impact on the landslide materials.Sliding zone is the sheari... The reservoir landslide undergoes periodic saturation-drying cycles affected by reservoir fluctuation in hydropower project area,leading to the irreversible impact on the landslide materials.Sliding zone is the shearing part in formation of landslide and controls the further development of landslide.The mechanical behavior of sliding zone soil under compression is a crucial factor in the stability analysis in landslides.In this paper,the sliding zone soil from a giant landslide in the biggest hydropower project area,Three Gorges Reservoir Area,is taken as the research case.The particlesize distribution of the sliding zone soil from this landslide is studied and fractal dimension is adopted as representation.Periodic saturation-drying is introduced as the affecting factor on sliding zone soil properties.The triaxial compression test is conducted to reveal the mechanical behavior of the soil,including stress-strain behavior,elastic modulus,failure stress and strength parameters.These behavior of sliding zone soils with different fractal dimensions are studied under the effects of periodic saturation-drying cycles.The normalized stress-strain curves are displayed for further calculation.The data considering saturation-drying cycles are obtained and compared with the experimental results. 展开更多
关键词 periodic saturation-drying mechanical behavior sliding zone soil LANDSLIDES particle-size distribution stress-strain behavior engineering geology
原文传递
Periodic modulation of adiabatic dynamics in non-reciprocal Landau-Zener systems
7
作者 Rong Chang Sheng-Chang Li 《Chinese Physics B》 2025年第3期259-264,共6页
The control of adiabatic dynamics is essential for quantum manipulation.We investigate the effects of both periodic modulating field and linear sweeping field on adiabatic dynamics based on a non-reciprocal Landau-Zen... The control of adiabatic dynamics is essential for quantum manipulation.We investigate the effects of both periodic modulating field and linear sweeping field on adiabatic dynamics based on a non-reciprocal Landau-Zener model with periodic modulation.We obtain adiabatic phase diagrams in the(ω,δ)parameter space,where the adiabatic region is bounded by the modulating frequencyωgreater than a critical valueω_(c) and the non-reciprocal parameterδless than one.The results show that the adiabaticity of the system is not sensitive to the modulating amplitude.We find that the critical modulating frequency can be expressed as a power function of the modulating period number or the sweeping rate.Our findings suggest that one can change the adiabatic region or improve the adiabaticity by adjusting the parameters of both the modulating and the sweeping fields,which provides an effective means to flexibly control the adiabatic dynamics of non-reciprocal systems. 展开更多
关键词 ADIABATICITY non-reciprocity Landau-Zener tunneling periodic modulation
原文传递
PERIODICITY AND FIXED-TIME STABILIZATION OF DISCONTINUOUS NEURAL NETWORKS WITH MIXED DELAYS: UNBOUNDED DELAY-DEPENDENT CRITERIA
8
作者 Ziwei WANG Lin SUN +1 位作者 Fanchao KONG Rathinasamy SAKTHIVEL 《Acta Mathematica Scientia》 2025年第3期1188-1204,共17页
In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabili... In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results. 展开更多
关键词 Fixed-time stabilization periodic solutions Discontinuous neural systems D-ifferential inclusions theory Proportional delays
在线阅读 下载PDF
Bone implants with triply periodic minimal surface architectures:design,fabrication,and biological performance
9
作者 Jianhui Li Haitao Fan +3 位作者 Licheng Hua Jianke Du Yong He Yu’an Jin 《Bio-Design and Manufacturing》 2025年第4期672-704,I0060,共34页
Triply periodic minimal surface(TPMS)-based bone implants are an innovative approach in orthopedic implantology,offering customized solutions for bone defect repair and regeneration.This review comprehensively examine... Triply periodic minimal surface(TPMS)-based bone implants are an innovative approach in orthopedic implantology,offering customized solutions for bone defect repair and regeneration.This review comprehensively examines the current research landscape of TPMS-based bone implants,addressing key challenges and proposing future directions.It explores design strategies aimed at optimizing mechanical strength and enhancing biological integration,with a particular emphasis on TPMS structures.These design strategies include graded,hierarchical,and hybrid designs,each contributing to the overall functionality and performance of the implants.This review also highlights state-of-the-art fabrication technologies,particularly advancements in additive manufacturing(AM)techniques for creating metal-based,polymer-based,and ceramic-based bone implants.The ability to precisely control the architecture of TPMS structures using AM techniques is crucial for tailoring the mechanical and biological properties of such implants.Furthermore,this review critically evaluates the biological performance of TPMS implants,focusing on their potential to promote bone ingrowth and regeneration.Key factors,such as mechanical properties,permeability,and biocompatibility,are examined to determine the effectiveness of these implants in clinical applications.By synthesizing existing knowledge and proposing innovative research directions,this review underscores the transformative potential of TPMS-based bone implants in orthopedic surgery.The objective is to improve clinical outcomes and enhance patient care through advanced implant designs and manufacturing techniques. 展开更多
关键词 Triply periodic minimal surface Bone implants Design method Additive manufacturing Biological performance
暂未订购
Phase classification of high entropy alloys with composition,common physical,elemental-property descriptors and periodic table representation
10
作者 Shuai LI Jia YANG +2 位作者 Shu LI Dong-rong LIU Ming-yu ZHANG 《Transactions of Nonferrous Metals Society of China》 2025年第6期1855-1874,共20页
Phase classification has a clear guiding significance for the design of high entropy alloys.For mutually exclusive and non-mutually exclusive classifications,the composition descriptors,commonly used physical paramete... Phase classification has a clear guiding significance for the design of high entropy alloys.For mutually exclusive and non-mutually exclusive classifications,the composition descriptors,commonly used physical parameter descriptors,elemental-property descriptors,and descriptors extracted from the periodic table representation(PTR)by the convolutional neural network were collected.Appropriate selection among features with rich information is helpful for phase classification.Based on random forest,the accuracy of the four-label classification and balanced accuracy of the five-label classification were improved to be 0.907 and 0.876,respectively.The roles of the four important features were summarized by interpretability analysis,and a new important feature was found.The model extrapolation ability and the influence of Mo were demonstrated by phase prediction in(CoFeNiMn)_(1-x)Mo_(x).The phase information is helpful for the hardness prediction,the classification results were coupled with the PTR of hardness data,and the prediction error(the root mean square error)was reduced to 56.69. 展开更多
关键词 high entropy alloy phase classification feature engineering periodic table representation convolutional neural network hardness prediction
在线阅读 下载PDF
Enhancing angiogenesis and osseointegration through a double gyroid Ti6Al4V scaffold with triply periodic minimal surface
11
作者 Hao Liu Hao Chen +9 位作者 Bin Sun Danyang Fan Aobo Zhang Hanqiang Liu Hexiang Wei Wenbo Yang Yongyue Li Peng Xia Qing Han Jincheng Wang 《Bio-Design and Manufacturing》 2025年第1期36-54,I0013-I0017,共24页
The pore structure of porous scaffolds plays a crucial role in bone repair.The prevalent bone implant structure in clinical practice is the traditional cubic structure.However,the traditional cubic structure exhibits ... The pore structure of porous scaffolds plays a crucial role in bone repair.The prevalent bone implant structure in clinical practice is the traditional cubic structure.However,the traditional cubic structure exhibits sharp edges and junctions that are not conducive to cell adhesion or growth.In this study,a double gyroid(DG)Ti6Al4V scaffold based on a triply periodic minimal surface(TPMS)structure was devised,and the osseointegration performance of DG structural scaffolds with varying porosities was investigated.Compression tests revealed that the elastic modulus and compressive strength of DG structural scaffolds were sufficient for orthopedic implants.In vitro cellular experiments demonstrated that the DG structure significantly enhanced cell proliferation,vascularization,and osteogenic differentiation compared to the cubic structure.The DG structure with 55%porosity exhibited the most favorable outcomes.In vivo experiments in rabbits further demonstrated that DG scaffolds could promote neovascularization and bone regeneration and maturation;those with 55%porosity performed best.Comparing the surface area,specific surface area per unit volume,and internal flow distribution characteristics of gyroid and DG structure scaffolds,the latter are more conducive to cell adhesion and growth within scaffolds.This study underscored the potential of DG scaffolds based on the TPMS structure in optimizing the pore structure design of titanium scaffolds,inducing angiogenesis,and advancing the clinical application of titanium scaffolds for repairing bone defects. 展开更多
关键词 Double gyroid Triply periodic minimal surface OSSEOINTEGRATION ANGIOGENESIS
暂未订购
Microstructural Topology Optimization for Periodic Beam-Like Structures Using Homogenization Method
12
作者 Jiao Jia Xin He +1 位作者 Zhenchen Liu Shiqing Wu 《Computer Modeling in Engineering & Sciences》 2025年第6期3215-3231,共17页
As primary load-bearing components extensively utilized in engineering applications,beam structures necessitate the design of their microstructural configurations to achieve lightweight objectives while satisfying div... As primary load-bearing components extensively utilized in engineering applications,beam structures necessitate the design of their microstructural configurations to achieve lightweight objectives while satisfying diverse mechanical performance requirements.Combining topology optimization with fully coupled homogenization beam theory,we provide a highly efficient design tool to access desirable periodic microstructures for beams.The present optimization framework comprehensively takes into account for key deformation modes,including tension,bending,torsion,and shear deformation,all within a unified formulation.Several numerical results prove that our method can be used to handle kinds of microstructure design for beam-like structures,e.g.,extreme tension(compression)-torsion stiffness,maximization of minimum critical buckling load,and minimization of structural compliance.When optimizing microstructures for macroscopic performance,we emphasize investigating the influence of shear stiffness on the optimized results.The novel chiral beam-like structures are fabricated and tested.The experimental results indicate that the optimized tension(compression)-torsion structure has excellent buffer characteristics,as compared with the traditional square tube.This proposed optimization framework can be further extended to other physical problems of Timoshenko beams. 展开更多
关键词 Microstructure design topology optimization periodic beam homogenization theory
在线阅读 下载PDF
Robust and resilient Mg-NiTi interpenetrating-phase composites with triply periodic minimal surface configuration
13
作者 Shiyu Zhong Chao Han +7 位作者 Zeyu Qin Amr Osman Lei Zhang Ying Li Shuo Wang Yulun Luo Dingfei Zhang Jian Lu 《Journal of Magnesium and Alloys》 2025年第9期4379-4394,共16页
Magnesium(Mg)-based materials are promising for lightweight structural applications.However,their widespread adoption is significantly constrained by inherent limitations in mechanical properties.To address this chall... Magnesium(Mg)-based materials are promising for lightweight structural applications.However,their widespread adoption is significantly constrained by inherent limitations in mechanical properties.To address this challenge,this study introduces a novel Mg-based interpenetratingphase composite reinforced with a nickel-titanium(NiTi)scaffold featuring a triply periodic minimal surface(TPMS)configuration.By combining experimental investigations with finite element simulations,we systematically elucidate the dual impact of the scaffold’s unit cell size(a)on manufacturing viability and mechanical enhancement.To compensate for compromised infiltration dynamics induced by decreasing a,a critical permeability threshold of 1×10^(-8) m^(2) is proposed for achieving successful composite fabrication.Mechanically,reducing a strengthens the interaction between the scaffold and matrix:the TPMS-configured NiTi scaffolds improve stress transfer,deflect crack propagation,and facilitate damage delocalization,whereas the Mg matrix preserves structural integrity and enables load redistribution.Consequently,the composites significantly outperform pure Mg,and lowering a leads to more substantial enhancements in compressive strength,energy dissipation,and deformation recoverability.This study offers valuable insight into the design and fabrication of highperformance Mg-based materials for structural and biomedical applications. 展开更多
关键词 Additive manufacturing Magnesium composites Shape memory alloy Triply periodic minimal surface Mechanical properties
在线阅读 下载PDF
An optimal control method of internal resonances for vibration isolation system using an aperiodic isolator
14
作者 Yujun Liu Jing Liu +2 位作者 Guang Pan Qiaogao Huang Baowei Song 《Acta Mechanica Sinica》 2025年第1期175-191,共17页
Periodic isolator is well known for its wave filtering characteristic.While in middle and high frequencies,the internal resonances of the periodic isolator are evident especially when damping is small.This study propo... Periodic isolator is well known for its wave filtering characteristic.While in middle and high frequencies,the internal resonances of the periodic isolator are evident especially when damping is small.This study proposes a novel aperiodic vibration isolation for improving the internal resonances control of the periodic isolator.The mechanism of the internal resonances control by the aperiodic isolator is firstly explained.For comparing the internal resonances suppression effect of the aperiodic isolator with the periodic isolator,a dynamic model combing the rigid machine,the isolator,and the flexible plate is derived through multi subsystem modeling method and transfer matrix method,whose accuracy is verified through the finite element method.The influences of the aperiodicity and damping of the isolator on the vibration isolation performance and internal resonances suppression effect are investigated by numerical analysis.The numerical results demonstrate that vibration attenuation performances of the periodic isolator and aperiodic isolator are greatly over than that of the continuous isolator in middle and high frequencies.The aperiodic isolator opens the stop bandgaps comparing with the periodic isolator where the pass bandgaps are periodically existed.The damping of the isolator has the stop bandgap widening effect on both the periodic isolator and the aperiodic isolator.In addition,a parameter optimization algorithm of the aperiodic isolator is presented for improving the internal resonances control effect.It is shown that the vibration peaks within the target frequency band of the aperiodic isolator are effectively reduced after the optimization.Finally,the experiments of the three different vibration isolation systems are conducted for verifying the analysis work. 展开更多
关键词 Internal resonances Vibration isolation periodic structure Vibration wave propagation
原文传递
Multi-strategy improved honey badger algorithm based on periodic mutation and t-distribution perturbation
15
作者 WU Jin SU Zhengdong +2 位作者 TIAN Jinhang WEN Fei CHEN Wenfeng 《High Technology Letters》 2025年第1期63-72,共10页
The honey badger algorithm(HBA),as a new swarm intelligence(SI)optimization algorithm,has shown certain effectiveness in its applications.Aiming at the problems of unsatisfactory initial population distribution of HBA... The honey badger algorithm(HBA),as a new swarm intelligence(SI)optimization algorithm,has shown certain effectiveness in its applications.Aiming at the problems of unsatisfactory initial population distribution of HBA,poor ability to avoid local optimum,and slow convergence speed,this paper proposes a multi-strategy improved HBA based on periodical mutation and t-distribution perturbation,called MHBA.Firstly,a good point set population initialization is introduced to get a uniform initial population.Secondly,periodic mutation and t-distribution perturbation are successively used to improve the algorithm’s ability to avoid local optimum.Finally,the density factor is improved for balancing exploration and exploitation.By comparing MHBA with HBA and 7 other SIs on 6 benchmark functions,it is evident that the performance of MHBA is far superior to HBA.In addition,by applying MHBA to robot path planning,MHBA can identify the shortest path more quickly and consistently compared with competitors. 展开更多
关键词 periodic mutation T-DISTRIBUTION linear decreasing factor robot path planning
在线阅读 下载PDF
Positive Periodic Solutions to a Second-order Nonlinear Differential Equation with an Indefinite Singularity
16
作者 YUAN Shujing LI Shaowen CHENG Zhibo 《数学理论与应用》 2025年第1期81-93,共13页
In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρ... In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρandδare two positive constants and 0<δ≤1,h,e∈L^(1)(R/TZ),g∈L^(1)(R/TZ)is positive.Our proofs are based on the fixed point theorems(Schauder’s fixed point theorem and Krasnoselskii-Guo fixed point theorem)and the positivity of the associated Green function. 展开更多
关键词 Schauder fixed point theorem Krasnoselskii-Guo fixed point theorem Indefinite singular Sublinear and semilinear Positive periodic solution
在线阅读 下载PDF
Periodic solution of parabolic equations and stochastic process
17
作者 WANG Xiao-huan 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期78-84,共7页
In this short paper, we first establish the existence of periodic solutions to parabolic equation in the whole space by using the probability method. Then, the periodicity of some function of stochastic process is als... In this short paper, we first establish the existence of periodic solutions to parabolic equation in the whole space by using the probability method. Then, the periodicity of some function of stochastic process is also studied. 展开更多
关键词 periodic solutions Ito's formula stochastic process
在线阅读 下载PDF
The Tamed Euler Method for Random Periodic Solution of Semilinear SDEs with One-sided Lipschitz Coefficient
18
作者 GUO Yujia NIU Yuanling 《数学理论与应用》 2025年第2期22-39,共18页
This paper aims to investigate the tamed Euler method for the random periodic solution of semilinear SDEs with one-sided Lipschitz coefficient.We introduce a novel approach to analyze mean-square error bounds of the n... This paper aims to investigate the tamed Euler method for the random periodic solution of semilinear SDEs with one-sided Lipschitz coefficient.We introduce a novel approach to analyze mean-square error bounds of the novel schemes,without relying on a priori high-order moment bound of the numerical approximation.The expected order-one mean square convergence is attained for the proposed scheme.Moreover,a numerical example is presented to verify our theoretical analysis. 展开更多
关键词 Tamed Euler method Random periodic solution One-sided Lipschitz coefficient Order-one mean square convergence
在线阅读 下载PDF
An isogeometric approach for vibration characteristics analysis of functionally graded triply periodic minimal sandwich curved-doubly shell integrated with magneto-electro surface layers subjected to lowvelocity impact load
19
作者 Le Hoai Pham Hoang Tu +1 位作者 Van Ke Tran Nguyen Thi Hue 《Defence Technology(防务技术)》 2025年第8期101-125,共25页
In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-ele... In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells. 展开更多
关键词 IGA approach Free vibration and transient response Magneto-electro-elastic curved-doubly shell Low-velocity impact load Functionally graded triply periodic minimal
在线阅读 下载PDF
SPREADING SPEED FOR A TIME-SPACE PERIODIC EPIDEMIC MODEL IN DISCRETE MEDIA
20
作者 Haiqin ZHAO 《Acta Mathematica Scientia》 2025年第3期1005-1018,共14页
This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward... This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward spreading speeds for the infective individuals, which can be used to estimate how fast the disease spreads. To overcome the difficulty arising from the lack of comparison principle for such time-space periodic nonmonotone systems, our proof is mainly based on constructing a series of scalar time-space periodic equations, establishing the spreading speeds for such auxiliary equations and using comparison methods. It may be the first work to study the spreading speed for time-space periodic non-monotone systems. 展开更多
关键词 spreading speed epidemic models time-space periodic habitats
在线阅读 下载PDF
上一页 1 2 223 下一页 到第
使用帮助 返回顶部