This paper considers the quasi-stationary Stefan problem:△u(x,t)=0 in space-time domain,u=0 and Vv +(?)u/(?)u=0 on the free boundary.Under the natural conditions the existence of classical solution locally in time is...This paper considers the quasi-stationary Stefan problem:△u(x,t)=0 in space-time domain,u=0 and Vv +(?)u/(?)u=0 on the free boundary.Under the natural conditions the existence of classical solution locally in time is proved bymaking use of the property of Frechet derivative operator and fixed point theorem. For thesake of simplicity only the one-phase problem is dealt with. In fact two-phase problem can bedealt with in a similar way with more complicated calculation.展开更多
The existence of a local classical solution to the Mullins-Sekerka problem and the convergence to the two-phase quasi-stationary Stefan problem are proved when surface tension approaches zero. This convergence gives a...The existence of a local classical solution to the Mullins-Sekerka problem and the convergence to the two-phase quasi-stationary Stefan problem are proved when surface tension approaches zero. This convergence gives a proof of the existence of a local classical solution of quasi-stationary Stefan problem. The methods work in all dimensions.展开更多
文摘This paper considers the quasi-stationary Stefan problem:△u(x,t)=0 in space-time domain,u=0 and Vv +(?)u/(?)u=0 on the free boundary.Under the natural conditions the existence of classical solution locally in time is proved bymaking use of the property of Frechet derivative operator and fixed point theorem. For thesake of simplicity only the one-phase problem is dealt with. In fact two-phase problem can bedealt with in a similar way with more complicated calculation.
文摘The existence of a local classical solution to the Mullins-Sekerka problem and the convergence to the two-phase quasi-stationary Stefan problem are proved when surface tension approaches zero. This convergence gives a proof of the existence of a local classical solution of quasi-stationary Stefan problem. The methods work in all dimensions.