Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analy...Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analyses revealed the development of crystallographic preferred orientations(CPOs),a slight decrease in mean grain size and J-index across varying proportions of clinopyroxene,and interlobate to amoeboid textures.These findings indicate that dislocation creep is the dominant deformation mechanism for the analyzed samples.展开更多
Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric ma...Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.展开更多
The Shangla Complex ophiolite represents a relic of the Neo-Tethyan oceanic lithosphere along the Indus Suture Zone(also known as the Main Mantle Thrust)in northern Pakistan.This section,thrust onto the continental ma...The Shangla Complex ophiolite represents a relic of the Neo-Tethyan oceanic lithosphere along the Indus Suture Zone(also known as the Main Mantle Thrust)in northern Pakistan.This section,thrust onto the continental margin between the Indian and Karakoram(Asian)plates,is predominantly composed of depleted harzburgites,dunites and chromitites.In this study,we conducted a thorough analysis of mineralogy,whole-rock geochemistry(major oxides,trace elements,PGE),and integrated Re-Os isotopic data from mantle-derived peridotites to understand their petrogenesis and melt evolution.These peridotites exhibit a depleted nature,characterized by a low modal composition of clinopyroxene,a wide forsterite content range in olivine(86.5 to 95.2),and a large variation in Cr#values(25.1–91.4).Their diverse whole-rock geochemistry further suggests varying degrees of partial melting.The Cpx-harzburgites show high average Al_(2)O_(3)(1.83 wt.%),CaO(2.27 wt.%),ΣREE(12.9 ppb),and^(187)Os/^(188)Os values between 0.13095 and 0.12571.On the other hand,the depleted harzburgites and dunites exhibit lower average Al_(2)O_(3)(0.57 wt.%and 0.14 wt.%,respectively),CaO concentration(0.59 wt.%and 0.21 wt.%,respectively),and∑REE concentrations,measured at 12.7 ppb and 8.9 ppb,respectively.The^(187)Os/^(188)Os ratios in the depleted harzburgites and dunites range from 0.12643 to 0.11777,indicating they are less radiogenic compared to the Cpx-harzburgites.The spoon-shaped rare earth elements(REE)patterns suggest that the Cpx-harzburgites underwent low degrees of partial melting(∼10%–15%),whereas the depleted harzburgites and dunites indicate somewhat higher degrees of partial melting(additional melting of the Cpx-harzburgites).The PGE abundances in these depleted harzburgites and dunites are linked to the partial melting of Cpx-harzburgites,resulting in a boninitic-like melt.Their low degree of melting and melt extraction suggests that Cpx-harzburgites initially formed at a mid-ocean ridge(MOR)spreading center or a distal fore-arc basin.In contrast,the depleted harzburgites and dunites were formed during a second phase of melting,followed by refertilization,closely associated with a supra-subduction zone(SSZ)setting.The Re-Os isotopic systematics of the Shangla Complex peridotites reveal model age clusters of ca.250 Ma and ca.450 Ma,potentially corresponding to significant tectonic events in the geodynamic evolution of the Neo-Tethyan,Rheic,and Proto-Tethyan oceans.展开更多
The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)enviro...The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)environment.This study presents new whole-rock major element,trace element,and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution.Harzburgites have high CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to abyssal peridotites,whereas dunites have low CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to SSZ peridotites.The Cr^(#)and TiO_(2) of chromian spinels in the harzburgites suggest as much as about 15%–20%melting and the dunites are more depleted with>40%melting.The harzburgites and the dunites and high-Cr chromitites represent,respectively,the products of low-degree partial melting in a back-arc setting,and the products of melt-rock interaction in a SSZ environment.The calculated fO_(2) values for dunites and high-Cr chromitites(-0.17–+0.23 and+2.78–+5.65,respectively and generally above the FMQ buffer)are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting.展开更多
Hydrous Cr-bearing uvarovite garnets are rare in natural occurrences and belong to the ugrandite series and exist in binary solid solutions with grossular and andradite garnets. Here, we report the occurrence of hydro...Hydrous Cr-bearing uvarovite garnets are rare in natural occurrences and belong to the ugrandite series and exist in binary solid solutions with grossular and andradite garnets. Here, we report the occurrence of hydrous uvarovite garnet having Cr_(2)O_(3) upto 19.66 wt% and CaO of 32.12–35.14 wt% in the serpentinized mantle peridotites of Naga Hills Ophiolite(NHO), India. They occur in association with low-Cr diopsides. They are enriched in LILE(Ba, Sr), LREEs, with fractionating LREE-MREE [avg.(La/Sm)_(N) = 2.16] with flat MREE/HREE patterns [avg.(Sm/Yb)_(N) = 0.95]. Raman spectra indicate the presence of hydroxyl(OH^(–)) peaks from 3500 to 3700 cm^(-1). Relative abundances in fluid mobile elements and their close association with clinopyroxenes are suggestive of the formation of uvarovite garnets through low temperature metasomatic alteration of low-Cr diopsides by hydrothermal slab fluids. The high LREE concentration and absence of Eu anomaly in the garnet further attest to alkaline nature of the transporting slab dehydrated fluid rather the involvement of low-p H solution. The chemical characteristics of the hydroxyl bearing uvarovite hosted by the mantle peridotite of NHO deviate from the classical features of uvarovite garnet, and their origin is attributed to the fluid-induced metasomatism of the sub arc mantle wedge in a suprasubduction zone regime.展开更多
The peridotite xenoliths are widely distributed in the Cenozoic basalts, Eastern China. However, their petrogenesis is hotly controversial. The peridotite xenoliths of Nanjing are found embedded in Cenozoic alkali bas...The peridotite xenoliths are widely distributed in the Cenozoic basalts, Eastern China. However, their petrogenesis is hotly controversial. The peridotite xenoliths of Nanjing are found embedded in Cenozoic alkali basalt. Most of the xenoliths are rounded and small to moderate in size(typically 5~10 cm in diameter), though larger ones have been found. Nearly all small xenoliths are harzburgite and dunite. However, the big ones have zoned structure: lherzolite core and harzburgite or dunite rim with new growth clinopyroxene(Cpx) as eyeliner along their margins. Petrology, mineralogy, and Major and trace element compositions of the Nanjing peridotite xenoliths in the Cenozoic basalts are measured to provide an insight into the nature of their mantle sources and processes. Our works suggest that they were suffered from a partial melting process and subsequently underwent a process of melt-peridotite interaction. The evidences of partial melting are as follows. Firstly, the lherzolite core is mostly composed of olivine(Ol) + orthopyroxene(Opx) + Cpx with minor spinel(Spl), however, the harzburgite or dunite rim is mostly complosed of Ol + Opx with minor Cpx. Secondly, from the lherzolite core to the harzburgite or dunite rim, Ol and Opx contents are gradually increased, inversely, Cpx contents are decreased, and the Spl disappears. Thirdly, Mg# values of Ol are increased from the core(~89.5) to the rim(>92) of the peridotite xenolith, but FeO contents(from 11.0 to 8.1) in Ol are opposite.Forthly, Mg#(from 90 to 93) and Cr#(from 4 to 17) values of the Opx are increased, but its Al2O3 contents(from 5.0 to 2.0) are decreased from the core to the rim. The evidences of meltperidotite interaction are mostly from clinopyroxenes. The clinopyroxenes can roughly divided into two groups: original clinopyroxenes of the peridotite and new growth clinopyroxenes generated by melt-peridotite interaction. The original clinopyroxenes are generally in the inner of peridotite xenoliths such as lherzolite. They are mostly coarse-grained, euhedral and bottle-green. However, the new growth clinopyroxenes generally occur as eyeliner along the margin of the peridotite xenoliths. They are generally fine-grained, irregular and light green. Compared with the original clinopyroxenes, the new growth ones have low Na2O and Al2O3 and high CaO contents. The Nanjing peridotite xenoliths in the Cenozoic alkali basalts suggest that the SCLM beneath eastern China might be a fertile mantle which has had a complex history, and is now a mixture of refractory and fertile mantle domains modified by a number of events.展开更多
Taoxinghu metamorphic peridotite is a firstly reported mantle sequence of ophiolite since Longmuco-Shuanghu-Lancangjiang suture zone (LSLSZ) was proposed, and it is also an important discovered for ophiolite studyin...Taoxinghu metamorphic peridotite is a firstly reported mantle sequence of ophiolite since Longmuco-Shuanghu-Lancangjiang suture zone (LSLSZ) was proposed, and it is also an important discovered for ophiolite studying in central Qiangtang. Based on detailed analyses of whole-rock geochemistry of Taoxinghu metamorphic peridotites and contrast to metamorphic peridotites in typical ophiolites worldwide, the paper investigates their petrogenesis and geological implication. The petrologic results show that the protolith of Taoxinghu metamorphic perdotites have the mineral assemblage and texture characteristic of mantle peridotite. Most metamorphic peridotites hav near global abyssal peridotites major elements contents, while the few is similar to SSZ-type peridotites. They exhibit typically U-shaped REE patterns, characterized by slight enrichment of LREE and HREE relative to MREE and a low fractionated LREE to HREE segment. Trace elements contents are low and all samples are strong enrichment in Cs, U, Pb, weak enrichment in Ba and depletion in Th, but negative Nb anomalies are only observed in few samples. That suggests Taoxinghu metamorphic peridotites have depletion mantle and suprasubduction affinities. A two-stage evolution history is considered: Taoxinghu metamorphic peridotites originated as the residue from melting at a ridge with 7%-20% degree of fraction melting and were subsequently modified by interaction with mafic melt and aqueous fluid within mantle wedge on subducted zone. Combined with previous studies, we preliminarily propose Taoxinghu metamorphic peridotites may be the Products of initial rifting of palo-Tethys, forming at middle Ordivician-upper Cambrian, and they may be the direct evidences for spreading of palo-Tethys.展开更多
The Xigaze ophiolite crops out in the central segment of the Yarlung Zangbo suture zone,southern Tibet(Fig.1).It is characterized by large amounts of ultramafic units with minor mafic rocks.The mafic rocks consist of ...The Xigaze ophiolite crops out in the central segment of the Yarlung Zangbo suture zone,southern Tibet(Fig.1).It is characterized by large amounts of ultramafic units with minor mafic rocks.The mafic rocks consist of gabbros,展开更多
The ophiolite suite from south Andaman Islands forms part of the Tethyan Ophiolite Belt and preserves the remnants of an ideal ophiolite sequence comprising a basal serpentinized and tectonised mantle peridotite follo...The ophiolite suite from south Andaman Islands forms part of the Tethyan Ophiolite Belt and preserves the remnants of an ideal ophiolite sequence comprising a basal serpentinized and tectonised mantle peridotite followed by ultramafic and mafic cumulate units, basaltic dykes and spilitic pillow basalts interlayered with arkosic wacke. Here, we present new major, trace, rare earth(REE) and platinum group(PGE) element data for serpentinized and metasomatized peridotites(dunites) exposed in south Andaman representing the tectonized mantle section of the ophiolite suite. Geochemical features of the studied rocks, marked by Al_2 O_3/TiO_2 > 23, LILE-LREE enrichment, HFSE depletion, and U-shaped chondrite-normalized REE patterns with(La/Sm)N > 1 and(Gd/Yb)N <1, suggest contributions from boninitic mantle melts. These observations substantiate a subduction initiation process ensued by rapid slab roll-back with extension and seafloor spreading in an intraoceanic fore-arc regime. The boninitic composition of the serpentinized peridotites corroborate fluid and melt interaction with mantle manifested in terms of(i) hydration, metasomatism and serpentinization of depleted, MORB-type, sub-arc wedge mantle residual after repeated melt extraction; and(ii) refertilization of refractory mantle peridotite by boninitic melts derived at the initial stage of intraoceanic subduction. Serpentinized and metasomatized mantle dunites in this study record both MOR and intraoceanic arc signatures collectively suggesting suprasubduction zone affinity. The elevated abundances of Pd(4.4-12.2 ppb) with highΣPPGE/∑IPGE(2-3) and Pd/Ir(2-5.5) ratios are in accordance with extensive melt-rock interaction through percolation of boninitic melts enriched in fluid-fluxed LILE-LREE into the depleted mantle after multiple episodes of melt extraction. The high Pd contents with relatively lower Ir concentrations of the samples are analogous to characteristic PGE signatures of boninitic magmas and might have resulted by the infiltration of boninitic melts into the depleted and residual mantle wedge peridotite during fore-arc extension at the initial stage of intraoceanic subduction. The PGE patterns with high Os + Ir(2-8.6 ppb)and Ru(2.8-8.4 ppb) also suggest mantle rejuvenation by infiltration of melts derived by high degree of mantle melting. The trace, REE and PGE data presented in our study collectively reflect heterogeneous mantle compositions and provide insights into ocean-crust-mantle interaction and associated geochemical cycling within a suprasubduction zone regime.展开更多
Hydrogen isotopic compositions of pyroxenes in peridotite xenoliths from the Nushan volcano, Anhui Province, SE China have been obtained using an ion probe (Cameca 1270). D/H ratios are constant within a single grain ...Hydrogen isotopic compositions of pyroxenes in peridotite xenoliths from the Nushan volcano, Anhui Province, SE China have been obtained using an ion probe (Cameca 1270). D/H ratios are constant within a single grain and among the different grains from the same sample. The lack of correlation between the D/H ratios and the hydrogen contents indicates that the hydrogen isotopic compositions are inherited from their mantle source. Combining with the δD values of coexisting amphiboles, it is inferred that the Nushan mantle experienced at least a two-stage metasomatic event. One was responsible for formation of amphiboles with extremely variable δD values, and the other was probably responsible for the high δD values (up to ?20‰) of some clinopyroxenes from peridotites, clinopyroxene and mica megacrysts. High δD values point to a subduction-related fluid being involved in one metasomatic event. The primary δD values (?90‰ to ?140‰) of the Nushan pyroxenes, together with data gleaned from the literature, suggest that the D/H ratios of the nominally anhydrous mineral reservoir might have differed from that of the other mantle hydrogen in being relatively depleted in D.展开更多
We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetr...We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetrated by two quadrilateral signal crystals with sizes of 17 pm × 10 μm and 20 μm × 7 μm,respectively.The moissanite is green with parallel extinction.The absorption peaks in its Raman spectra are at 967-971 cm-1,787-788 cm-1,and 766 cm-1.The absorption peaks in the infrared spectra are at 696 cm-1,767 cm-1,1450 cm-1,and 1551 cm-1,which are distinctly different from the peaks for synthetic silicon carbide.Moissanites have been documented to form in ultra-high pressure,high temperature,and extremely low fO2 environments and their 13C-depleted compositions indicate a lower mantle origin.Combined with previous studies about other ultra-high pressure and highly reduced minerals in Luobusa ophiolite,the in-situ natural moissanite we found indicates a deep mantle origin of some materials in the mantle sequence of Luobusa ophiolite.Further,we proposed a transformation model to explain the transfer process of UHP materials from the deep mantle to ophiolite sequence and then to the supra-subduction zone environment.Interactions between the crown of the mantle plume and mid-ocean ridge are suggested to be the dominant mechanism.展开更多
The Songshugou peridotite massif is located in the north of Shangdan suture zone, North Qinling orogenic belt of Central China. The massif is mainly composed of fine-grained mylonitic dunites, coarse-grained dunites, ...The Songshugou peridotite massif is located in the north of Shangdan suture zone, North Qinling orogenic belt of Central China. The massif is mainly composed of fine-grained mylonitic dunites, coarse-grained dunites, fine- and coarse-grained harzburgites, and minor clinopyroxenites. The coarsegrained dunites as well as parts of the harzburgites host small-scale chromitites? Chromite grains from various textural types of chromitites and dunites pervasively contain primary and secondary silicate inelusions. Primary inclusions are dominated by monophase olivine, with minor clinopyroxene and a few multiphase mineral assemblages consisting of olivine and clinopyroxene. Secondary inclusions, mainly Cr-chlorite and tremolite, show irregular crystal shapes. Besides, Cr2O3 contents (0.08 wt.%-0.71 wt.%) of primary olivine inclusions are remarkably higher than those of interstitial olivine (<0.1 wt.%). Chr0- mites in the Songshugou peridotite massif are high-Cr type, with Cr^# and Mg^# values ranging of 67.5-87.6, and 23.4-41.2, respectively. The Cr-chlorite, formed by reactions between olivine and chromite in the presence of fluid under middle temperature, indicates the Songshugou peridotite massif has undergone alteration/metamorphism process during emplacement. Chromite grains are modified by these processes, resulting in the various degrees of enrichment of Fe2O3, Cr2O3, Zn, Co and Mn, depletion of MgO, A12O3,Ga, Ti and Ni. Due to low silicate/chromite ratios in the massive ores, chromites from them are slightly influenced by alteration/metamorphism and thus preserve the pristine magmatic compositions. The parental magma calculated based on them has 11.17 wt.%-13.57 wt.% A12O3 and 0.15 wt.%-0.27 wt.% TiO2, which is similar to the parental melts of high-Cr chromitites from elsewhere and comparable with those of boninites. Combined with informations from previous studies, major and trace elements geochemistry of chromite, as well as the nature of the parental magma, it can be revealed that the Songshugou chromitities formed in a supra-subduction zone environment.展开更多
Serpentinization produces molecular hydrogen(H2)that can support communities of microorganisms in hydrothermal fields;H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron,and conseque...Serpentinization produces molecular hydrogen(H2)that can support communities of microorganisms in hydrothermal fields;H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron,and consequently iron oxide(magnetite or hematite)forms.However,the mechanisms that control H2 and iron oxide formation are poorly constrained.In this study,we performed serpentinization experiments at 311℃ and 3.0 kbar on olivine(with <5% pyroxene),orthopyroxene,and peridotite.The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution.Olivine-derived serpentine had a significantly lower FeO content(6.57±1.30 wt.%)than primary olivine(9.86 wt.%),whereas orthopyroxene-derived serpentine had a comparable FeO content(6.26±0.58 wt.%)to that of primary orthopyroxene(6.24 wt.%).In experiments on peridotite,olivine was replaced by serpentine and iron oxide.However,pyroxene transformed solely to serpentine.After 20 days,olivine-derived serpentine had a FeO content of 8.18±1.56 wt.%,which was significantly higher than that of serpentine produced in olivine-only experiments.By contrast,serpentine after orthopyroxene had a slightly higher FeO content(6.53±1.01 wt.%)than primary orthopyroxene.Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral.After 120 days,the FeO content of olivine-derived serpentine decreased significantly(5.71±0.35 wt.%),whereas the FeO content of orthopyroxene-derived serpentine increased(6.85±0.63 wt.%)over the same period.This suggests that iron oxide preferentially formed after olivine serpentinization.Pyroxene in peridotite gained some Fe from olivine during the serpentinization process,which may have led to a decrease in iron oxide production.The correlation between FeO content and SiO_2 or AI_2 O_3 content in olivine-and orthopyroxene-derived serpentine indicates that aluminum and silica greatly control the production of iron oxide.Based on our results and data from natural serpentinites reported by other workers,we propose that aluminum may be more influential at the early stages of peridotite serpentinization when the production of iron oxide is very low,whereas silica may have a greater control on iron oxide production during the late stages instead.展开更多
Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon.Here,we present new field dat...Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon.Here,we present new field data,petrography,and first comprehensible wholerock geochemistry data and discuss the protolith and tectonic significance of these serpentinites in the region.The studied rock samples are characterized by pseudomorphic textures,including mesh microstructure formed by serpentine intergrowths with cores of olivine,bastites after pyroxene.Antigorite constitutes almost the whole bulk of the rocks and is associated(to the less amount)with tremolite,talc,spinel,and magnetite.Whole-rock chemistry of the Eseka serpentinites led to the distinction of two types.Type 1 has high MgO(>40 wt%)content and high Mg#values(88.80)whereas Type 2 serpentinite samples display relatively low MgO concentration and Mg#values(<40 and 82.88 wt%,respectively).Both types have low Al/Si and high Mg/Si ratios than the primitive mantle,reflecting a refractory abyssal mantle peridotite protolith.Partial melting modeling indicates that these rocks were derived from melting of spinel peridotite before serpentinization.Bulk rock high-Ti content is similar to the values of subducted serpentinites(>50 ppm).This similarity,associated with the high Cr contents,spinel-peridotite protolith compositions and Mg/Si and Al/Si ratios imply that the studied serpentinites were formed in a subductionrelated environment.The U-shaped chondrite normalizedREE patterns of serpentinized peridotites,coupled with similar enrichments in LREE and HFSE,suggest the refertilized nature due to melt/rock interaction prior to serpentinization.Based on the results,we suggest that the Eseka serpentinized peridotites are mantle residues that suffered a high degree of partial melting in a subductionrelated environment,especially in Supra Subduction Zone setting.These new findings suggest that the Nyong series in Cameroon represents an uncontested Paleoproterozoic suture zone between the Congo craton and the Sao Francisco craton in Brazil.展开更多
From Donghai County of Jiangsu Province to Rongcheng County of Shandong Province on the southern border of the Sulu orogen, there exposes an ultramafic belt, accompanied with an ultrahigh-pressure metamorphic zone. It...From Donghai County of Jiangsu Province to Rongcheng County of Shandong Province on the southern border of the Sulu orogen, there exposes an ultramafic belt, accompanied with an ultrahigh-pressure metamorphic zone. It can be further divided into the Xugou belt (the northern belt), and the Maobei-Gangshang belt (the southern belt). One grain of diamond has been discovered from the Zhimafang pyrope peridotite in the southern belt using the heavy mineral method. The diamond grain is 2.13 mm × 1.42 mm × 0.83 mm in size and weighs 9.4 mg. The occurrence of the diamond suggests that the Zhimafang pyrope peridotite xenolith is derived from the lithospheric upper mantle. The tectonic emplacement mechanism of the pyrope peridotite xenoliths in granite-gneisses is obviously different from those in kimberlite. The Sulu orogen was located on the active continental margin of the Sino-Korean craton in the Neoproterozoic. The relatively cold and water-bearing oceanic crustal tholeiite slab subducted beneath the lithospheric mantle of the Sino-Korean craton, and partly melted to produce granitic magma and water-bearing fluids. The magma and fluids pierced through and fractured the overlying lithospheric mantle, and ascended to the crustal level together with the ultramafic mantle fragments as xenoliths.展开更多
We present a new dataset on platinum group elements(PGEs), whole-rock major and trace elements, and mineral chemistry for the peridotites from the Zedang and Luobusa ophiolite suites, Tibet, in an attempt to better ...We present a new dataset on platinum group elements(PGEs), whole-rock major and trace elements, and mineral chemistry for the peridotites from the Zedang and Luobusa ophiolite suites, Tibet, in an attempt to better constrain the petrogenesis of the Zedang and Luobusa ophiolites and the tectonic evolution of the Neo-Tethys. Plots of chondrite-normalized PGE, PGE vs. Mg#, and PGE vs. Al_2O_3 suggest that the lherzolite and harzburgite from Zedang and Luobusa have similar PGE characteristics. The Zedang and Luobusa peridotites display U-shaped REE patterns and are enriched in some incompatible elements, indicative of melt-rock interaction. The PGE characteristics may be attributed to partial melting and heterogeneous melt-rock interaction. Mineral chemistry and whole rock major and trace elements data suggest that lherzolite and harzburgite from Zedang and Luobusa have similar geochemical properties. On the spinel Mg# vs. Cr# plot, the composition of the Zedang and Luobusa peridotites is consistent with both abyssal and subduction-zone peridotites. This study indicates that the Zedang and Luobusa peridotites have a similar origin and evolution path: they could have originated from a normal mid-ocean ridge environment and got refertilization in a supra-subduction zone setting.展开更多
The easternmost part of Southwest Indian Ridge(SWIR) has special crustal structure, magmatic and tectonic processes. Abyssal peridotite from the easternmost part of Southwest Indian Ridge(63.5oE/28oS) is serpentin...The easternmost part of Southwest Indian Ridge(SWIR) has special crustal structure, magmatic and tectonic processes. Abyssal peridotite from the easternmost part of Southwest Indian Ridge(63.5oE/28oS) is serpentinized spinel lherzolite. The accessory spinel has zoned texture, which was studied by petrography, electron probe micro-analysis(EPMA), and backscattered electron(BSE) imaging to reconstruct the petrotectonic and hydrothermal metamorphic history of the host abyssal peridotite. The fresh core is magmatic Al-spinel with low Cr~#. The average extent of melting of the abyssal peridotite is about 5.9%. The composition of fresh magmatic spinel core indicates the studied area to be an anomalously thin crust with a melt-poor system. Hydrothermal reaction modifies the chemical composition of magmatic spinel. Ferritchromit is the first product forming the inner rim during pre-serpentinization. The abyssal ferritchromit crystalized as micro- to nano-sized particle with no triple grain boundary, indicating they crystalized in a rapid cooling process during hydrothermal alteration. Chemical compositions of ferritchromit indicate a hydrothermal metamorphism in amphibolite facies. Magnetite in the outer rim was formed by replacement of ferritchromit during syn- or post-serpentinization. Authigenic chlorites crystallized in two events:(1) after formation of ferritchromit crystallized as vein in fracture-zone near the core of spinel and (2) after formation of magnetite crystallized at outermost rim. They are different in compositions, indicating their formation temperature was about 289 oC and declined to 214 oC. These results show that the abyssal peridotite had undergone amphibolite to lower-greenschist facies hydrothermal events during pre- to syn-serpentinization or post-serpentinization.展开更多
The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuo...The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuoba (汉诺坝), located on the north edge of the intra-North China orogenic belt, are discussed based on the in-situ LAM-ICPMS detected trace element compositions of clinopyroxenes in the Hannuoba peridotitic xenoliths combined with detailed petrography and geochemistry studies. The Hannuoba lithospheric mantle was formed by different partial meltings of the primitive mantle. Most of the samples reflect the partial melting degree of lower than 5% with a few samples of 15%-20%. Major element compositions of the whole rocks and geochemical compositions of clinopyroxenes reveal the coexistence of both fertile and depleted mantle underneath the Hannuoba region during the Cenozoic. This was probably caused by the asthenospheric mantle replacing the aged craton mantle through erosion, intermingling and modification. Our conclusion is further supported by the existence of both carbonatitic magmatic material and silicate melt/ fluid metasomatism as magnified by the trace elements of the clinopyroxencs from the Hannuoba lithospherJc mantle.展开更多
The mineral chemistry and texture of clinopyroxenes in peridotite from the Kingkong tectonic zone of the Southwest Indian Ridge segment in an effort to constrain mantle melting beneath this slow-spreading ridge are re...The mineral chemistry and texture of clinopyroxenes in peridotite from the Kingkong tectonic zone of the Southwest Indian Ridge segment in an effort to constrain mantle melting beneath this slow-spreading ridge are reported. There are three types of clinopyroxenes in the abyssal peridotites: coarse-grained, intergranu- lar and exsolved. The compositional variations among these three types suggest that the coarse-grained clinopyroxene is a mantle-derived source. The A1, Na and Ti contents and the Na/Ti ratio of the coarse- grained clinopyroxene may be used to monitor the degree of partial melting, combined with the contradis- tinction with Spinel Cr#, which is calculated to be between 7.9% and 14.9%, and may represent low degrees of melting in the global ocean ridge system. The along-axis compositional variations in the coarse-grained clinopyroxene suggest that the degree of partial melting is primarily controlled by the transform faults on both sides of the ridge. Nonetheless, the northwestern side of the ridge may be affected by a hypothesised detachment fault as documented by the calculated P-T conditions. Simultaneously high Na and low Ti con- tents in the coarse-grained clinoovroxene points to mantle heterogeneities along the ridge axis.展开更多
Partial melting experiments were carried on KLB-1 peridotite, a xenolith sample from the Earth's upper mantle, at 1.5 GPa and temperatures from 1 300 to 1 600 ℃, with heating time varies from 1 to 30 min. We quantif...Partial melting experiments were carried on KLB-1 peridotite, a xenolith sample from the Earth's upper mantle, at 1.5 GPa and temperatures from 1 300 to 1 600 ℃, with heating time varies from 1 to 30 min. We quantify the axial temperature gradient in the deformation-DIA appa- ratus (D-DIA) and constrain the time scale of partial melting by comparing experimental observa- tions with calculated result from pMELTS program. The compositions of the liquid phase and the coexisting solid phases (clinopyroxene, orthopyroxene, and olivine) agree well with those calculated from pMELTS program, suggesting that local chemical equilibrium achieves during partial melting, although longer heating time is required to homogenize the bulk sample. The Mg# (=Mg/(Mg+Fe) moi.%) of olivines from the 1-minute heating experiment changed continuously along the axial of the graphite capsule. A thermal gradient of 50 ℃/mm was calculated by comparing the Mg# of oli- vine grains with the output of pMELTS program. Olivine grains at the hot end of the graphite cap- sule from the three experiments heated at 1 400 ℃ but with different annealing time show consis- tence on Mg#, indicating that partitioning of Fe2+ between the olivine grains and the silicate melt happened fast, and partial melting occurs in seconds.展开更多
基金supported by the Korea Polar Research Institute project PE24050.
文摘Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analyses revealed the development of crystallographic preferred orientations(CPOs),a slight decrease in mean grain size and J-index across varying proportions of clinopyroxene,and interlobate to amoeboid textures.These findings indicate that dislocation creep is the dominant deformation mechanism for the analyzed samples.
基金supported by funds from the Ministry of Science and Technology of the People's Republic of China(No.2019YFA0708603)NSFC(Nos.41973050,42288201,41930215)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0202)。
文摘Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.
基金supported by a grant from the Science and Technology Innovation Program of Hunan Province(Grant No.2021RC4055)Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring,during the Postdoctoral research of the first author(Zaheen Ullah,Assistant Professor,University of Swat,Pakistan)at the Central South University,Changsha,China.
文摘The Shangla Complex ophiolite represents a relic of the Neo-Tethyan oceanic lithosphere along the Indus Suture Zone(also known as the Main Mantle Thrust)in northern Pakistan.This section,thrust onto the continental margin between the Indian and Karakoram(Asian)plates,is predominantly composed of depleted harzburgites,dunites and chromitites.In this study,we conducted a thorough analysis of mineralogy,whole-rock geochemistry(major oxides,trace elements,PGE),and integrated Re-Os isotopic data from mantle-derived peridotites to understand their petrogenesis and melt evolution.These peridotites exhibit a depleted nature,characterized by a low modal composition of clinopyroxene,a wide forsterite content range in olivine(86.5 to 95.2),and a large variation in Cr#values(25.1–91.4).Their diverse whole-rock geochemistry further suggests varying degrees of partial melting.The Cpx-harzburgites show high average Al_(2)O_(3)(1.83 wt.%),CaO(2.27 wt.%),ΣREE(12.9 ppb),and^(187)Os/^(188)Os values between 0.13095 and 0.12571.On the other hand,the depleted harzburgites and dunites exhibit lower average Al_(2)O_(3)(0.57 wt.%and 0.14 wt.%,respectively),CaO concentration(0.59 wt.%and 0.21 wt.%,respectively),and∑REE concentrations,measured at 12.7 ppb and 8.9 ppb,respectively.The^(187)Os/^(188)Os ratios in the depleted harzburgites and dunites range from 0.12643 to 0.11777,indicating they are less radiogenic compared to the Cpx-harzburgites.The spoon-shaped rare earth elements(REE)patterns suggest that the Cpx-harzburgites underwent low degrees of partial melting(∼10%–15%),whereas the depleted harzburgites and dunites indicate somewhat higher degrees of partial melting(additional melting of the Cpx-harzburgites).The PGE abundances in these depleted harzburgites and dunites are linked to the partial melting of Cpx-harzburgites,resulting in a boninitic-like melt.Their low degree of melting and melt extraction suggests that Cpx-harzburgites initially formed at a mid-ocean ridge(MOR)spreading center or a distal fore-arc basin.In contrast,the depleted harzburgites and dunites were formed during a second phase of melting,followed by refertilization,closely associated with a supra-subduction zone(SSZ)setting.The Re-Os isotopic systematics of the Shangla Complex peridotites reveal model age clusters of ca.250 Ma and ca.450 Ma,potentially corresponding to significant tectonic events in the geodynamic evolution of the Neo-Tethyan,Rheic,and Proto-Tethyan oceans.
基金financially supported by the National Natural Science Foundation of China(92062215,41720104009,42172069)the China Geological Survey(DD20221886,DD20221817,DD20221657,DD20230340,DD20221630)+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0201)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0801)。
文摘The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)environment.This study presents new whole-rock major element,trace element,and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution.Harzburgites have high CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to abyssal peridotites,whereas dunites have low CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to SSZ peridotites.The Cr^(#)and TiO_(2) of chromian spinels in the harzburgites suggest as much as about 15%–20%melting and the dunites are more depleted with>40%melting.The harzburgites and the dunites and high-Cr chromitites represent,respectively,the products of low-degree partial melting in a back-arc setting,and the products of melt-rock interaction in a SSZ environment.The calculated fO_(2) values for dunites and high-Cr chromitites(-0.17–+0.23 and+2.78–+5.65,respectively and generally above the FMQ buffer)are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting.
基金the funding received from the Science and Engineering Research Board (SERB), Govt. of India under GAP 3291funded by Ministry of Earth Science (MoES) with project reference number Mo ES/ P.O. (Seismic) 8 (09)-Geochron/2012。
文摘Hydrous Cr-bearing uvarovite garnets are rare in natural occurrences and belong to the ugrandite series and exist in binary solid solutions with grossular and andradite garnets. Here, we report the occurrence of hydrous uvarovite garnet having Cr_(2)O_(3) upto 19.66 wt% and CaO of 32.12–35.14 wt% in the serpentinized mantle peridotites of Naga Hills Ophiolite(NHO), India. They occur in association with low-Cr diopsides. They are enriched in LILE(Ba, Sr), LREEs, with fractionating LREE-MREE [avg.(La/Sm)_(N) = 2.16] with flat MREE/HREE patterns [avg.(Sm/Yb)_(N) = 0.95]. Raman spectra indicate the presence of hydroxyl(OH^(–)) peaks from 3500 to 3700 cm^(-1). Relative abundances in fluid mobile elements and their close association with clinopyroxenes are suggestive of the formation of uvarovite garnets through low temperature metasomatic alteration of low-Cr diopsides by hydrothermal slab fluids. The high LREE concentration and absence of Eu anomaly in the garnet further attest to alkaline nature of the transporting slab dehydrated fluid rather the involvement of low-p H solution. The chemical characteristics of the hydroxyl bearing uvarovite hosted by the mantle peridotite of NHO deviate from the classical features of uvarovite garnet, and their origin is attributed to the fluid-induced metasomatism of the sub arc mantle wedge in a suprasubduction zone regime.
基金granted by the National Natural Science Foundation of China(Nos.41772054 and 41572039)
文摘The peridotite xenoliths are widely distributed in the Cenozoic basalts, Eastern China. However, their petrogenesis is hotly controversial. The peridotite xenoliths of Nanjing are found embedded in Cenozoic alkali basalt. Most of the xenoliths are rounded and small to moderate in size(typically 5~10 cm in diameter), though larger ones have been found. Nearly all small xenoliths are harzburgite and dunite. However, the big ones have zoned structure: lherzolite core and harzburgite or dunite rim with new growth clinopyroxene(Cpx) as eyeliner along their margins. Petrology, mineralogy, and Major and trace element compositions of the Nanjing peridotite xenoliths in the Cenozoic basalts are measured to provide an insight into the nature of their mantle sources and processes. Our works suggest that they were suffered from a partial melting process and subsequently underwent a process of melt-peridotite interaction. The evidences of partial melting are as follows. Firstly, the lherzolite core is mostly composed of olivine(Ol) + orthopyroxene(Opx) + Cpx with minor spinel(Spl), however, the harzburgite or dunite rim is mostly complosed of Ol + Opx with minor Cpx. Secondly, from the lherzolite core to the harzburgite or dunite rim, Ol and Opx contents are gradually increased, inversely, Cpx contents are decreased, and the Spl disappears. Thirdly, Mg# values of Ol are increased from the core(~89.5) to the rim(>92) of the peridotite xenolith, but FeO contents(from 11.0 to 8.1) in Ol are opposite.Forthly, Mg#(from 90 to 93) and Cr#(from 4 to 17) values of the Opx are increased, but its Al2O3 contents(from 5.0 to 2.0) are decreased from the core to the rim. The evidences of meltperidotite interaction are mostly from clinopyroxenes. The clinopyroxenes can roughly divided into two groups: original clinopyroxenes of the peridotite and new growth clinopyroxenes generated by melt-peridotite interaction. The original clinopyroxenes are generally in the inner of peridotite xenoliths such as lherzolite. They are mostly coarse-grained, euhedral and bottle-green. However, the new growth clinopyroxenes generally occur as eyeliner along the margin of the peridotite xenoliths. They are generally fine-grained, irregular and light green. Compared with the original clinopyroxenes, the new growth ones have low Na2O and Al2O3 and high CaO contents. The Nanjing peridotite xenoliths in the Cenozoic alkali basalts suggest that the SCLM beneath eastern China might be a fertile mantle which has had a complex history, and is now a mixture of refractory and fertile mantle domains modified by a number of events.
基金supported by the National Natural Science Foundation of China (Nos.40872146, 41072166, 41272240)the Project of China Geological Survey (No. 1212011086064,1212011221093)
文摘Taoxinghu metamorphic peridotite is a firstly reported mantle sequence of ophiolite since Longmuco-Shuanghu-Lancangjiang suture zone (LSLSZ) was proposed, and it is also an important discovered for ophiolite studying in central Qiangtang. Based on detailed analyses of whole-rock geochemistry of Taoxinghu metamorphic peridotites and contrast to metamorphic peridotites in typical ophiolites worldwide, the paper investigates their petrogenesis and geological implication. The petrologic results show that the protolith of Taoxinghu metamorphic perdotites have the mineral assemblage and texture characteristic of mantle peridotite. Most metamorphic peridotites hav near global abyssal peridotites major elements contents, while the few is similar to SSZ-type peridotites. They exhibit typically U-shaped REE patterns, characterized by slight enrichment of LREE and HREE relative to MREE and a low fractionated LREE to HREE segment. Trace elements contents are low and all samples are strong enrichment in Cs, U, Pb, weak enrichment in Ba and depletion in Th, but negative Nb anomalies are only observed in few samples. That suggests Taoxinghu metamorphic peridotites have depletion mantle and suprasubduction affinities. A two-stage evolution history is considered: Taoxinghu metamorphic peridotites originated as the residue from melting at a ridge with 7%-20% degree of fraction melting and were subsequently modified by interaction with mafic melt and aqueous fluid within mantle wedge on subducted zone. Combined with previous studies, we preliminarily propose Taoxinghu metamorphic peridotites may be the Products of initial rifting of palo-Tethys, forming at middle Ordivician-upper Cambrian, and they may be the direct evidences for spreading of palo-Tethys.
文摘The Xigaze ophiolite crops out in the central segment of the Yarlung Zangbo suture zone,southern Tibet(Fig.1).It is characterized by large amounts of ultramafic units with minor mafic rocks.The mafic rocks consist of gabbros,
基金the funds from Council of Scientific and Industrial Research(CSIR)to CSIR-National Institute of Oceanography through the MLP-1703 and GAP 2175 projectsupported by Foreign Expert funding from CUGB and Professorial position at the Adelaide University
文摘The ophiolite suite from south Andaman Islands forms part of the Tethyan Ophiolite Belt and preserves the remnants of an ideal ophiolite sequence comprising a basal serpentinized and tectonised mantle peridotite followed by ultramafic and mafic cumulate units, basaltic dykes and spilitic pillow basalts interlayered with arkosic wacke. Here, we present new major, trace, rare earth(REE) and platinum group(PGE) element data for serpentinized and metasomatized peridotites(dunites) exposed in south Andaman representing the tectonized mantle section of the ophiolite suite. Geochemical features of the studied rocks, marked by Al_2 O_3/TiO_2 > 23, LILE-LREE enrichment, HFSE depletion, and U-shaped chondrite-normalized REE patterns with(La/Sm)N > 1 and(Gd/Yb)N <1, suggest contributions from boninitic mantle melts. These observations substantiate a subduction initiation process ensued by rapid slab roll-back with extension and seafloor spreading in an intraoceanic fore-arc regime. The boninitic composition of the serpentinized peridotites corroborate fluid and melt interaction with mantle manifested in terms of(i) hydration, metasomatism and serpentinization of depleted, MORB-type, sub-arc wedge mantle residual after repeated melt extraction; and(ii) refertilization of refractory mantle peridotite by boninitic melts derived at the initial stage of intraoceanic subduction. Serpentinized and metasomatized mantle dunites in this study record both MOR and intraoceanic arc signatures collectively suggesting suprasubduction zone affinity. The elevated abundances of Pd(4.4-12.2 ppb) with highΣPPGE/∑IPGE(2-3) and Pd/Ir(2-5.5) ratios are in accordance with extensive melt-rock interaction through percolation of boninitic melts enriched in fluid-fluxed LILE-LREE into the depleted mantle after multiple episodes of melt extraction. The high Pd contents with relatively lower Ir concentrations of the samples are analogous to characteristic PGE signatures of boninitic magmas and might have resulted by the infiltration of boninitic melts into the depleted and residual mantle wedge peridotite during fore-arc extension at the initial stage of intraoceanic subduction. The PGE patterns with high Os + Ir(2-8.6 ppb)and Ru(2.8-8.4 ppb) also suggest mantle rejuvenation by infiltration of melts derived by high degree of mantle melting. The trace, REE and PGE data presented in our study collectively reflect heterogeneous mantle compositions and provide insights into ocean-crust-mantle interaction and associated geochemical cycling within a suprasubduction zone regime.
基金supported by the National Natural Science Foundation of China(Grants 49803002 and 40473007)Program for New Century Excellent Talents in University(NCET)the CAS-CNRS-CNR cooperative project.
文摘Hydrogen isotopic compositions of pyroxenes in peridotite xenoliths from the Nushan volcano, Anhui Province, SE China have been obtained using an ion probe (Cameca 1270). D/H ratios are constant within a single grain and among the different grains from the same sample. The lack of correlation between the D/H ratios and the hydrogen contents indicates that the hydrogen isotopic compositions are inherited from their mantle source. Combining with the δD values of coexisting amphiboles, it is inferred that the Nushan mantle experienced at least a two-stage metasomatic event. One was responsible for formation of amphiboles with extremely variable δD values, and the other was probably responsible for the high δD values (up to ?20‰) of some clinopyroxenes from peridotites, clinopyroxene and mica megacrysts. High δD values point to a subduction-related fluid being involved in one metasomatic event. The primary δD values (?90‰ to ?140‰) of the Nushan pyroxenes, together with data gleaned from the literature, suggest that the D/H ratios of the nominally anhydrous mineral reservoir might have differed from that of the other mantle hydrogen in being relatively depleted in D.
基金the National Natural Science Foundation of China (Grant No. 41002076 and No. 40921001)the China Geological Survey (Grant No. 1212011121275)the SinoProbe-05-07 of the Ministry of Science and Technology of China (Grant No. 05-07)
文摘We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetrated by two quadrilateral signal crystals with sizes of 17 pm × 10 μm and 20 μm × 7 μm,respectively.The moissanite is green with parallel extinction.The absorption peaks in its Raman spectra are at 967-971 cm-1,787-788 cm-1,and 766 cm-1.The absorption peaks in the infrared spectra are at 696 cm-1,767 cm-1,1450 cm-1,and 1551 cm-1,which are distinctly different from the peaks for synthetic silicon carbide.Moissanites have been documented to form in ultra-high pressure,high temperature,and extremely low fO2 environments and their 13C-depleted compositions indicate a lower mantle origin.Combined with previous studies about other ultra-high pressure and highly reduced minerals in Luobusa ophiolite,the in-situ natural moissanite we found indicates a deep mantle origin of some materials in the mantle sequence of Luobusa ophiolite.Further,we proposed a transformation model to explain the transfer process of UHP materials from the deep mantle to ophiolite sequence and then to the supra-subduction zone environment.Interactions between the crown of the mantle plume and mid-ocean ridge are suggested to be the dominant mechanism.
基金financially supported by the National Natural Science Foundation of China (No. 41672064)the International Geoscience Programme “Diamonds and Recycled Mantle” (No. IGCP-649)
文摘The Songshugou peridotite massif is located in the north of Shangdan suture zone, North Qinling orogenic belt of Central China. The massif is mainly composed of fine-grained mylonitic dunites, coarse-grained dunites, fine- and coarse-grained harzburgites, and minor clinopyroxenites. The coarsegrained dunites as well as parts of the harzburgites host small-scale chromitites? Chromite grains from various textural types of chromitites and dunites pervasively contain primary and secondary silicate inelusions. Primary inclusions are dominated by monophase olivine, with minor clinopyroxene and a few multiphase mineral assemblages consisting of olivine and clinopyroxene. Secondary inclusions, mainly Cr-chlorite and tremolite, show irregular crystal shapes. Besides, Cr2O3 contents (0.08 wt.%-0.71 wt.%) of primary olivine inclusions are remarkably higher than those of interstitial olivine (<0.1 wt.%). Chr0- mites in the Songshugou peridotite massif are high-Cr type, with Cr^# and Mg^# values ranging of 67.5-87.6, and 23.4-41.2, respectively. The Cr-chlorite, formed by reactions between olivine and chromite in the presence of fluid under middle temperature, indicates the Songshugou peridotite massif has undergone alteration/metamorphism process during emplacement. Chromite grains are modified by these processes, resulting in the various degrees of enrichment of Fe2O3, Cr2O3, Zn, Co and Mn, depletion of MgO, A12O3,Ga, Ti and Ni. Due to low silicate/chromite ratios in the massive ores, chromites from them are slightly influenced by alteration/metamorphism and thus preserve the pristine magmatic compositions. The parental magma calculated based on them has 11.17 wt.%-13.57 wt.% A12O3 and 0.15 wt.%-0.27 wt.% TiO2, which is similar to the parental melts of high-Cr chromitites from elsewhere and comparable with those of boninites. Combined with informations from previous studies, major and trace elements geochemistry of chromite, as well as the nature of the parental magma, it can be revealed that the Songshugou chromitities formed in a supra-subduction zone environment.
基金financially supported by the National Natural Science Foundation of China(Nos.41603060,91328204)Postdoctoral Science Foundation of China(Nos.2015M570735,2016T90805)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB06030100)the scientific research fund of the Second Institute of Oceanography,SOA(JG1405)
文摘Serpentinization produces molecular hydrogen(H2)that can support communities of microorganisms in hydrothermal fields;H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron,and consequently iron oxide(magnetite or hematite)forms.However,the mechanisms that control H2 and iron oxide formation are poorly constrained.In this study,we performed serpentinization experiments at 311℃ and 3.0 kbar on olivine(with <5% pyroxene),orthopyroxene,and peridotite.The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution.Olivine-derived serpentine had a significantly lower FeO content(6.57±1.30 wt.%)than primary olivine(9.86 wt.%),whereas orthopyroxene-derived serpentine had a comparable FeO content(6.26±0.58 wt.%)to that of primary orthopyroxene(6.24 wt.%).In experiments on peridotite,olivine was replaced by serpentine and iron oxide.However,pyroxene transformed solely to serpentine.After 20 days,olivine-derived serpentine had a FeO content of 8.18±1.56 wt.%,which was significantly higher than that of serpentine produced in olivine-only experiments.By contrast,serpentine after orthopyroxene had a slightly higher FeO content(6.53±1.01 wt.%)than primary orthopyroxene.Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral.After 120 days,the FeO content of olivine-derived serpentine decreased significantly(5.71±0.35 wt.%),whereas the FeO content of orthopyroxene-derived serpentine increased(6.85±0.63 wt.%)over the same period.This suggests that iron oxide preferentially formed after olivine serpentinization.Pyroxene in peridotite gained some Fe from olivine during the serpentinization process,which may have led to a decrease in iron oxide production.The correlation between FeO content and SiO_2 or AI_2 O_3 content in olivine-and orthopyroxene-derived serpentine indicates that aluminum and silica greatly control the production of iron oxide.Based on our results and data from natural serpentinites reported by other workers,we propose that aluminum may be more influential at the early stages of peridotite serpentinization when the production of iron oxide is very low,whereas silica may have a greater control on iron oxide production during the late stages instead.
文摘Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon.Here,we present new field data,petrography,and first comprehensible wholerock geochemistry data and discuss the protolith and tectonic significance of these serpentinites in the region.The studied rock samples are characterized by pseudomorphic textures,including mesh microstructure formed by serpentine intergrowths with cores of olivine,bastites after pyroxene.Antigorite constitutes almost the whole bulk of the rocks and is associated(to the less amount)with tremolite,talc,spinel,and magnetite.Whole-rock chemistry of the Eseka serpentinites led to the distinction of two types.Type 1 has high MgO(>40 wt%)content and high Mg#values(88.80)whereas Type 2 serpentinite samples display relatively low MgO concentration and Mg#values(<40 and 82.88 wt%,respectively).Both types have low Al/Si and high Mg/Si ratios than the primitive mantle,reflecting a refractory abyssal mantle peridotite protolith.Partial melting modeling indicates that these rocks were derived from melting of spinel peridotite before serpentinization.Bulk rock high-Ti content is similar to the values of subducted serpentinites(>50 ppm).This similarity,associated with the high Cr contents,spinel-peridotite protolith compositions and Mg/Si and Al/Si ratios imply that the studied serpentinites were formed in a subductionrelated environment.The U-shaped chondrite normalizedREE patterns of serpentinized peridotites,coupled with similar enrichments in LREE and HFSE,suggest the refertilized nature due to melt/rock interaction prior to serpentinization.Based on the results,we suggest that the Eseka serpentinized peridotites are mantle residues that suffered a high degree of partial melting in a subductionrelated environment,especially in Supra Subduction Zone setting.These new findings suggest that the Nyong series in Cameroon represents an uncontested Paleoproterozoic suture zone between the Congo craton and the Sao Francisco craton in Brazil.
文摘From Donghai County of Jiangsu Province to Rongcheng County of Shandong Province on the southern border of the Sulu orogen, there exposes an ultramafic belt, accompanied with an ultrahigh-pressure metamorphic zone. It can be further divided into the Xugou belt (the northern belt), and the Maobei-Gangshang belt (the southern belt). One grain of diamond has been discovered from the Zhimafang pyrope peridotite in the southern belt using the heavy mineral method. The diamond grain is 2.13 mm × 1.42 mm × 0.83 mm in size and weighs 9.4 mg. The occurrence of the diamond suggests that the Zhimafang pyrope peridotite xenolith is derived from the lithospheric upper mantle. The tectonic emplacement mechanism of the pyrope peridotite xenoliths in granite-gneisses is obviously different from those in kimberlite. The Sulu orogen was located on the active continental margin of the Sino-Korean craton in the Neoproterozoic. The relatively cold and water-bearing oceanic crustal tholeiite slab subducted beneath the lithospheric mantle of the Sino-Korean craton, and partly melted to produce granitic magma and water-bearing fluids. The magma and fluids pierced through and fractured the overlying lithospheric mantle, and ascended to the crustal level together with the ultramafic mantle fragments as xenoliths.
基金supported by the Marine Geological Survey of the 1 : 250 000 Rizhao Sheet and Lianyungang Sheet (No. GZH201400206)
文摘We present a new dataset on platinum group elements(PGEs), whole-rock major and trace elements, and mineral chemistry for the peridotites from the Zedang and Luobusa ophiolite suites, Tibet, in an attempt to better constrain the petrogenesis of the Zedang and Luobusa ophiolites and the tectonic evolution of the Neo-Tethys. Plots of chondrite-normalized PGE, PGE vs. Mg#, and PGE vs. Al_2O_3 suggest that the lherzolite and harzburgite from Zedang and Luobusa have similar PGE characteristics. The Zedang and Luobusa peridotites display U-shaped REE patterns and are enriched in some incompatible elements, indicative of melt-rock interaction. The PGE characteristics may be attributed to partial melting and heterogeneous melt-rock interaction. Mineral chemistry and whole rock major and trace elements data suggest that lherzolite and harzburgite from Zedang and Luobusa have similar geochemical properties. On the spinel Mg# vs. Cr# plot, the composition of the Zedang and Luobusa peridotites is consistent with both abyssal and subduction-zone peridotites. This study indicates that the Zedang and Luobusa peridotites have a similar origin and evolution path: they could have originated from a normal mid-ocean ridge environment and got refertilization in a supra-subduction zone setting.
基金supported by the National Natural Science Foundation of China (No. 41172050)the Special Fund for Basic Scientific Research of Central Universities, China University of Geosciences (Wuhan)the China Postdoctoral Science Foundation
文摘The easternmost part of Southwest Indian Ridge(SWIR) has special crustal structure, magmatic and tectonic processes. Abyssal peridotite from the easternmost part of Southwest Indian Ridge(63.5oE/28oS) is serpentinized spinel lherzolite. The accessory spinel has zoned texture, which was studied by petrography, electron probe micro-analysis(EPMA), and backscattered electron(BSE) imaging to reconstruct the petrotectonic and hydrothermal metamorphic history of the host abyssal peridotite. The fresh core is magmatic Al-spinel with low Cr~#. The average extent of melting of the abyssal peridotite is about 5.9%. The composition of fresh magmatic spinel core indicates the studied area to be an anomalously thin crust with a melt-poor system. Hydrothermal reaction modifies the chemical composition of magmatic spinel. Ferritchromit is the first product forming the inner rim during pre-serpentinization. The abyssal ferritchromit crystalized as micro- to nano-sized particle with no triple grain boundary, indicating they crystalized in a rapid cooling process during hydrothermal alteration. Chemical compositions of ferritchromit indicate a hydrothermal metamorphism in amphibolite facies. Magnetite in the outer rim was formed by replacement of ferritchromit during syn- or post-serpentinization. Authigenic chlorites crystallized in two events:(1) after formation of ferritchromit crystallized as vein in fracture-zone near the core of spinel and (2) after formation of magnetite crystallized at outermost rim. They are different in compositions, indicating their formation temperature was about 289 oC and declined to 214 oC. These results show that the abyssal peridotite had undergone amphibolite to lower-greenschist facies hydrothermal events during pre- to syn-serpentinization or post-serpentinization.
基金This paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan )(CUGQNL0510)the National Natural Science Foundation of China(No .40425002) .
文摘The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuoba (汉诺坝), located on the north edge of the intra-North China orogenic belt, are discussed based on the in-situ LAM-ICPMS detected trace element compositions of clinopyroxenes in the Hannuoba peridotitic xenoliths combined with detailed petrography and geochemistry studies. The Hannuoba lithospheric mantle was formed by different partial meltings of the primitive mantle. Most of the samples reflect the partial melting degree of lower than 5% with a few samples of 15%-20%. Major element compositions of the whole rocks and geochemical compositions of clinopyroxenes reveal the coexistence of both fertile and depleted mantle underneath the Hannuoba region during the Cenozoic. This was probably caused by the asthenospheric mantle replacing the aged craton mantle through erosion, intermingling and modification. Our conclusion is further supported by the existence of both carbonatitic magmatic material and silicate melt/ fluid metasomatism as magnified by the trace elements of the clinopyroxencs from the Hannuoba lithospherJc mantle.
基金The National Basic Research Program of China under contract No.2013CB429705the Public Science and Technology Research Funds Projects of Ocean,the State Oceanic Administration of the People's Republic of China under contract No.201005003+1 种基金the National Natural Science Foundation of China under contract Nos 41106051,40906037 and 41176045the Fundamental Research Funds of the State Oceanic Administration of the People's Republic of China under contract No.JT1001
文摘The mineral chemistry and texture of clinopyroxenes in peridotite from the Kingkong tectonic zone of the Southwest Indian Ridge segment in an effort to constrain mantle melting beneath this slow-spreading ridge are reported. There are three types of clinopyroxenes in the abyssal peridotites: coarse-grained, intergranu- lar and exsolved. The compositional variations among these three types suggest that the coarse-grained clinopyroxene is a mantle-derived source. The A1, Na and Ti contents and the Na/Ti ratio of the coarse- grained clinopyroxene may be used to monitor the degree of partial melting, combined with the contradis- tinction with Spinel Cr#, which is calculated to be between 7.9% and 14.9%, and may represent low degrees of melting in the global ocean ridge system. The along-axis compositional variations in the coarse-grained clinopyroxene suggest that the degree of partial melting is primarily controlled by the transform faults on both sides of the ridge. Nonetheless, the northwestern side of the ridge may be affected by a hypothesised detachment fault as documented by the calculated P-T conditions. Simultaneously high Na and low Ti con- tents in the coarse-grained clinoovroxene points to mantle heterogeneities along the ridge axis.
基金support by the National Natural Science Foundation of China (No. 41773052)the National Science Foundation of USA (Nos. EAR 1141895, EAR 1045629, and EAR 0968823)
文摘Partial melting experiments were carried on KLB-1 peridotite, a xenolith sample from the Earth's upper mantle, at 1.5 GPa and temperatures from 1 300 to 1 600 ℃, with heating time varies from 1 to 30 min. We quantify the axial temperature gradient in the deformation-DIA appa- ratus (D-DIA) and constrain the time scale of partial melting by comparing experimental observa- tions with calculated result from pMELTS program. The compositions of the liquid phase and the coexisting solid phases (clinopyroxene, orthopyroxene, and olivine) agree well with those calculated from pMELTS program, suggesting that local chemical equilibrium achieves during partial melting, although longer heating time is required to homogenize the bulk sample. The Mg# (=Mg/(Mg+Fe) moi.%) of olivines from the 1-minute heating experiment changed continuously along the axial of the graphite capsule. A thermal gradient of 50 ℃/mm was calculated by comparing the Mg# of oli- vine grains with the output of pMELTS program. Olivine grains at the hot end of the graphite cap- sule from the three experiments heated at 1 400 ℃ but with different annealing time show consis- tence on Mg#, indicating that partitioning of Fe2+ between the olivine grains and the silicate melt happened fast, and partial melting occurs in seconds.