In deep sub-micron ICs, growing amounts of on-die memory and scaling effects make embedded memories more vulnerable to reliability problems, such as soft errors induced by radiation. Error Correction Code(ECC) along w...In deep sub-micron ICs, growing amounts of on-die memory and scaling effects make embedded memories more vulnerable to reliability problems, such as soft errors induced by radiation. Error Correction Code(ECC) along with scrubbing is an efficient method for protecting memories against these errors. However, the latency of coding circuits brings speed penalties in high performance applications. This paper proposed a "bit bypassing" ECC protected memory by buffering the encoded data and adding an identifying address for the input data. The proposed memory design has been fabricated on a 130 nm CMOS process. According to the measurement, the proposed scheme only gives the minimum delay overhead of 22.6%, compared with other corresponding memories. Furthermore, heavy ion testing demonstrated the single event effects performance of the proposed memory achieves error rate reductions by 42.9 to 63.3 times.展开更多
基金Supported by the National Science and Technology Major Project of China(No.2013ZX03006004)
文摘In deep sub-micron ICs, growing amounts of on-die memory and scaling effects make embedded memories more vulnerable to reliability problems, such as soft errors induced by radiation. Error Correction Code(ECC) along with scrubbing is an efficient method for protecting memories against these errors. However, the latency of coding circuits brings speed penalties in high performance applications. This paper proposed a "bit bypassing" ECC protected memory by buffering the encoded data and adding an identifying address for the input data. The proposed memory design has been fabricated on a 130 nm CMOS process. According to the measurement, the proposed scheme only gives the minimum delay overhead of 22.6%, compared with other corresponding memories. Furthermore, heavy ion testing demonstrated the single event effects performance of the proposed memory achieves error rate reductions by 42.9 to 63.3 times.