期刊文献+
共找到654,230篇文章
< 1 2 250 >
每页显示 20 50 100
Progress on Microstructure and Performance Optimization in H/MEAs Regulated by Single and Hierarchical Heterostructures
1
作者 Wang Bing Li Chunyan +2 位作者 Wang Xinhua Li Xiaocheng Kou Shengzhong 《稀有金属材料与工程》 北大核心 2025年第3期640-664,共25页
The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstru... The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs. 展开更多
关键词 heterogeneous structures H/MEAs HDI effect microstructure regulation performance optimization
原文传递
Research on the Performance Optimization of a Hydraulic PTO System for a“Dolphin 1”Oscillating-Body Wave Energy Converter
2
作者 LAI Wen-bin LI Jia-long +2 位作者 RONG Si-zhang YANG Hong-kun ZHENG Xiong-bo 《China Ocean Engineering》 2025年第1期166-178,共13页
In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a c... In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a crucial role in ensuring the stability of the electrical energy output and the efficiency of the overall system.A corresponding mathematical model for the hydraulic PTO system has been established,the factors that influence its performance have been studied,and an algorithm for solving the optimal working pressure has been derived in this paper.Moreover,a PID control method to enable the hydraulic PTO system to automatically achieve optimal performance under different wave conditions has been designed.The results indicate that,compared with single-chamber hydraulic cylinders,double-chamber hydraulic cylinders have a wider application range and greater performance;the accumulator can stabilize the output power of the hydraulic PTO system and slightly increase it;excessively large or small hydraulic motor displacement hinders system performance;and each wave condition corresponds to a unique optimal working pressure for the hydraulic PTO system.In addition,the relationship between the optimal working pressure P_(m)and the pressure P_(h)of the wave force acting on the piston satisfies P_(m)^(2)=∫_(t_(1))^(t_(2))P_(h)^(2)dt/(t_(2)-t_(1)).Furthermore,adjusting the hydraulic motor displacement automatically via a PID controller ensures that the actual working pressure of the hydraulic PTO system consistently reaches or approaches its theoretically optimal value under various wave conditions,which is a very effective control method for enhancing the performance of the hydraulic PTO system. 展开更多
关键词 hydraulic PTO system performance optimization wave energy converter optimal working pressure PID control
在线阅读 下载PDF
Research on Optimization of Performance Management of Rural Commercial Bank Tellers
3
作者 Haojie Li 《Proceedings of Business and Economic Studies》 2025年第4期52-58,共7页
Amid the deepening implementation of rural revitalization strategies and rapid fintech development,rural commercial banks-core financial institutions serving agriculture,rural areas,and farmers(the“three rurals”)and... Amid the deepening implementation of rural revitalization strategies and rapid fintech development,rural commercial banks-core financial institutions serving agriculture,rural areas,and farmers(the“three rurals”)and county economies-have seen their tellers’service quality and operational efficiency directly impact market competitiveness and sustainable development capabilities.This study examines teller performance management in rural commercial banks from a business management perspective.By analyzing structural issues in existing performance management systems and integrating theoretical frameworks with industry case studies,it proposes systematic optimization measures.The research aims to provide practical references for establishing scientific and efficient teller performance management systems in rural commercial banks,thereby enhancing service quality,strengthening talent support,and better serving the rural financial market. 展开更多
关键词 Rural commercial bank TELLER performance management optimization path Business management
在线阅读 下载PDF
Correction to High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation
4
《Energy & Environmental Materials》 2025年第4期296-296,共1页
P.Li,J.Zhong,Y.Fu,Z.Du,L.Jiang,Y.Han,J.Luxa,B.Wu,Z.Sofer,Q.Wei,W.Yang.High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen ... P.Li,J.Zhong,Y.Fu,Z.Du,L.Jiang,Y.Han,J.Luxa,B.Wu,Z.Sofer,Q.Wei,W.Yang.High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation.Energy Environ.Mater.2024,7,e12716. 展开更多
关键词 enhanced hydrogen oxidation nitrogen configuration optimization anion exchange membrane fuel cells high performance anion exchange membrane fuel cells graphene coated nickel
在线阅读 下载PDF
Electrode/Electrolyte Optimization‑Induced Double‑Layered Architecture for High‑Performance Aqueous Zinc‑(Dual)Halogen Batteries
5
作者 Chengwang Zhou Zhezheng Ding +7 位作者 Shengzhe Ying Hao Jiang Yan Wang Timing Fang You Zhang Bing Sun Xiao Tang Xiaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期121-137,共17页
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt... Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries. 展开更多
关键词 Zn metal anodes Double-layered protective film Electrode/electrolyte optimization Aqueous zinc-(dual)halogen batteries
在线阅读 下载PDF
Two Performance Indicators Assisted Infill Strategy for Expensive Many⁃Objective Optimization
6
作者 Yi Zhao Jianchao Zeng Ying Tan 《Journal of Harbin Institute of Technology(New Series)》 2025年第5期24-40,共17页
In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become i... In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems. 展开更多
关键词 expensive multi⁃objective optimization problems infill sample strategy evolutionary optimization algorithm
在线阅读 下载PDF
Ensemble learning-driven multi-objective optimization of the co-pyrolysis process of biomass and coal for high economic and environmental performance
7
作者 Qingchun Yang Dongwen Rong +2 位作者 Qiwen Guo Runjie Bao Dawei Zhang 《Chinese Journal of Chemical Engineering》 2025年第8期23-34,共12页
The biomass and coal co-pyrolysis (BCP) technology combines the advantages of both resources, achieving efficient resource complementarity, reducing reliance on coal, and minimizing pollutant emissions. However, this ... The biomass and coal co-pyrolysis (BCP) technology combines the advantages of both resources, achieving efficient resource complementarity, reducing reliance on coal, and minimizing pollutant emissions. However, this process still encounters numerous challenges in attaining optimal economic and environmental performance. Therefore, an ensemble learning (EL) framework is proposed for the BCP process in this study to optimize the synergistic benefits while minimizing negative environmental impacts. Six different ensemble learning models are developed to investigate the impact of input features, such as biomass characteristics, coal characteristics, and pyrolysis conditions on the product profit and CO_(2) emissions of the BCP processes. The Optuna method is further employed to automatically optimize the hyperparameters of BCP process models for enhancing their predictive accuracy and robustness. The results indicate that the categorical boosting (CAB) model of the BCP process has demonstrated exceptional performance in accurately predicting its product profit and CO_(2) emission (R2>0.92) after undergoing five-fold cross-validation. To enhance the interpretability of this preferred model, the Shapley additive explanations and partial dependence plot analyses are conducted to evaluate the impact and importance of biomass characteristics, coal characteristics, and pyrolysis conditions on the product profitability and CO_(2) emissions of the BCP processes. Finally, the preferred model coupled with a reference vector guided evolutionary algorithm is carried to identify the optimal conditions for maximizing the product profit of BCP process products while minimizing CO_(2) emissions. It indicates the optimal BCP process can achieve high product profits (5290.85 CNY·t−1) and low CO_(2) emissions (7.45 kg·t^(−1)). 展开更多
关键词 BIOMASS PYROLYSIS Optimal design Ensemble learning Economic analysis
在线阅读 下载PDF
Vat photopolymerization of silica-based ceramic cores using high solid loading slurry with performance optimization
8
作者 Yong-kang Yang Bo-ran Wang +4 位作者 Zi-qi Jia Shu-xin Niu Xin Li Ya-jie Guo Xi-qing Xu 《China Foundry》 2025年第5期555-564,共10页
Vat photopolymerization(VPP)3D printing is an optimized technology for complex-shaped ceramic cores,in which the solid loading of ceramic slurries greatly infiuences the microstructure and property of the final cerami... Vat photopolymerization(VPP)3D printing is an optimized technology for complex-shaped ceramic cores,in which the solid loading of ceramic slurries greatly infiuences the microstructure and property of the final ceramic parts.However,the high solid loading of slurries is highly limited by the high viscosity.In this study,silica-based ceramic core slurries with solid loading up to 68vol.%were achieved by the composition design to optimize the performance,considering the curing,rheological,and double bond conversion rate.The slurries demonstrate superior curing and rheological performance with mass ratio of monomers being 3:2 and mass fraction of BYK111 being 4wt.%.Afterwards,the impact of solid loading on the morphology and mechanical properties was investigated.As the solid loading increases,the microstructure becomes gradually dense,leading to an improved flexural strength of 19.5 MPa.Additionally,the sintering shrinkage becomes more uniform,satisfying the casting requirements effectively.This work serves as a guide for the preparation of ceramic slurries with a high solid loading. 展开更多
关键词 ceramic core additive manufacturing mechanical performance solid loading VISCOSITY vat photopolymerization
在线阅读 下载PDF
Performance Analysis and Multi-Objective Optimization of Functional Gradient Honeycomb Non-pneumatic Tires
9
作者 Haichao Zhou Haifeng Zhou +2 位作者 Haoze Ren Zhou Zheng Guolin Wang 《Chinese Journal of Mechanical Engineering》 2025年第3期412-431,共20页
The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studi... The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studies have been conducted to synergistically improve multi-performance by optimizing the spoke structure.Inspired by the concept of functionally gradient structures,this paper introduces a functionally gradient honeycomb NPT and its optimization method.Firstly,this paper completes the parameterization of the honeycomb spoke structure and establishes the numerical models of honeycomb NPTs with seven different gradients.Subsequently,the accuracy of the numerical models is verified using experimental methods.Then,the static and dynamic characteristics of these gradient honeycomb NPTs are thoroughly examined by using the finite element method.The findings highlight that the gradient structure of NPT-3 has superior performance.Building upon this,the study investigates the effects of key parameters,such as honeycomb spoke thickness and length,on load-carrying capacity,honeycomb spoke stress and mass.Finally,a multi-objective optimization method is proposed that uses a response surface model(RSM)and the Nondominated Sorting Genetic Algorithm-II(NSGA-II)to further optimize the functional gradient honeycomb NPTs.The optimized NPT-OP shows a 23.48%reduction in radial stiffness,8.95%reduction in maximum spoke stress and 16.86%reduction in spoke mass compared to the initial NPT-1.The damping characteristics of the NPT-OP have also been improved.The results offer a theoretical foundation and technical methodology for the structural design and optimization of gradient honeycomb NPTs. 展开更多
关键词 Non-pneumatic tires Honeycomb structure Gradient structure Multi-objective optimization
在线阅读 下载PDF
Optimization model for performance-based warranty decision of degraded systems based on improved sparrow search algorithm
10
作者 DONG Enzhi CHENG Zhonghua +3 位作者 LIU Zichang ZHU Xi WANG Rongcai BAI Yongsheng 《Journal of Systems Engineering and Electronics》 2025年第5期1259-1280,共22页
Performance-based warranties(PBWs)are widely used in industry and manufacturing.Given that PBW can impose financial burdens on manufacturers,rational maintenance decisions are essential for expanding profit margins.Th... Performance-based warranties(PBWs)are widely used in industry and manufacturing.Given that PBW can impose financial burdens on manufacturers,rational maintenance decisions are essential for expanding profit margins.This paper proposes an optimization model for PBW decisions for systems affected by Gamma degradation processes,incorporating periodic inspection.A system performance degradation model is established.Preventive maintenance probability and corrective renewal probability models are developed to calculate expected warranty costs and system availability.A benefits function,which includes incentives,is constructed to optimize the initial and subsequent inspection intervals and preventive maintenance thresholds,thereby maximizing warranty profit.An improved sparrow search algorithm is developed to optimize the model,with a case study on large steam turbine rotor shafts.The results suggest the optimal PBW strategy involves an initial inspection interval of approximately 20 months,with subsequent intervals of about four months,and a preventive maintenance threshold of approximately 37.39 mm wear.When compared to common cost-minimization-based condition maintenance strategies and PBW strategies that do not differentiate between initial and subsequent inspection intervals,the proposed PBW strategy increases the manufacturer’s profit by 1%and 18%,respectively.Sensitivity analyses provide managerial recommendations for PBW implementation.The PBW strategy proposed in this study significantly increases manufacturers’profits by optimizing inspection intervals and preventive maintenance thresholds,and manufacturers should focus on technological improvement in preventive maintenance and cost control to further enhance earnings. 展开更多
关键词 performance-based warranty gamma process periodic inspection intelligent optimization algorithm
在线阅读 下载PDF
Performance Optimization of a U-Shaped Liquid Cooling Plate:A Synergistic Study of FlowGuide Plate and Spoiler Columns
11
作者 Jing Hu Xiaoyu Zhang 《Frontiers in Heat and Mass Transfer》 2025年第3期957-974,共18页
As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A s... As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A synergistic optimization structure of“inlet plate-channel spoiler columns”is proposed for the local hot spot problem during the operation of Insulated Gate Bipolar Transistor(IGBT),combined with the inherent defect of uneven flow distribution of the traditional U-type liquid cooling plate in this paper.The influences of the shape,height(H),and spacing from the spoiler column(b)of the plate on the comprehensive heat dissipation performance of the liquid cooling plate are analyzed at different Reynolds numbers,A dual heat source strategy is introduced and the effect of the optimized structure is evaluated by the temperature inhomogeneity coefficient(Φ).The results show that the optimum effect is achieved when the shape of the plate is square,H=4.5 mm,b=2 mm,and u=0.05 m/s,at which the HTPE=1.09 and Φ are reduced by 40%.In contrast,the maximum temperatures of the IGBT and the FWD(Free Wheeling Diode)chips are reduced by 8.7 and 8.4 K,respectively,and ΔP rises by only 1.58 Pa while keeping ΔT not significantly increased.This optimized configuration achieves a significant reduction in the critical chip temperature and optimization of the flow field uniformity with almost no change in the system flow resistance.It breaks through the limitation of single structure optimization of the traditional liquid cooling plate and effectively solves the problem of uneven flow in the U-shaped cooling plate,which provides a new solution with important engineering value for the thermal management of IGBT modules. 展开更多
关键词 U-shaped liquid cooling plate flow guide plate spoiler columns optimization
在线阅读 下载PDF
Efficiency Analysis and Performance Optimization of Heat Recovery Ventilators(HRVs)for Residential Indoor Air Quality Enhancement in Cold Climates
12
作者 Hamed Yousefzadeh Eini Mohammad Hossein Sabouri Mojtaba Babaelahi 《Fluid Dynamics & Materials Processing》 2025年第7期1771-1788,共18页
Heat Recovery Ventilators(HRVs)are essential for improving indoor air quality(IAQ)and reducing energy consumption in residential buildings situated in cold climates.This study considers the efficiency and performance ... Heat Recovery Ventilators(HRVs)are essential for improving indoor air quality(IAQ)and reducing energy consumption in residential buildings situated in cold climates.This study considers the efficiency and performance optimization of HRVs under cold climatic conditions,where conventional ventilation systems increase heat loss.A comprehensive numerical model was developed using COMSOL Multiphysics,integrating fluid dynamics,heat transfer,and solid mechanics to evaluate the thermal efficiency and structural integrity of an HRV system.The methodology employed a detailed geometry with tetrahedral elements,temperature-dependent material properties,and coupled governing equations solved under Tehran-specific boundary conditions.A multi-objective optimization was implemented in the framework of the Nelder-Mead simplex algorithm,targeting the maximization of the average outlet temperature and minimization of the maximum von Mises thermal stress,with inlet flow velocity as the design variable(range:0.5–1.2m/s).Results indicate an optimal velocity of 0.51563 m/s,achieving an average outlet temperature of 289.44 K and maximum von Mises stress of 221 MPa,validated through mesh independence and detailed contour analyses of temperature,velocity,and stress distributions. 展开更多
关键词 Heat recovery ventilators indoor air quality cold climate energy efficiency multi-objective optimization
在线阅读 下载PDF
Energy,exergy,economic performance evaluation and parametric optimization of organic Rankine cycle for low-temperature flue gas waste heat recovery
13
作者 Jun-sheng Feng Hao Wu +2 位作者 Xin-ni Cheng Liang Zhao Hui Dong 《Journal of Iron and Steel Research International》 2025年第7期1830-1843,共14页
To further enhance the recovery rate of low-temperature waste heat,the low-temperature flue gas in the sinter annular cooler was chosen as the heat source of an organic Rankine cycle(ORC)system,and the comprehensive e... To further enhance the recovery rate of low-temperature waste heat,the low-temperature flue gas in the sinter annular cooler was chosen as the heat source of an organic Rankine cycle(ORC)system,and the comprehensive evaluation of energy,exergy and economic performance of the ORC system was conducted deeply.The energy,exergy and economic performance models of the ORC system were established,and proper candidate organic working fluids(OWFs)were selected based on the thermo-physical properties of OWF and operating characteristics of ORC system.Then,the effects of ORC crucial parameters on the system energy,exergy and economic performances were evaluated in detail.Finally,the bi-objective optimization based on the genetic algorithm was conducted to analyze the optimal performance of the ORC system under the designed ORC crucial parameters,and the exergy efficiency and electricity production cost were set as the evaluation indexes of parametric optimization.The results indicate that the ORC system with the higher evaporation temperature and lower condensation temperature can obtain the larger system exergy efficiency and smaller electricity production cost.The smaller the superheat degree of OWF and pinch-point temperature difference in the evaporator are,the better the energy and exergy performances of the ORC system are.Under the optimization results,R245fa has the best comprehensive performance with the exergy efficiency of 46.34%and electricity production cost of 0.12123$/kWh among the selected candidate OWFs,which should be preferentially chosen as the OWF of the ORC system. 展开更多
关键词 SINTER Waste heat recovery Organic Rankine cycle Exergy efficiency Electricity production cost Parametric optimization
原文传递
Design and optimization of fluid lubricated bearings operated with extreme working performances——a comprehensive review 被引量:1
14
作者 Guohua Zhang Ming Huang +6 位作者 Gangli Chen Jiasheng Li Yang Liu Jianguo He Yueqing Zheng Siwei Tang Hailong Cui 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期325-376,共52页
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge... Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances. 展开更多
关键词 fluid lubricated bearings structural design performance optimization extreme working performances
在线阅读 下载PDF
Performance optimization of a SERF atomic magnetometer based on flat-top light beam 被引量:1
15
作者 袁子琪 唐钧剑 +1 位作者 林树东 翟跃阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期330-336,共7页
We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditio... We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped(FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1 Hz–30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers. 展开更多
关键词 atomic magnetometer(AM) spin-exchange relaxation-free(SERF) flat-top light beam performance optimization
原文传递
Time-history performance optimization of flapping wing motion using a deep learning based prediction model 被引量:1
16
作者 Tianqi WANG Liu LIU +1 位作者 Jun LI Lifang ZENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期317-331,共15页
Flapping Wing Micro Aerial Vehicles(FWMAVs)have caused great concern in various fields because of their high efficiency and maneuverability.Flapping wing motion is a very important factor that affects the performance ... Flapping Wing Micro Aerial Vehicles(FWMAVs)have caused great concern in various fields because of their high efficiency and maneuverability.Flapping wing motion is a very important factor that affects the performance of the aircraft,and previous works have always focused on the time-averaged performance optimization.However,the time-history performance is equally important in the design of motion mechanism and flight control system.In this paper,a time-history performance optimization framework based on deep learning and multi-island genetic algorithm is presented,which is designed in order to obtain the optimal two-dimensional flapping wing motion.Firstly,the training dataset for deep learning neural network is constructed based on a validated computational fluid dynamics method.The aerodynamic surrogate model for flapping wing is obtained after the convergence of training.The surrogate model is tested and proved to be able to accurately and quickly predict the time-history curves of lift,thrust and moment.Secondly,the optimization framework is used to optimize the flapping wing motion in two specific cases,in which the optimized propulsive efficiencies have been improved by over 40%compared with the baselines.Thirdly,a dimensionless parameter C_(variation)is proposed to describe the variation of the time-history characteristics,and it is found that C_(variation)of lift varies significantly even under close time-averaged performances.Considering the importance of time-history performance in practical applications,the optimization that integrates the propulsion efficiency as well as C_(variation)is carried out.The final optimal flapping wing motion balances good time-averaged and time-history performance. 展开更多
关键词 FWMAV Flapping wing motion Deep learning Unsteady aerodynamic performance optimization Time-history curve
原文传递
Optimization performance of quantum endoreversible Otto machines with dual-squeezed reservoirs
17
作者 Haoguang Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期198-204,共7页
We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate t... We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum c criterion will degenerate toη-=η_(C)/(2-η_(C))andε-=(√9+8ε_(C)-3)/2 when symmetric squeezing is satisfied,respectively.We also investigated the influences of squeezing degree on the performance optimization of quantum Otto heat engines at the maximum work output and refrigerators at the maximum X criterion.These analytical results show that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum X criterion can be improved,reduced or even inhibited in asymmetric squeezing.Furthermore,we also find that the efficiency of quantum Otto heat engines at maximum work output is lower than that obtained from the Otto heat engines based on a single harmonic oscillator system.However,the coefficient of performance of the corresponding refrigerator is higher. 展开更多
关键词 quantum Otto heat engine quantum Otto refrigerator optimization performance dual-squeezed reservoirs
原文传递
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization 被引量:3
18
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys HIGH-performance Alloy design Machine learning Bayesian optimization
在线阅读 下载PDF
A PID Tuning Approach for Inertial Systems Performance Optimization
19
作者 Irina Cojuhari 《Applied Mathematics》 2024年第1期96-107,共12页
In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented ... In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented two approaches for synthesis the proportional-integral-derivative controller to the models of objects with inertia, that offer the procedure of system performance optimization based on maximum stability degree criterion. The proposed algorithms of system performance optimization were elaborated for model of objects with inertia second and third order and offer simple analytical expressions for tuning the PID controller. Validation and verification are conducted through computer simulations using MATLAB, demonstrating successful performance optimization and showcasing the effectiveness PID controllers’ tuning. The proposed approaches contribute insights to the field of control, offering a pathway for optimizing the performance of second and third-order inertial systems through robust controller synthesis. 展开更多
关键词 PID Control Algorithm Inertial Systems System performance optimization Maximum Stability Degree
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
20
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation performance optimization Emerging composites Synthetic strategy
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部