期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
PERFORMANCE LIMITATIONS FOR A CLASS OF KLEINMAN CONTROL SYSTEMS
1
作者 CAI Xin LI Shaoyuan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第3期445-452,共8页
This paper provides preliminary results on performance limitations for a class of discrete time Kleinman control systems whose open loop poles lie strictly outside the unit circle. By exploiting the properties of the ... This paper provides preliminary results on performance limitations for a class of discrete time Kleinman control systems whose open loop poles lie strictly outside the unit circle. By exploiting the properties of the Kleinman controllers and using of Mgebraic Riccati equation (ARE), the relationship between total control energy of Kleinman control systems and the minimum energy needed to stabilize the open-loop systems is revealed. The result reflects how the horizon length of Kleinman controllers affects the performance of the closed-loop systems and quantifies how close the performance of Kleinman control systems is to the minimum energy. 展开更多
关键词 Algebraic Riccati equation Kleinman control minimum energy control performance limitations zero terminal receding horizon control.
原文传递
Performance Limits and Advancements in Single 2D Transition Metal Dichalcogenide Transistor
2
作者 Jing Chen Ming-Yuan Sun +8 位作者 Zhen-Hua Wang Zheng Zhang Kai Zhang Shuai Wang Yu Zhang Xiaoming Wu Tian-Ling Ren Hong Liu Lin Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期134-188,共55页
Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sp... Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors. 展开更多
关键词 Two-dimensional transistors Dimension limits performance limits Memory devices Artificial synapses
在线阅读 下载PDF
Seismic fragility analysis of highway bridges considering multi-dimensional performance limit state 被引量:17
3
作者 Wang, Qi'ang Wu, Ziyan Liu, Shukui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第2期185-193,共9页
Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility... Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multi-span continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation. 展开更多
关键词 highway bridge seismic hazard multi-dimensional performance limit state fragility curves sensitivity
在线阅读 下载PDF
Performance index limits of high reinforced concrete shear wall components 被引量:1
4
作者 劳晓春 韩小雷 《Journal of Central South University》 SCIE EI CAS 2011年第4期1248-1255,共8页
The deformation performance index limits of high reinforced concrete (RC) shear wall components based on Chinese codes were discussed by the nonlinear finite element method. Two typical RC shear wall specimens in th... The deformation performance index limits of high reinforced concrete (RC) shear wall components based on Chinese codes were discussed by the nonlinear finite element method. Two typical RC shear wall specimens in the previous work were first used to verify the correctness of the nonlinear finite element method. Then, the nonlinear finite element method was applied to study the deformability of a set of high RC shear wall components designed according to current Chinese codes and with shear span ratio λ≥2.0. Parametric studies were made on the influence of shear span ratio, axial compression ratio, ratio of flexural capacity to shear capacity and main flexural reinforcement ratio of confined botmdary members. Finally, the deformation performance index and its limits of high RC shear wall components under severe earthquakes were proposed by the finite element model results, which offers a reference in determining the performance status of RC shear wall components designed based on Chinese codes. 展开更多
关键词 reinforced concrete shear wall components performance index limits nonlinear finite element method Chinese codes
在线阅读 下载PDF
Persisting challenges for performance-based building assessment
5
作者 B.Bayhan I.Kazaz P.Gulkan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第S1期79-94,共16页
Intense research and refinement of the tools used in performance-based seismic engineering have been made,but the maturity and accuracy of these methods have not been adequately confirmed with actual data from the fie... Intense research and refinement of the tools used in performance-based seismic engineering have been made,but the maturity and accuracy of these methods have not been adequately confirmed with actual data from the field. The gap between the assumed characteristics of actual building systems and their idealized counterparts used for analysis is wide. When the randomly distributed flaws in buildings as they exist in urban areas and the extreme variability of ground motion patterns combine,the conventional procedures used for pushover or dynamic response history analyses seem to fall short of reconciling the differences between calculated and observed damage. For emergency planning and loss modeling purposes,such discrepancies are factors that must be borne in mind. Two relevant examples are provided herein. These examples demonstrate that consensus-based analytical guidelines also require well-idealized building models that do not lend themselves to reasonably manageable representations from field data. As a corollary,loss modeling techniques,e.g.,used for insurance purposes,must undergo further development and improvement. 展开更多
关键词 reinforced concrete building nonlinear analysis performance-based seismic assessment performance limits DAMAGE
在线阅读 下载PDF
Influences of nanotwin volume fraction on the ballistic performance of coarse-grained metals
6
作者 Q.D.Ouyang G.J.Weng +1 位作者 A.K.Soh X.Guo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第5期265-268,共4页
Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based o... Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based on the conventional theory of strain gradient plasticity and the Johnson–Cook failure criterion is employed to study the influences of volume fraction of NT regions on their ballistic performance.The results show that in general a relatively small twin spacing(4–10 nm) and a moderate volume fraction(7%–20%) will lead to excellent limit velocity and that the influences of volume fraction on limit displacement change with the category of impact processes. 展开更多
关键词 Nanotwin Ballistic performance Volume fraction Limit velocity Limit displacement
在线阅读 下载PDF
APPLICATION OF WAVE LETS TO OPTIMAL SHOCK AND IMPACT ISOLATION 被引量:1
7
作者 成志清 皮尔克 瓦尔特 D 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期1-10,共11页
The limiting performa nce analysis is used to study the optimal shock and impact isolation of mechanic al systems. The use of wavelets to approximate time-domain control functions is investigated. The formulation for... The limiting performa nce analysis is used to study the optimal shock and impact isolation of mechanic al systems. The use of wavelets to approximate time-domain control functions is investigated. The formulation for numerical computation is developed. Numerical examples include the optimal shock isolation of a SDOF system and the optimal i mpact isolation of a MDOF system. Computational results show that compactly supp orted wavelets can represent abrupt changes in control functions better than tri gonometric series and considerably increase computational efficiency. 展开更多
关键词 shock and impact isola tion optimal control WAVELETS limiting performance
在线阅读 下载PDF
Device performance limit of monolayer SnSe_(2) MOSFET 被引量:2
8
作者 Hong Li Jiakun Liang +5 位作者 Qida Wang Fengbin Liu Gang Zhou Tao Qing Shaohua Zhang Jing Lu 《Nano Research》 SCIE EI CSCD 2022年第3期2522-2530,共9页
Two-dimensional(2D)semiconductors are attractive channels to shrink the scale of field-effect transistors(FETs),and among which the anisotropic one is more advantageous for a higher on-state current(I_(on)).Monolayer(... Two-dimensional(2D)semiconductors are attractive channels to shrink the scale of field-effect transistors(FETs),and among which the anisotropic one is more advantageous for a higher on-state current(I_(on)).Monolayer(ML)SnSe_(2),as an abundant,economic,nontoxic,and stable two-dimensional material,possesses an anisotropic electronic nature.Herein,we study the device performances of the ML SnSe_(2) metal-oxide-semiconductor FETs(MOSFETs)and deduce their performance limit to an ultrashort gate length(L_(g))and ultralow supply voltage(V_(dd))by using the ab initio quantum transport simulation.An ultrahigh I_(on) of 5,660 and 3,145µA/µm is acquired for the n-type 10-nm-L_(g) ML SnSe_(2) MOSFET at V_(dd)=0.7 V for high-performance(HP)and low-power(LP)applications,respectively.Specifically,until L_(g) scales down to 2 and 3 nm,the MOSFETs(at V_(dd)=0.65 V)surpass I_(on),intrinsic delay time(τ),and power-delay product(PDP)of the International Roadmap for Device and Systems(IRDS,2020 version)for HP and LP devices for the year 2028.Moreover,the 5-nm-L_(g) ML SnSe_(2) MOSFET(at V_(dd)=0.4 V)fulfills the IRDS HP device and the 7-nm-L_(g) MOSFET(at V_(dd)=0.55 V)fulfills the IRDS LP device for the year 2034. 展开更多
关键词 monolayer(ML)SnSe_(2) ANISOTROPIC metal-oxide-semiconductor field-effect transistor(MOSFET) device performance limit ab initio transport simulation
原文传递
Analysis of the thermodynamic performance limits of the organic Rankine cycle in low and medium temperature heat source applications 被引量:2
9
作者 YANG FuBin YANG FuFang +3 位作者 LI Jian HU ShuoZhuo YANG Zhen DUAN Yuan Yuan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第8期1624-1640,共17页
In this paper,an exploration of the practical thermodynamic performance limits of the organic Rankine cycle(ORC)under working fluid and cycle parameter restrictions is presented.These performance limits are more reali... In this paper,an exploration of the practical thermodynamic performance limits of the organic Rankine cycle(ORC)under working fluid and cycle parameter restrictions is presented.These performance limits are more realistic benchmarks for the thermodynamic cycle than the efficiency of the Carnot cycle.Subcritical ORC configuration with four typical case studies that are related to temperature ranging from 373.15 to 673.15 K is taken into account.The ORC is defined by its cycle parameters and working fluid characteristic properties.The cycle parameters involve evaporation temperature(T_(eva)),condensation temperature(T_(con))and superheat degree(ΔT_(sup)),while the working fluids are represented by the characteristic properties including critical temperature(T_(c)),critical pressure(p_(c)),acentric factor(ω),and molar ideal gas isobaric heat capacity based on the principle of corresponding states.Subsequently,Pareto optimum solutions for obtained hypothetical working fluids and cycle parameters are achieved using multi-objective optimization method with the consideration of both thermal efficiency(η_(th))and volumetric power output(VPO).Finally,sensitivity analysis of the working fluid characteristic properties is conducted,and the second law of thermodynamics analysis,especially the applicability of entropy generation minimization,is performed.The results show that the current commonly used working fluids are widely scattered below the Pareto front that represents the tradeoff betweenη_(th) and VPO for obtained hypothetical fluids.T_(eva) and T_(con) are the most dominant cycle parameters,while T_(c) and ωtend to be the most dominant characteristic property parameters.The entropy generation minimization does not give the same optimal results. 展开更多
关键词 organic Rankine cycle thermodynamic performance limit working fluids cycle parameters
原文传递
The final limitation of receiver terminal performance with remotely pumped preamplifiers
10
作者 张巍 孙立力 +2 位作者 倪屹 彭江得 刘小明 《Chinese Optics Letters》 SCIE EI CAS CSCD 2003年第9期500-502,共3页
In this paper, the performance of receiver terminals with remotely pumped preamplifiers (RPPAs) is analyzed by numerical simulation and experiment. Both simulation and experiment show that there is an optimal RPPA loc... In this paper, the performance of receiver terminals with remotely pumped preamplifiers (RPPAs) is analyzed by numerical simulation and experiment. Both simulation and experiment show that there is an optimal RPPA location and optimal pump power according to the highest performance. The amplified spontaneous Raman scattering (ASRS) self-oscillation caused by Rayleigh backscattering (RBS) and the lump reflector in transmission line are the final performance limitation. 展开更多
关键词 of for PA be EDFA The final limitation of receiver terminal performance with remotely pumped preamplifiers ASRS with
原文传递
Emerging direct current triboelectric nanogenerator for high-entropy mechanical energy harvesting
11
作者 CHEN Jie GUO RuiLong GUO HengYu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第5期1297-1316,共20页
In the era of the Internet of Things(IoT),the provision of sustainable power to distributed,mobile,and low-power-consumption electronic devices is a critical challenge.To overcome this challenge,the triboelectric nano... In the era of the Internet of Things(IoT),the provision of sustainable power to distributed,mobile,and low-power-consumption electronic devices is a critical challenge.To overcome this challenge,the triboelectric nanogenerator(TENG),a highly efficient high-entropy mechanical energy harvesting device,was developed in 2012.This device enables the direct conversion of irregular and low-frequency mechanical energy into pulsed alternating current(AC)signals.However,the incompatibility of most electronic devices with AC signals necessitates rectifier circuits or generators that deliver direct current(DC)signals.In recent years,DC-TENGs have undergone extensive development,achieving significant milestones in various application fields while also facing crucial challenges that require solutions.In this review,three categories of DC-TENG devices with distinct operating mechanisms are comprehensively explored:multiphase coupling,mechanical rectification,and air breakdown.Their typical structures and working mechanisms are thoroughly discussed,and specific output performance limitations,along with corresponding optimization strategies,are identified.Furthermore,the applications of DC-TENGs in various scenarios are summarized.Finally,the challenges faced by DC-TENGs and potential solutions are analyzed to guide further advancements in this technology. 展开更多
关键词 TENG direct current working mechanisms output performance limitations optimization strategies
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部