Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fiel...Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically.展开更多
Synergistically regulating carrier and phonon transport on the nanoscale is extremely difficult for all thermoelectric(TE)materials without cage structures.Herein BaFe_(12)O_(19)/Bi_(2)Te_(2.5)Se_(0.5)thermoelectromag...Synergistically regulating carrier and phonon transport on the nanoscale is extremely difficult for all thermoelectric(TE)materials without cage structures.Herein BaFe_(12)O_(19)/Bi_(2)Te_(2.5)Se_(0.5)thermoelectromagnetic nanocomposites are designed and synthesized as a benchmarking example to simultaneously tailor the transport properties on the nanoscale.A magneto-trapped carrier effect induced by BaFe_(12)O_(19)hard-magnetic nanoparticles(NPs)is discovered,which can lower the carrier concentration of n-type Bi_(2)Te_(2.5)Se_(0.5)matrix by 16%,and increase the Seebeck coefficient by 16%.Meanwhile,BaFe_(12)O_(19)NPs provide phonon scattering centers and reduce the thermal conductivity by 12%.As a result,the ZT value of the nanocomposites is enhanced by more than 25%in the range of 300-450 K,and the cooling temperature difference increases by 65%near room temperature.This work greatly broadens the commercial application potential of ntype Bi_(2)Te_(2.5)Se_(0.5),and demonstrates magneto-trapped carrier effect as a universal strategy to enhance the electro-thermal conversion performance of TE materials with high carrier concentration.展开更多
In this work, a three-layer TiO2 composite film consisting of flower-like TiO2 (Flo-TiO2) as overlayer, TiOa nanotube arrays as interlayer and TiO2 nanoparticle (P25) as underlayer was fabricated as the photoelect...In this work, a three-layer TiO2 composite film consisting of flower-like TiO2 (Flo-TiO2) as overlayer, TiOa nanotube arrays as interlayer and TiO2 nanoparticle (P25) as underlayer was fabricated as the photoelectrode of dyesensitized solar cells (DSSCs). Due to the introduction of Flo-TiO2, the three-layer composite film has strong lightscattering ability. Then, we have investigated and compared the photoelectric conversion properties of DSSCs based on three-layer structure (P25/TNT arrays/Flo-TiO2) photoelectrode and double-layer film (P25/TNT arrays) photoelectrode. It is found that DSSCs based on three-layer structure exhibit a high power conversion efficiency of 6.48% compared with the DSSCs composed of double-layer film (5.11%).展开更多
Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films play a pivotal role in 5 G communication technology,smart wearables,automotive electronics,and aerospace.In this work,(...Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films play a pivotal role in 5 G communication technology,smart wearables,automotive electronics,and aerospace.In this work,(Ti_(3)C_(2)T_(x) MXene/cellulose nanofibers(CNF)-(hydroxy‑functionalized BNNS(BNNS-OH)/CNF)composite films(TBCF)with Janus structure are prepared via vacuum-assisted filtration of BNNS-OH/CNF and Ti_(3)C_(2)T_(x)/CNF suspension by one after another.Then ionic bonding-strengthened TBCF(ITBCF)is obtained by Ca^(2+)ion infiltration and cold-pressing technique.The Janus structure endows ITBCF with the unique“conductive on one side and insulating on the other”property.When the mass ratio of Ti_(3)C_(2)T_(x) and BNNS is 1:1 and the total mass fraction is 70 wt.%,the electrical conductivity(σ)of the Ti_(3)C_(2)T_(x)/CNF side of ITBCF reaches 166.7 S/cm,while the surface resistivity of the BNNS-OH/CNF side is as high as 304 MΩ.After Ca^(2+)ion infiltration,the mechanical properties of ITBCF are significantly enhanced.The tensile strength and modulus of ITBCF are 73.5 MPa and 15.6 GPa,which are increased by 75.9%and 46.2%compared with those of TBCF,respectively.Moreover,ITBCF exhibits outstanding EMI shielding effectiveness(SE)of 57 dB and thermal conductivity(λ)of 9.49 W/(m K).In addition,ITBCF also presents excellent photothermal and photoelectric energy conversion performance.Under simulated solar irradiation with a power density of 120 mW/cm^(2),the surface stabilization temperature reaches up to 65.3°C and the maximum steady state voltage reaches up to 58.2 mV.展开更多
基金financially supported by the National Natural Science Foundation of China(51403126,21574080,61306018 and 21504057)Shanghai Committee of Science and Technology(15JC1490500,16JC1400703,and 17ZR1441700)+1 种基金Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201702,Fuzhou University)State Key Laboratory of Supramolecular Structure and Materials(sklssm201732,Jinlin University)
文摘Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically.
基金the National Natural Science Foundation of China(11834012,51620105014,91963207,91963122 and 51902237)the National Key Research and Development Program of China(2018YFB0703603,2019YFA0704900 and SQ2018YFE010905)Foshan Xianhu Laboratory of Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-004)。
文摘Synergistically regulating carrier and phonon transport on the nanoscale is extremely difficult for all thermoelectric(TE)materials without cage structures.Herein BaFe_(12)O_(19)/Bi_(2)Te_(2.5)Se_(0.5)thermoelectromagnetic nanocomposites are designed and synthesized as a benchmarking example to simultaneously tailor the transport properties on the nanoscale.A magneto-trapped carrier effect induced by BaFe_(12)O_(19)hard-magnetic nanoparticles(NPs)is discovered,which can lower the carrier concentration of n-type Bi_(2)Te_(2.5)Se_(0.5)matrix by 16%,and increase the Seebeck coefficient by 16%.Meanwhile,BaFe_(12)O_(19)NPs provide phonon scattering centers and reduce the thermal conductivity by 12%.As a result,the ZT value of the nanocomposites is enhanced by more than 25%in the range of 300-450 K,and the cooling temperature difference increases by 65%near room temperature.This work greatly broadens the commercial application potential of ntype Bi_(2)Te_(2.5)Se_(0.5),and demonstrates magneto-trapped carrier effect as a universal strategy to enhance the electro-thermal conversion performance of TE materials with high carrier concentration.
基金supported by the National Natural Science Foundation of China (Nos. 51572072 and 11204070)the Fundamental Research Funds for the Central Universities (No. 2014-Ia-028)financially supported by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (No. 2016-KF-13)
文摘In this work, a three-layer TiO2 composite film consisting of flower-like TiO2 (Flo-TiO2) as overlayer, TiOa nanotube arrays as interlayer and TiO2 nanoparticle (P25) as underlayer was fabricated as the photoelectrode of dyesensitized solar cells (DSSCs). Due to the introduction of Flo-TiO2, the three-layer composite film has strong lightscattering ability. Then, we have investigated and compared the photoelectric conversion properties of DSSCs based on three-layer structure (P25/TNT arrays/Flo-TiO2) photoelectrode and double-layer film (P25/TNT arrays) photoelectrode. It is found that DSSCs based on three-layer structure exhibit a high power conversion efficiency of 6.48% compared with the DSSCs composed of double-layer film (5.11%).
基金financially supported by the National Natural Science Foundation of China(Nos.52303090,52403132,52403112,52473083)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-QN-0168,2024JC-TBZC-04)+6 种基金the Innovation Capability Support Plan of Shaanxi Province(No.2024ZC-KJXX-022)the Shaanxi Province Key Research and Development Plan Project(No.2023-YBGY-461)the Innovation Capability Support Program of Shaanxi(No.2024RS-CXTD-57)the Natural Science Foundation of Chongqing,China(No.2023NSCQ-MSX2547)the Youth Talent Promotion Project of Shaanxi Science and Technology Association(No.20240426)The Special Scientific Research Plan of Education Department of Shaanxi Province(No.23JK0376)the authors would also like to thank Shiyaniia lab for the sup-port of SEM and XPS tests.
文摘Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films play a pivotal role in 5 G communication technology,smart wearables,automotive electronics,and aerospace.In this work,(Ti_(3)C_(2)T_(x) MXene/cellulose nanofibers(CNF)-(hydroxy‑functionalized BNNS(BNNS-OH)/CNF)composite films(TBCF)with Janus structure are prepared via vacuum-assisted filtration of BNNS-OH/CNF and Ti_(3)C_(2)T_(x)/CNF suspension by one after another.Then ionic bonding-strengthened TBCF(ITBCF)is obtained by Ca^(2+)ion infiltration and cold-pressing technique.The Janus structure endows ITBCF with the unique“conductive on one side and insulating on the other”property.When the mass ratio of Ti_(3)C_(2)T_(x) and BNNS is 1:1 and the total mass fraction is 70 wt.%,the electrical conductivity(σ)of the Ti_(3)C_(2)T_(x)/CNF side of ITBCF reaches 166.7 S/cm,while the surface resistivity of the BNNS-OH/CNF side is as high as 304 MΩ.After Ca^(2+)ion infiltration,the mechanical properties of ITBCF are significantly enhanced.The tensile strength and modulus of ITBCF are 73.5 MPa and 15.6 GPa,which are increased by 75.9%and 46.2%compared with those of TBCF,respectively.Moreover,ITBCF exhibits outstanding EMI shielding effectiveness(SE)of 57 dB and thermal conductivity(λ)of 9.49 W/(m K).In addition,ITBCF also presents excellent photothermal and photoelectric energy conversion performance.Under simulated solar irradiation with a power density of 120 mW/cm^(2),the surface stabilization temperature reaches up to 65.3°C and the maximum steady state voltage reaches up to 58.2 mV.