Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodi...Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodicity.Here,we provide both numerical and analytical evidence that a depth gradient metasurface can achieve discrete ultra-broadband perfect anomalous reflection in the microwave range in the absence of geometric periodicity.Remarkably,by adjusting the operating frequency of the incident wave,the same effect can be steadily obtained via a physically equivalent phase periodicity in the PGM.Based on this mechanism,a perfect retroreflector with a broadband response ranging from 1 GHz to 40 GHz is realized.Our work has promising applications in communication,source tracking,and military satellites.展开更多
In this study,the wave motion in elastodynamics for unbounded media is modeled using an unsplit-field perfectly matched layer(PML)formulation that is solved by employing an isogeometric analysis(IGA).In the adopted co...In this study,the wave motion in elastodynamics for unbounded media is modeled using an unsplit-field perfectly matched layer(PML)formulation that is solved by employing an isogeometric analysis(IGA).In the adopted combination,the non-uniform rational B-spline(NURBS)functions are employed as basis functions.Moreover,the unbounded and artificial domains,defined in the PML method,are contained in a single patch domain.Based on the proposed scheme,the approximation of the geometry problem is set in a new scheme in which the PML’s absorbing and attenuation properties and the description of traveling waves can be represented.This includes a higher continuity and smoother approximation of the computed domain.As high-order NURBS basis functions are non-interpolatory,a penalty method is present to apply a time-dependent displacement load.The performance of the NURBS-based PML is analyzed through numerical examples for 1D and 2D domains,considering homogeneous and heterogeneous media.Further,we verify the long-time numerical stability of the present method.The developed method can be used to simulate hypothetical stratified domains commonly encountered in soil-structure interaction analyses.展开更多
Broadband and perfect terahertz absorber based on multilayer metamaterial using cross-ring patterned structures is proposed and investigated.The structure of the absorber is double absorption layers consisting of a ch...Broadband and perfect terahertz absorber based on multilayer metamaterial using cross-ring patterned structures is proposed and investigated.The structure of the absorber is double absorption layers consisting of a chromium cross ring and eight isosceles right triangles.The unique structure of the double absorbing layers excites the electric dipole multimode resonance,giving rise to high absorption performance.Meanwhile,the influence of construal parameters on absorber behavior is also discussed.The numerical results show that the absorption achieves over 90%ranging from 2.45 THz to 6.25 THz and 99%absorption in the range of 3.7—5.3 THz.The realization of broadband and perfect absorber is described using the impedance matching principle.It is obviously found that the absorber is insensitive to the high angle of incidence for both transverse electric(TE)and transverse magnetic(TM)polarizations.Compared with the former reports,this absorber has remarkable improved absorption efficiency and smaller period.The terahertz absorber may be found applications in the fields of energy capture and thermal detection.展开更多
Acoustic wave isolation and noise reduction are significant challenges in the fields of physics and various applications.Traditional noise-control devices are often hampered by substantial size limitations,and their o...Acoustic wave isolation and noise reduction are significant challenges in the fields of physics and various applications.Traditional noise-control devices are often hampered by substantial size limitations,and their operational efficacy is generally restricted to planar waveforms.In this study,we demonstrate perfect confinement of acoustic vortex waves using an acoustic metacage consisting of phase-gradient metasurfaces.By leveraging the parity-reversed diffraction rule of phase-gradient metasurfaces,the designed metacage exhibited remarkable capabilities for the perfect confinement of acoustic vortex waves,showing robust performance even in the presence of source offsets.These findings present a promising strategy for developing precise and adaptable acoustic confinement technologies.展开更多
We theoretically and experimentally investigate thermal dynamics involved soliton microcomb generation in silicon oxynitride microresonators. Importantly, auxiliary laser heat balance scheme with flexible thermal mani...We theoretically and experimentally investigate thermal dynamics involved soliton microcomb generation in silicon oxynitride microresonators. Importantly, auxiliary laser heat balance scheme with flexible thermal manipulation is introduced to circumvent thermal instability and the intra-cavity temperature can be tuned from 60 ℃ to 41.5 ℃ via the commercial thermoelectric controller. As a result, various perfect soliton states with ultra-smooth spectral envelopes are observed on a well-designed and fabricated microresonator with homogeneous sidewall and thickness where spatial modes interaction and distortion are eliminated. The pre-reported spectral abrupt jumps due to mode hybridization are completely avoided and solitons tail oscillation vanishes simultaneously. This reported ideal coherent comb source without residual temporal and spectral noise will facilitate practical applications such as spectroscopy, ranging and astrocomb calibration.展开更多
In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are qu...In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are quantized before transmission.A specific type of perfect stealthy attack, which meets certain rather stringent conditions, is taken into account. Such attacks could be injected by adversaries into both the sensor-toestimator and controller-to-actuator channels, with the aim of disrupting the normal data flow. For the purpose of defending against these perfect stealthy attacks, a novel scheme based on watermarks is developed. This scheme includes the injection of watermarks(applied to data prior to quantization) and the recovery of data(implemented before the data reaches the estimator).The watermark-based scheme is designed to be both timevarying and hidden from adversaries through incorporating a time-varying and bounded watermark signal. Subsequently, a watermark-based attack detection strategy is proposed which thoroughly considers the characteristics of perfect stealthy attacks,thereby ensuring that an alarm is activated upon the occurrence of such attacks. An example is provided to demonstrate the efficacy of the proposed mechanism for detecting attacks.展开更多
Consider a graph G=(V,E).A perfect double Roman dominating function(PDRDF for short)is a function h:V→{0,1,2,3}that satisfies the condition∑_(y∈NG[x],h(y)≥1)h(y)=|{y∈NG(x):h(y)≥1}|+2 for any x∈V with h(x)≤1.Th...Consider a graph G=(V,E).A perfect double Roman dominating function(PDRDF for short)is a function h:V→{0,1,2,3}that satisfies the condition∑_(y∈NG[x],h(y)≥1)h(y)=|{y∈NG(x):h(y)≥1}|+2 for any x∈V with h(x)≤1.The weightω(h)of this function is∑_(y∈V)h(y).The perfect double Roman domination number(PDRD-number)of G,denoted byγ_(dR)^(p)(G),is defined as the minimum weight among all PDRDFs of G.This article presents a comprehensive analysis of the PDRD-number of connected cographs,demonstrating that it falls within the set{2,3,4,5,6}.Furthermore,it establishes that for any integer i≥7,there is a connected cograph G such that its PDRD-number is equal to i.展开更多
The field of terahertz devices is important in terahertz technology.However,most of the current devices have limited functionality and poor performance.To improve device performance and achieve multifunctionality,we d...The field of terahertz devices is important in terahertz technology.However,most of the current devices have limited functionality and poor performance.To improve device performance and achieve multifunctionality,we designed a terahertz device based on a combination of VO_(2)and metamaterials.This device can be tuned using the phase-transition characteristics of VO_(2),which is included in the triple-layer structure of the device,along with SiO_(2)and Au.The terahertz device exhibits various advantageous features,including broadband coverage,high absorption capability,dynamic tunability,simple structural design,polarization insensitivity,and incidentangle insensitivity.The simulation results showed that by controlling the temperature,the terahertz device achieved a thermal modulation range of spectral absorption from 0 to 0.99.At 313 K,the device exhibited complete reflection of terahertz waves.As the temperature increased,the absorption rate also increased.When the temperature reached 353 K,the device absorption rate exceeded 97.7%in the range of 5-8.55 THz.This study used the effective medium theory to elucidate the correlation between conductivity and temperature during the phase transition of VO_(2).Simultaneously,the variation in device performance was further elucidated by analyzing and depicting the intensity distribution of the electric field on the device surface at different temperatures.Furthermore,the impact of various structural parameters on device performance was examined,offering valuable insights and suggestions for selecting suitable parameter values in real-world applications.These characteristics render the device highly promising for applications in stealth technology,energy harvesting,modulation,and other related fields,thus showcasing its significant potential.展开更多
The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we inve...The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.展开更多
In this paper,the non-static solutions for perfect fluid distribution with plane symmetry in f(R,T)gravitational theory are obtained.Firstly,using the Lie symmetries,symmetry reductions are performed for considered ve...In this paper,the non-static solutions for perfect fluid distribution with plane symmetry in f(R,T)gravitational theory are obtained.Firstly,using the Lie symmetries,symmetry reductions are performed for considered vector fields to reduce the number of independent variables.Then,corresponding to each reduction,exact solutions are obtained.Killing vectors lead to different conserved quantities.Therefore,we figure out the Killing vector fields corresponding to all derived solutions.The derived solutions are further studied and it is observed that all of the obtained spacetimes,at least admit to the minimal symmetry group which consists of δ_(y),δ_(z) and -zδ_(y)+yδ_(z).The obtained metrics,admit to 3,4,6,and 10,Killing vector fields.Conservation of linear momentum in the direction of y and z,and angular momentum along the x axis is provided by all derived solutions.展开更多
Let k be a positive integer and G a bipartite graph with bipartition (X,Y). A perfect 1-k matching is an edge subset M of G such that each vertex in Y is incident with exactly one edge in M and each vertex in X is inc...Let k be a positive integer and G a bipartite graph with bipartition (X,Y). A perfect 1-k matching is an edge subset M of G such that each vertex in Y is incident with exactly one edge in M and each vertex in X is incident with exactly k edges in M. A perfect 1-k matching is an optimal semi-matching related to the load-balancing problem, where a semi-matching is an edge subset M such that each vertex in Y is incident with exactly one edge in M, and a vertex in X can be incident with an arbitrary number of edges in M. In this paper, we give three sufficient and necessary conditions for the existence of perfect 1-k matchings and for the existence of 1-k matchings covering | X |−dvertices in X, respectively, and characterize k-elementary bipartite graph which is a graph such that the subgraph induced by all k-allowed edges is connected, where an edge is k-allowed if it is contained in a perfect 1-k matching.展开更多
Modern financial theory, commonly known as portfolio theory, provides an analytical framework for the investment decision to be made under uncertainty. It is a well-established proposition in portfolio theory that whe...Modern financial theory, commonly known as portfolio theory, provides an analytical framework for the investment decision to be made under uncertainty. It is a well-established proposition in portfolio theory that whenever there is an imperfect correlation between returns risk is reduced by maintaining only a portion of wealth in any asset, or by selecting a portfolio according to expected returns and correlations between returns. The major improvement of the portfolio approaches over prior received theory is the incorporation of 1) the riskiness of an asset and 2) the addition from investing in any asset. The theme of this paper is to discuss how to propose a new mathematical model like that provided by Markowitz, which helps in choosing a nearly perfect portfolio and an efficient input/output. Besides applying this model to reality, the researcher uses game theory, stochastic and linear programming to provide the model proposed and then uses this model to select a perfect portfolio in the Cairo Stock Exchange. The results are fruitful and the researcher considers this model a new contribution to previous models.展开更多
A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm de...A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.展开更多
The present paper is finalized to show that the Science, even if considered in its two different Phenomenological Approaches at present known, is unable to assert that: “Thinks are like that”. This is because both t...The present paper is finalized to show that the Science, even if considered in its two different Phenomenological Approaches at present known, is unable to assert that: “Thinks are like that”. This is because both the two Scientific Approaches previously mentioned have not the property of “the perfect induction”. Consequently, although they can even reach an experimental confirmation of the theoretical results, and thus a “valid description” of the various phenomena of the surrounding world, such a description has not an “absolute value”. In fact, it always and only has an “operative validity”, that is, it exclusively and solely refers to an “experimental point of view”. This means that such an “operative validity” cannot represent the basis for a logical process characterized by a “perfect induction”. In addition, the Traditional Scientific Approach is also characterized by “Insoluble” Problems, “Intractable Problems”, Problems with “drifts”, which could generally be termed as “side effects”. On the other hand, the same com-possible Scientific Approach based on the Emerging Quality of Self-Organizing Systems, also presents its “Emerging Exits”. Consequently, none of the two mentioned scientific Approaches has the “gift” of “the perfect induction”. However, there are significant differences between the two. Differences that may “suggest” the most appropriate choice among them for an “operative point of view”. This conclusion will be com-proved by considering, with particular reference, both the “side effects”, which are related to the Traditional Approach and, on the other hand, the “Emerging Exits”, which specifically pertain to the new Scientific Approach based on the Emerging Quality of Self-Organizing Systems.展开更多
All of us know the old saying“Practice makes perfect”.It tells us if we want to realize our goals,we should practice,and one day we will make it.Once I wanted to learn swimming.At first I found it difficult to contr...All of us know the old saying“Practice makes perfect”.It tells us if we want to realize our goals,we should practice,and one day we will make it.Once I wanted to learn swimming.At first I found it difficult to control my body.I just went down into the water.I felt very frightened.Then I watched others who were good at it and asked them the key to success.展开更多
The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this p...The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.展开更多
Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equat...Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12274313,62275184,and 62411540033)Collaborative Innovation Center of Suzhou Nano Science and Technology,Suzhou Basic Research Project(Grant No.SJC2023003)+1 种基金the Gusu Leading Talent Plan for Scientific and Technological Innovation and Entrepreneurship(Grant No.ZXL2024400)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodicity.Here,we provide both numerical and analytical evidence that a depth gradient metasurface can achieve discrete ultra-broadband perfect anomalous reflection in the microwave range in the absence of geometric periodicity.Remarkably,by adjusting the operating frequency of the incident wave,the same effect can be steadily obtained via a physically equivalent phase periodicity in the PGM.Based on this mechanism,a perfect retroreflector with a broadband response ranging from 1 GHz to 40 GHz is realized.Our work has promising applications in communication,source tracking,and military satellites.
文摘In this study,the wave motion in elastodynamics for unbounded media is modeled using an unsplit-field perfectly matched layer(PML)formulation that is solved by employing an isogeometric analysis(IGA).In the adopted combination,the non-uniform rational B-spline(NURBS)functions are employed as basis functions.Moreover,the unbounded and artificial domains,defined in the PML method,are contained in a single patch domain.Based on the proposed scheme,the approximation of the geometry problem is set in a new scheme in which the PML’s absorbing and attenuation properties and the description of traveling waves can be represented.This includes a higher continuity and smoother approximation of the computed domain.As high-order NURBS basis functions are non-interpolatory,a penalty method is present to apply a time-dependent displacement load.The performance of the NURBS-based PML is analyzed through numerical examples for 1D and 2D domains,considering homogeneous and heterogeneous media.Further,we verify the long-time numerical stability of the present method.The developed method can be used to simulate hypothetical stratified domains commonly encountered in soil-structure interaction analyses.
基金supported by the National Natural Science Foundation of China(No.61505160)the Innovation Capability Support Program of Shaanxi(No.2018KJXX-042)+1 种基金the Natural Science Basic Research Program of Shaanxi(No.2019JM-084)the State Key Laboratory of Transient Optics and Photonics(No.SKLST202108)。
文摘Broadband and perfect terahertz absorber based on multilayer metamaterial using cross-ring patterned structures is proposed and investigated.The structure of the absorber is double absorption layers consisting of a chromium cross ring and eight isosceles right triangles.The unique structure of the double absorbing layers excites the electric dipole multimode resonance,giving rise to high absorption performance.Meanwhile,the influence of construal parameters on absorber behavior is also discussed.The numerical results show that the absorption achieves over 90%ranging from 2.45 THz to 6.25 THz and 99%absorption in the range of 3.7—5.3 THz.The realization of broadband and perfect absorber is described using the impedance matching principle.It is obviously found that the absorber is insensitive to the high angle of incidence for both transverse electric(TE)and transverse magnetic(TM)polarizations.Compared with the former reports,this absorber has remarkable improved absorption efficiency and smaller period.The terahertz absorber may be found applications in the fields of energy capture and thermal detection.
基金supported by the Undergraduate Training Program for Innovation and Entrepreneurship,Soochow University(Grant No.202410285001Z)the National Natural Science Foundation of China(Grant Nos.12274313 and 12374293)。
文摘Acoustic wave isolation and noise reduction are significant challenges in the fields of physics and various applications.Traditional noise-control devices are often hampered by substantial size limitations,and their operational efficacy is generally restricted to planar waveforms.In this study,we demonstrate perfect confinement of acoustic vortex waves using an acoustic metacage consisting of phase-gradient metasurfaces.By leveraging the parity-reversed diffraction rule of phase-gradient metasurfaces,the designed metacage exhibited remarkable capabilities for the perfect confinement of acoustic vortex waves,showing robust performance even in the presence of source offsets.These findings present a promising strategy for developing precise and adaptable acoustic confinement technologies.
基金supported by the National Natural Science Foundation of China(NSFC)(No.12204381,62205370)the fund of Natural Science Fundamental Research Program of Shaanxi Province(2023-JC-QN-0645)+1 种基金Startup Funding from Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Science(24JR521001)Shanghai Magnolia Talent Plan Pujiang Project(24PJD125).
文摘We theoretically and experimentally investigate thermal dynamics involved soliton microcomb generation in silicon oxynitride microresonators. Importantly, auxiliary laser heat balance scheme with flexible thermal manipulation is introduced to circumvent thermal instability and the intra-cavity temperature can be tuned from 60 ℃ to 41.5 ℃ via the commercial thermoelectric controller. As a result, various perfect soliton states with ultra-smooth spectral envelopes are observed on a well-designed and fabricated microresonator with homogeneous sidewall and thickness where spatial modes interaction and distortion are eliminated. The pre-reported spectral abrupt jumps due to mode hybridization are completely avoided and solitons tail oscillation vanishes simultaneously. This reported ideal coherent comb source without residual temporal and spectral noise will facilitate practical applications such as spectroscopy, ranging and astrocomb calibration.
基金supported in part by the National Natural Science Foundation of China(61933007,62273087,62273088,U21A2019)the Shanghai Pujiang Program of China(22PJ1400400)+2 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Royal Society of U.K.the Alexander von Humboldt Foundation of Germany
文摘In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are quantized before transmission.A specific type of perfect stealthy attack, which meets certain rather stringent conditions, is taken into account. Such attacks could be injected by adversaries into both the sensor-toestimator and controller-to-actuator channels, with the aim of disrupting the normal data flow. For the purpose of defending against these perfect stealthy attacks, a novel scheme based on watermarks is developed. This scheme includes the injection of watermarks(applied to data prior to quantization) and the recovery of data(implemented before the data reaches the estimator).The watermark-based scheme is designed to be both timevarying and hidden from adversaries through incorporating a time-varying and bounded watermark signal. Subsequently, a watermark-based attack detection strategy is proposed which thoroughly considers the characteristics of perfect stealthy attacks,thereby ensuring that an alarm is activated upon the occurrence of such attacks. An example is provided to demonstrate the efficacy of the proposed mechanism for detecting attacks.
基金Supported by the National Natural Science Foundation Youth Fund of China(Grant No.11701059)The Chongqing Natural Science Foundation Innovation and Development Joint Fund(Municipal Education Commission)(Grant No.CSTB2022NSCQ-LZX0003)The Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,P.R.China。
文摘Consider a graph G=(V,E).A perfect double Roman dominating function(PDRDF for short)is a function h:V→{0,1,2,3}that satisfies the condition∑_(y∈NG[x],h(y)≥1)h(y)=|{y∈NG(x):h(y)≥1}|+2 for any x∈V with h(x)≤1.The weightω(h)of this function is∑_(y∈V)h(y).The perfect double Roman domination number(PDRD-number)of G,denoted byγ_(dR)^(p)(G),is defined as the minimum weight among all PDRDFs of G.This article presents a comprehensive analysis of the PDRD-number of connected cographs,demonstrating that it falls within the set{2,3,4,5,6}.Furthermore,it establishes that for any integer i≥7,there is a connected cograph G such that its PDRD-number is equal to i.
基金support from the National Natural Science Foundation of China(Nos.51606158,11604311,and 12074151)Sichuan Science and Technology Program(No.2021JDRC0022)+3 种基金Natural Science Foundation of Fujian Province(No.2021J05202)Research Project of Fashu Foundation(No.MFK23006)Open Fund of the Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education in Wuhan University of Science and Technology(No.MECOF2022B01)the project supported by Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(No.DH202321).
文摘The field of terahertz devices is important in terahertz technology.However,most of the current devices have limited functionality and poor performance.To improve device performance and achieve multifunctionality,we designed a terahertz device based on a combination of VO_(2)and metamaterials.This device can be tuned using the phase-transition characteristics of VO_(2),which is included in the triple-layer structure of the device,along with SiO_(2)and Au.The terahertz device exhibits various advantageous features,including broadband coverage,high absorption capability,dynamic tunability,simple structural design,polarization insensitivity,and incidentangle insensitivity.The simulation results showed that by controlling the temperature,the terahertz device achieved a thermal modulation range of spectral absorption from 0 to 0.99.At 313 K,the device exhibited complete reflection of terahertz waves.As the temperature increased,the absorption rate also increased.When the temperature reached 353 K,the device absorption rate exceeded 97.7%in the range of 5-8.55 THz.This study used the effective medium theory to elucidate the correlation between conductivity and temperature during the phase transition of VO_(2).Simultaneously,the variation in device performance was further elucidated by analyzing and depicting the intensity distribution of the electric field on the device surface at different temperatures.Furthermore,the impact of various structural parameters on device performance was examined,offering valuable insights and suggestions for selecting suitable parameter values in real-world applications.These characteristics render the device highly promising for applications in stealth technology,energy harvesting,modulation,and other related fields,thus showcasing its significant potential.
基金Project supported by the Youth Innovation Promotion Association CASState Key Laboratory of Transient Optics and Photonics Open Topics (Grant No. SKLST202222)
文摘The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.
基金UGC for providing financial support in the form of the JRF fellowship via letter NTA Ref.No.:201610006334the financial support provided under the scheme‘Fund for Improvement of S&T Infrastructure(FIST)’of the Department of Science&Technology(DST),Government of India via letter No.SR/FST/MS-I/2021/104 to the Department of Mathematics and Statistics,Central University of Punjab。
文摘In this paper,the non-static solutions for perfect fluid distribution with plane symmetry in f(R,T)gravitational theory are obtained.Firstly,using the Lie symmetries,symmetry reductions are performed for considered vector fields to reduce the number of independent variables.Then,corresponding to each reduction,exact solutions are obtained.Killing vectors lead to different conserved quantities.Therefore,we figure out the Killing vector fields corresponding to all derived solutions.The derived solutions are further studied and it is observed that all of the obtained spacetimes,at least admit to the minimal symmetry group which consists of δ_(y),δ_(z) and -zδ_(y)+yδ_(z).The obtained metrics,admit to 3,4,6,and 10,Killing vector fields.Conservation of linear momentum in the direction of y and z,and angular momentum along the x axis is provided by all derived solutions.
文摘Let k be a positive integer and G a bipartite graph with bipartition (X,Y). A perfect 1-k matching is an edge subset M of G such that each vertex in Y is incident with exactly one edge in M and each vertex in X is incident with exactly k edges in M. A perfect 1-k matching is an optimal semi-matching related to the load-balancing problem, where a semi-matching is an edge subset M such that each vertex in Y is incident with exactly one edge in M, and a vertex in X can be incident with an arbitrary number of edges in M. In this paper, we give three sufficient and necessary conditions for the existence of perfect 1-k matchings and for the existence of 1-k matchings covering | X |−dvertices in X, respectively, and characterize k-elementary bipartite graph which is a graph such that the subgraph induced by all k-allowed edges is connected, where an edge is k-allowed if it is contained in a perfect 1-k matching.
文摘Modern financial theory, commonly known as portfolio theory, provides an analytical framework for the investment decision to be made under uncertainty. It is a well-established proposition in portfolio theory that whenever there is an imperfect correlation between returns risk is reduced by maintaining only a portion of wealth in any asset, or by selecting a portfolio according to expected returns and correlations between returns. The major improvement of the portfolio approaches over prior received theory is the incorporation of 1) the riskiness of an asset and 2) the addition from investing in any asset. The theme of this paper is to discuss how to propose a new mathematical model like that provided by Markowitz, which helps in choosing a nearly perfect portfolio and an efficient input/output. Besides applying this model to reality, the researcher uses game theory, stochastic and linear programming to provide the model proposed and then uses this model to select a perfect portfolio in the Cairo Stock Exchange. The results are fruitful and the researcher considers this model a new contribution to previous models.
文摘A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.
文摘The present paper is finalized to show that the Science, even if considered in its two different Phenomenological Approaches at present known, is unable to assert that: “Thinks are like that”. This is because both the two Scientific Approaches previously mentioned have not the property of “the perfect induction”. Consequently, although they can even reach an experimental confirmation of the theoretical results, and thus a “valid description” of the various phenomena of the surrounding world, such a description has not an “absolute value”. In fact, it always and only has an “operative validity”, that is, it exclusively and solely refers to an “experimental point of view”. This means that such an “operative validity” cannot represent the basis for a logical process characterized by a “perfect induction”. In addition, the Traditional Scientific Approach is also characterized by “Insoluble” Problems, “Intractable Problems”, Problems with “drifts”, which could generally be termed as “side effects”. On the other hand, the same com-possible Scientific Approach based on the Emerging Quality of Self-Organizing Systems, also presents its “Emerging Exits”. Consequently, none of the two mentioned scientific Approaches has the “gift” of “the perfect induction”. However, there are significant differences between the two. Differences that may “suggest” the most appropriate choice among them for an “operative point of view”. This conclusion will be com-proved by considering, with particular reference, both the “side effects”, which are related to the Traditional Approach and, on the other hand, the “Emerging Exits”, which specifically pertain to the new Scientific Approach based on the Emerging Quality of Self-Organizing Systems.
文摘All of us know the old saying“Practice makes perfect”.It tells us if we want to realize our goals,we should practice,and one day we will make it.Once I wanted to learn swimming.At first I found it difficult to control my body.I just went down into the water.I felt very frightened.Then I watched others who were good at it and asked them the key to success.
基金This research was supported by Natural Science Foundation of China (No. 403740043).
文摘The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.
基金supported by the 863 Program(Grant No.2006AA06Z202)Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)+1 种基金CNPC Young Innovation Fund(Grant No.05E7028)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)
文摘Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.