Recently,increasing attention has been concentrated on negative permittivity with the development of the emerging metamaterials composed of periodic array structures.However,taking facile preparation into consideratio...Recently,increasing attention has been concentrated on negative permittivity with the development of the emerging metamaterials composed of periodic array structures.However,taking facile preparation into consideration,it is important to achieve negative permittivity behavior based on materials'intrinsic properties rather than their artificially periodic structures.In this paper,we proposed to fabricate the percolating composites with copper dispersed in epoxy(EP)resin by a polymerization method to realize the negative permittivity behavior.When Cu content in the composites reached to 80 wt%,the conductivity abruptly went up by three orders of magnitudes,suggesting a percolation behavior.Below the percolation threshold,the conductivity spectra conform to Jonscher's power law;when the Cu/EP composites reached to percolating state,the conductivity gradually reduced in high frequency region due to the skin effect.It is indicated that the conductive mechanism changed from hopping conduction to electron conduction.In addition,the permittivity did not increase monotonously with the increase of Cu content in the vicinity of percolation threshold,due to the presence of leakage current.Meanwhile,the negative permittivity conforming to Drude model was observed above the percolation threshold.Further investigation revealed that there was a constitutive relationship between the permittivity and the reactance.When conductive fillers are slightly above the percolation threshold,the inductive characteristic derived from conductive percolating network leads to the negative permittivity.Such epsilon-negative materials can potentially be applied in novel electrical devices,such as high-power microwave filters,stacked capacitors,negative capacitance field effect transistors and coil-free resonators.In addition,the design strategy based on percolating composites provides an approach to epsilon-negative materials.展开更多
Au/TbMnO3/YBa2 Cu3O7-x capacitors were fabricated on SrTiO3 substrates by pulse laser deposition technique, of which electric properties were investigated in the temperature range from 25 to 300 K. Both current-voltag...Au/TbMnO3/YBa2 Cu3O7-x capacitors were fabricated on SrTiO3 substrates by pulse laser deposition technique, of which electric properties were investigated in the temperature range from 25 to 300 K. Both current-voltage characteristics and junction resistances with bias voltages showed remarkable temperature dependence, in which obvious thermally excited relaxation processes were found between 150 and 200 K. At the temperatures lower than the activation process, the leakage currents of the capacitors were studied. Interestingly, at high electric field, the mechanism of the leakage was Poole-Frenkel emission. However, at low electric field, the conduction was not Ohmic, and ideal lnJ∝E 1/4 characteristics were observed. Analysis showed that the possible origin was related to the inherent inhomogeneous nature of activationless percolating transport.展开更多
Silver nanowire films are promising alternatives to tin-doped indium oxide(ITO)films as transparent conductive electrodes.In this paper,we report the use of vacuum filtration and a polydimethylsiloxane(PDMS)-assisted ...Silver nanowire films are promising alternatives to tin-doped indium oxide(ITO)films as transparent conductive electrodes.In this paper,we report the use of vacuum filtration and a polydimethylsiloxane(PDMS)-assisted transfer printing technique to fabricate silver nanowire films on both rigid and flexible substrates,bringing advantages such as the capability of patterned transfer,the best performance among various ITO alternatives(10Ω/sq at 85%transparency),and good adhesion to the underlying substrate,thus eliminating the previously reported adhesion problem.In addition,our method also allows the preparation of high quality patterned films of silver nanowires with different line widths and shapes in a matter of few minutes,making it a scalable process.Furthermore,use of an anodized aluminum oxide(AAO)membrane in the transfer process allows annealing of nanowire films at moderately high temperature to obtain films with extremely high conductivity and good transparency.Using this transfer technique,we obtained silver nanowire films on a flexible polyethylene terephthalate(PET)substrate with a transparency of 85%,a sheet resistance of 10Ω/sq,with good mechanical flexibility.Detailed analysis revealed that the Ag nanowire network exhibits two-dimensional percolation behavior with good agreement between experimentally observed and theoretically predicted values of critical volume。展开更多
The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure dro...The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure drop and flow rate is developed, viscoelasticity and throat size are found to be two main factors in high flow resistance. According to pore throat model, 2-D stochastic channel bundle is put forward to model porous media, which is composed of pore throat models in series - parallel connection with size and length accord to Hating Greenkorn stochastic distribution. Percolation model of viscoelastic fluid is developed on the basis of Darcy equation and pressure drop vs. flow rate relation in 2-D stochastic channel bundle. Results indicate that the seepage ability of viscoelastic polymer solution decreases with the increase of viscoelasticity, injection rate, and heterogeneity as well as the decrease of mean pore size of porous media. The high pressure drop of viscoelastic fluid at the connection of pore to throat plays a great role in its anomalous high flow resistance through porous media.展开更多
Using the extensively studied V_(2)O_(3) as a prototype system, we investigate the role of percolation in metal-insulator transition(MIT). We apply scanning microwave impedance microscopy to directly determine the met...Using the extensively studied V_(2)O_(3) as a prototype system, we investigate the role of percolation in metal-insulator transition(MIT). We apply scanning microwave impedance microscopy to directly determine the metallic phase fraction p and relate it to the macroscopic conductance G, which shows a sudden jump when p reaches the percolation threshold. Interestingly, the conductance G exhibits a hysteretic behavior against p, suggesting two different percolating processes upon cooling and warming. Based on our image analysis and model simulation, we ascribe such hysteretic behavior to different domain nucleation and growth processes between cooling and warming, which is likely caused by the decoupled structural and electronic transitions in V_(2)O_(3) during MIT. Our work provides a microscopic view of how the interplay of structural and electronic degrees of freedom affects MIT in strongly correlated systems.展开更多
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress ...Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.展开更多
Finely tuning spectral characteristics of the epsilon-negative(ε'<0,EN) response is full of challenges when its regulatory mechanism in metacomposites is not yet clear.Herein,we have meticulously designed Cu/C...Finely tuning spectral characteristics of the epsilon-negative(ε'<0,EN) response is full of challenges when its regulatory mechanism in metacomposites is not yet clear.Herein,we have meticulously designed Cu/CaCu_(3)Ti_(4)O_(12)(Cu/CCTO) percolative metacomposites,successfully achieved both epsilon-negative and ε'-near-zero(ENZ)responses in the radio-frequency band.Before percolation,a large number of electric dipoles in the metacomposites achieved resonance characteristics near the ENZ point under the excitation of radio frequency electromagnetic fields,and as the Cu content increased,the ENZ frequency varied from 942,858,862 to 632 MHz.展开更多
In recent years, the threats posed by computer viruses have become increasingly diverse and complex. While classic percolation theory provides a novel perspective for analyzing epidemics and information dissemination,...In recent years, the threats posed by computer viruses have become increasingly diverse and complex. While classic percolation theory provides a novel perspective for analyzing epidemics and information dissemination, it fails to capture the temporal dynamics of these systems and the effects of virus invasion and governmental regulation. Triadic percolation theory, a recent advancement, addresses these limitations. In this paper, we apply this new percolation mechanism to model the diffusion of computer viruses, deriving a precise mathematical formulation of the triadic percolation model and providing an analytical solution of the triadic percolation threshold. Additionally, we investigate the impact of nonlinear transmission probability characteristics on virus propagation. Numerical simulations demonstrate that reducing the network's average degree(or the positive regulation) or increasing regulatory interventions raises the outbreak threshold for computer viruses while decreasing their final size. Moreover, the study reveals that nonlinear transmission probabilities result in an increased number of solutions for the final size of the computer viruses. Our findings contribute new insights into controlling the spread of computer viruses.展开更多
Universality,encompassing critical exponents,scaling functions,and dimensionless quantities,is fundamental to phase transition theory.In finite systems,universal behaviors are also expected to emerge at the pseudocrit...Universality,encompassing critical exponents,scaling functions,and dimensionless quantities,is fundamental to phase transition theory.In finite systems,universal behaviors are also expected to emerge at the pseudocritical point.Focusing on two-dimensional percolation,we show that the size distribution of the largest cluster asymptotically approaches to a Gumbel form in the subcritical phase,a Gaussian form in the supercritical phase,and transitions within the critical finite-size scaling window.Numerical results indicate that,at consistently defined pseudocritical points,this distribution exhibits a universal form across various lattices and percolation models(bond or site),within error bars,yet differs from the distribution at the critical point.The critical polynomial,universally zero for two-dimensional percolation at the critical point,becomes nonzero at pseudocritical points.Nevertheless,numerical evidence suggests that the critical polynomial,along with other dimensionless quantities such as wrapping probabilities and Binder cumulants,assumes fixed values at the pseudocritical point that are independent of the percolation type(bond or site)but vary with lattice structures.These findings imply that while strict universality breaks down at the pseudocritical point,certain extreme-value statistics and dimensionless quantities exhibit quasi-universality,revealing a subtle connection between scaling behaviors at critical and pseudocritical points.展开更多
Identifying vital nodes is one of the core issues of network science,and is crucial for epidemic prevention and control,network security maintenance,and biomedical research and development.In this paper,a new vital no...Identifying vital nodes is one of the core issues of network science,and is crucial for epidemic prevention and control,network security maintenance,and biomedical research and development.In this paper,a new vital nodes identification method,named degree and cycle ratio(DC),is proposed by integrating degree centrality(weightα)and cycle ratio(weight 1-α).The results show that the dynamic observations and weightαare nonlinear and non-monotonicity(i.e.,there exists an optimal valueα^(*)forα),and that DC performs better than a single index in most networks.According to the value ofα^(*),networks are classified into degree-dominant networks(α^(*)>0.5)and cycle-dominant networks(α^(*)<0.5).Specifically,in most degree-dominant networks(such as Chengdu-BUS,Chongqing-BUS and Beijing-BUS),degree is dominant in the identification of vital nodes,but the identification effect can be improved by adding cycle structure information to the nodes.In most cycle-dominant networks(such as Email,Wiki and Hamsterster),the cycle ratio is dominant in the identification of vital nodes,but the effect can be notably enhanced by additional node degree information.Finally,interestingly,in Lancichinetti-Fortunato-Radicchi(LFR)synthesis networks,the cycle-dominant network is observed.展开更多
Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties.However,weak adhesion and low mechanical robustness of nanowire networks ...Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties.However,weak adhesion and low mechanical robustness of nanowire networks to substrates significantly undermine their reliability,necessitating the use of an insulating protective layer,which greatly limits their utility.Herein,we present a versatile and generalized laser-based process that simultaneously achieves strong adhesion and mechanical robustness of nanowire networks on diverse substrates without the need for a protective layer.In this method,the laser-induced photothermal energy at the interface between the nanowire network and the substrate facilitates the interpenetration of the nanowire network and the polymer matrix,resulting in mechanical interlocking through percolation.This mechanism is broadly applicable across different metallic nanowires and thermoplastic substrates,significantly enhancing its universality in diverse applications.Thereby,we demonstrated the mechanical robustness of nanowires in reusable wearable physiological sensors on the skin without compromising the performance of the sensor.Furthermore,enhanced robustness and electrical conductivity by the laser-induced interlocking enables a stable functionalization of conducting polymers in a wet environment,broadening its application into various electrochemical devices.展开更多
To investigate the stable chromium(Cr)isotope variations during melt percolation in the mantle,we ana-lyzed the Cr isotopic compositions of fresh ultramafic rocks from the Balmuccia and Baldissero peridotite massifs l...To investigate the stable chromium(Cr)isotope variations during melt percolation in the mantle,we ana-lyzed the Cr isotopic compositions of fresh ultramafic rocks from the Balmuccia and Baldissero peridotite massifs located in the Italian Alps.These massifs represent fragments of the subcontinental lithospheric mantle.The samples collected included lherzolites,harzburgites,dunites,and pyroxenites.Lherzolites,formed through 5%-15%fractional melting of a primitive mantle source,exhibited δ^(53)Crvalues ranging from−0.13‰±0.03‰to−0.03‰±0.03‰.These values correlated negatively with Al_(2)O_(3)content,sug-gesting that partial melting induces Cr isotopic fractionation between the melts and residual peridotites.Harzburgites and dunites,influenced by the silicate melt percolation,displayed distinctδ^(53)Cr values.Notably,dunites not spatially associated with the pyroxenite veins exhibited slightly elevatedδ^(53)Cr val-ues(−0.05‰±0.03‰to 0.10‰±0.03‰)relative to lherzolites.This difference likely resulted from pyroxene dissolution and olivine precipitation during melt percolation processes.However,one dunite sample in direct contact with pyroxenite veins showed lowerδ^(53)Cr values(−0.26‰±0.03‰),possibly owing to the kinetic effects during silicate melt percolation.Pyroxenites are formed through the interac-tion of basaltic melts with the surrounding peridotite via a metasomatic reaction or crystallization in a vein.Most of theirδ^(53)Cr values(−0.26‰±0.03‰to−0.13‰±0.03‰)are positively correlated with MgO contents,suggesting that they were influenced by magmatic differentiation.However,two subsam-ples from a single clinopyroxenite vein exhibit anomalously lowδ^(53)Crvalues(−0.30‰±0.03‰and−0.43‰±0.03‰),which are attributed to kinetic isotopic fractionation during melt-percolation pro-cesses.Our findings suggest that melt percolation processes in the mantle contribute to the Cr isotopic heterogeneity observed within the Earth’s mantle.展开更多
Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investig...Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investigate non-equilibrium phase transitions,specifically focusing on the directed percolation process.By converting lattices with varying dimensions and connectivity schemes into graph structures and embedding the temporal evolution of the percolation process into node features,our approach enables unified analysis across diverse systems.The framework utilizes a multi-layer graph attention mechanism combined with global pooling to autonomously extract critical features from local dynamics to global phase transition signatures.The model successfully predicts percolation thresholds without relying on lattice geometry,demonstrating its robustness and versatility.Our approach not only offers new insights into phase transition studies but also provides a powerful tool for analyzing complex dynamical systems across various domains.展开更多
Weathered crust elution-deposited rare earth ores(WREOs)are rich in medium and heavy rare earth.In order to improve the in-situ leaching process,which is prone to landslides and poor permeability,cationic hydroxyethyl...Weathered crust elution-deposited rare earth ores(WREOs)are rich in medium and heavy rare earth.In order to improve the in-situ leaching process,which is prone to landslides and poor permeability,cationic hydroxyethyl cellulose(PQ-10)was used as a novel green swelling inhibitor and percolation promoter and was mixed with conventional leaching agent ammonium sulfate((NH_(4))_(2)SO_(4))to form a composite leaching agent to study the performance and mechanism of swelling inhibition and percolation promotion.Adding PQ-10 can inhibit the hydration swelling of WREOs,promote the percolation effect of the leaching agent,improve the rare earth(RE)leaching efficiency,and reduce the im purity aluminum(Al)leaching efficiency.Compared with the conventional leaching agent 2 wt%(NH_(4))_(2)SO_(4),the percolation time is reduced by 50%by using the composite leaching agent(0.02 wt%PQ-10+2 wt%(NH_(4))_(2)SO_(4)).PQ-10 has positively charged quaternary ammonium groups and hydrophilic group hydroxyl groups,which makes it easy to adsorb on WREOs multiple sites through electrostatic interaction and hydrogen bonding,weakening the electrostatic repulsion between mineral particles,reducing the WREOs interlayer spacing,compressing the double electric layer thickness at the solid-liquid interface,weakening the mineral hydration swelling and increasing the percolation rate.The long carbon chains of the polymer entangle and link the fine mineral particles to agglomerate them,increasing their particle size and reduc ing their hydration dispersion,and preventing blockage of the pe rcolation pores caused by migration of the fine particles through the ore body with the solution.PQ-10 molecules also insert the mine ral interlayer and expulsion of the internal water,further inhibiting the swelling of WREOs.Adding PQ-10 reduces the surface tension of(NH_(4))_(2)SO_(4)solution,improving the spreading and spreading ability of the solution,reducing the adhesion work between molecules in the solid-liquid phase and the adhesion work reduction factor.It proves that PQ-10 promotes the percolation effect of the leaching process of WREOs.In addition,PQ-10 expands the leaching pore size and seepage channels,further improving the percolation rate.展开更多
In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applic...In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applications.We proposed the thermal-percolation electrical-resistive TIM incorporating binary fillers of both insulating and metallic nanowires with an orientation in the insulating polymer matrix.High thermal conductivity can be achieved through thermal percolation,while electrical non-conductivity is preserved by carefully controlling the electrical percolation threshold through metallic nanowire orientation.The electrical conductivity of the composite can be further regulated by adjusting the orientation and aspect ratio of the metallic fillers.A thermal conductivity of 10 W·m^(-1)·K^(-1)is achieved,with electrical non-conductive behavior preserved.This approach offers a pathway to realizing“thermal-percolation electrical-resistive”in hybrid TIMs,providing a strategic framework for designing high-performance TIMs.展开更多
目的:评价1层和2层Percoll密度梯度离心法分离精子的效果。方法:20份精液标本分别行50%1层,90%和45%Percoll2层密度梯度离心分离,处理前后应用SCA(sperm class analyzer)精子质量分析仪分析精子密度、活力和圆形细胞密度。结果:1层法分...目的:评价1层和2层Percoll密度梯度离心法分离精子的效果。方法:20份精液标本分别行50%1层,90%和45%Percoll2层密度梯度离心分离,处理前后应用SCA(sperm class analyzer)精子质量分析仪分析精子密度、活力和圆形细胞密度。结果:1层法分离后精子回收率为(65.5±12.8)%,明显高于2层法(P<0.01);1层和2层法分离后a级精子百分率明显高于处理前(P<0.05,P<0.01),而1层法分离后a级精子百分率明显低于2层法(P<0.05);1层法分离精子后c级精子百分率明显高于2层法(P<0.05),与处理前相比没有明显差异(P>0.05);2层法分离后a+b级精子百分率明显高于处理前(P<0.05),1层法分离后a+b级精子百分率与处理前相比没有明显差异(P>0.05);1层和2层法分离后圆形细胞密度明显低于处理前(P<0.05,P<0.01),两种方法之间没有差异(P>0.05)。结论:1层法分离后精子回收率较高,精子的活力改变不大;2层法分离后精子回收率较低,精子的活力明显改善;1层和2层法都可以较好地把精子与圆形细胞分开。两种方法各有优势,在精子体外处理中都有着重要的应用价值。展开更多
基金sponsored by the National Natural Science Foundation of China (Grant No.51803119,51871146 and 51771108)the Innovation Program of Shanghai Municipal Education Commission (Grant No.2019-01-07-00-10-E00053)+1 种基金"Chenguang Program" supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (Grant No.18CG56)the Science and Technology Commission of Shanghai Municipality (Grant No.18DZ1112902,No.18DZ1100802)
文摘Recently,increasing attention has been concentrated on negative permittivity with the development of the emerging metamaterials composed of periodic array structures.However,taking facile preparation into consideration,it is important to achieve negative permittivity behavior based on materials'intrinsic properties rather than their artificially periodic structures.In this paper,we proposed to fabricate the percolating composites with copper dispersed in epoxy(EP)resin by a polymerization method to realize the negative permittivity behavior.When Cu content in the composites reached to 80 wt%,the conductivity abruptly went up by three orders of magnitudes,suggesting a percolation behavior.Below the percolation threshold,the conductivity spectra conform to Jonscher's power law;when the Cu/EP composites reached to percolating state,the conductivity gradually reduced in high frequency region due to the skin effect.It is indicated that the conductive mechanism changed from hopping conduction to electron conduction.In addition,the permittivity did not increase monotonously with the increase of Cu content in the vicinity of percolation threshold,due to the presence of leakage current.Meanwhile,the negative permittivity conforming to Drude model was observed above the percolation threshold.Further investigation revealed that there was a constitutive relationship between the permittivity and the reactance.When conductive fillers are slightly above the percolation threshold,the inductive characteristic derived from conductive percolating network leads to the negative permittivity.Such epsilon-negative materials can potentially be applied in novel electrical devices,such as high-power microwave filters,stacked capacitors,negative capacitance field effect transistors and coil-free resonators.In addition,the design strategy based on percolating composites provides an approach to epsilon-negative materials.
基金Project supported by National Natural Science Foundation of China(10975103)
文摘Au/TbMnO3/YBa2 Cu3O7-x capacitors were fabricated on SrTiO3 substrates by pulse laser deposition technique, of which electric properties were investigated in the temperature range from 25 to 300 K. Both current-voltage characteristics and junction resistances with bias voltages showed remarkable temperature dependence, in which obvious thermally excited relaxation processes were found between 150 and 200 K. At the temperatures lower than the activation process, the leakage currents of the capacitors were studied. Interestingly, at high electric field, the mechanism of the leakage was Poole-Frenkel emission. However, at low electric field, the conduction was not Ohmic, and ideal lnJ∝E 1/4 characteristics were observed. Analysis showed that the possible origin was related to the inherent inhomogeneous nature of activationless percolating transport.
基金funded by the U.S.Department of Energy,Office of Science and Office of Basic Energy Sciences under Award No.DE-SC0001013.
文摘Silver nanowire films are promising alternatives to tin-doped indium oxide(ITO)films as transparent conductive electrodes.In this paper,we report the use of vacuum filtration and a polydimethylsiloxane(PDMS)-assisted transfer printing technique to fabricate silver nanowire films on both rigid and flexible substrates,bringing advantages such as the capability of patterned transfer,the best performance among various ITO alternatives(10Ω/sq at 85%transparency),and good adhesion to the underlying substrate,thus eliminating the previously reported adhesion problem.In addition,our method also allows the preparation of high quality patterned films of silver nanowires with different line widths and shapes in a matter of few minutes,making it a scalable process.Furthermore,use of an anodized aluminum oxide(AAO)membrane in the transfer process allows annealing of nanowire films at moderately high temperature to obtain films with extremely high conductivity and good transparency.Using this transfer technique,we obtained silver nanowire films on a flexible polyethylene terephthalate(PET)substrate with a transparency of 85%,a sheet resistance of 10Ω/sq,with good mechanical flexibility.Detailed analysis revealed that the Ag nanowire network exhibits two-dimensional percolation behavior with good agreement between experimentally observed and theoretically predicted values of critical volume。
基金Project supported by the National Natural Science Foundation of China (Grant No. 50574060)National Basic Research Program of China (Grant No. 2005CB221300).
文摘The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure drop and flow rate is developed, viscoelasticity and throat size are found to be two main factors in high flow resistance. According to pore throat model, 2-D stochastic channel bundle is put forward to model porous media, which is composed of pore throat models in series - parallel connection with size and length accord to Hating Greenkorn stochastic distribution. Percolation model of viscoelastic fluid is developed on the basis of Darcy equation and pressure drop vs. flow rate relation in 2-D stochastic channel bundle. Results indicate that the seepage ability of viscoelastic polymer solution decreases with the increase of viscoelasticity, injection rate, and heterogeneity as well as the decrease of mean pore size of porous media. The high pressure drop of viscoelastic fluid at the connection of pore to throat plays a great role in its anomalous high flow resistance through porous media.
基金Fudan University was supported by the National Natural Science Foundation of China (Grant Nos. 12074080, 11804052, 11827805,11725521, and 12035004)the National Postdoctoral Program for Innovative Talents (Grant No. BX20180079)+5 种基金the Shanghai Science and Technology Committee Rising-Star Program (Grant No. 19QA1401000)the Science and Technology Commission of Shanghai Municipality (Grant No.20JC1414700)the Major Project (Grant No. 2019SHZDZX01)the Ministry of Science and Technology of China (Grant Nos. 2017YFA03030002021YFA1400100)(synthesis, structural characterization and global transport of V2O3) at University of California San Diego was supported by the US Air Force Office of Scientific Research (Grant No.FA9550-20-1-0242)。
文摘Using the extensively studied V_(2)O_(3) as a prototype system, we investigate the role of percolation in metal-insulator transition(MIT). We apply scanning microwave impedance microscopy to directly determine the metallic phase fraction p and relate it to the macroscopic conductance G, which shows a sudden jump when p reaches the percolation threshold. Interestingly, the conductance G exhibits a hysteretic behavior against p, suggesting two different percolating processes upon cooling and warming. Based on our image analysis and model simulation, we ascribe such hysteretic behavior to different domain nucleation and growth processes between cooling and warming, which is likely caused by the decoupled structural and electronic transitions in V_(2)O_(3) during MIT. Our work provides a microscopic view of how the interplay of structural and electronic degrees of freedom affects MIT in strongly correlated systems.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(300333)the National Natural Science Foundation of China(21203008,21975025,12274025,22372008)。
文摘Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.
基金supported by the National Natural Science Foundation of China(No.52461002)
文摘Finely tuning spectral characteristics of the epsilon-negative(ε'<0,EN) response is full of challenges when its regulatory mechanism in metacomposites is not yet clear.Herein,we have meticulously designed Cu/CaCu_(3)Ti_(4)O_(12)(Cu/CCTO) percolative metacomposites,successfully achieved both epsilon-negative and ε'-near-zero(ENZ)responses in the radio-frequency band.Before percolation,a large number of electric dipoles in the metacomposites achieved resonance characteristics near the ENZ point under the excitation of radio frequency electromagnetic fields,and as the Cu content increased,the ENZ frequency varied from 942,858,862 to 632 MHz.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12101573 and 12022113)the Fundamental Research Program of Shanxi Province,China (Grant Nos. 20210302124381,202203021211213,and 20210302123018)。
文摘In recent years, the threats posed by computer viruses have become increasingly diverse and complex. While classic percolation theory provides a novel perspective for analyzing epidemics and information dissemination, it fails to capture the temporal dynamics of these systems and the effects of virus invasion and governmental regulation. Triadic percolation theory, a recent advancement, addresses these limitations. In this paper, we apply this new percolation mechanism to model the diffusion of computer viruses, deriving a precise mathematical formulation of the triadic percolation model and providing an analytical solution of the triadic percolation threshold. Additionally, we investigate the impact of nonlinear transmission probability characteristics on virus propagation. Numerical simulations demonstrate that reducing the network's average degree(or the positive regulation) or increasing regulatory interventions raises the outbreak threshold for computer viruses while decreasing their final size. Moreover, the study reveals that nonlinear transmission probabilities result in an increased number of solutions for the final size of the computer viruses. Our findings contribute new insights into controlling the spread of computer viruses.
基金supported by the National Natural Science Foundation of China(Grant No.12275263)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301900)Natural Science Foundation of Fujian Province of China(Grant No.2023J02032).
文摘Universality,encompassing critical exponents,scaling functions,and dimensionless quantities,is fundamental to phase transition theory.In finite systems,universal behaviors are also expected to emerge at the pseudocritical point.Focusing on two-dimensional percolation,we show that the size distribution of the largest cluster asymptotically approaches to a Gumbel form in the subcritical phase,a Gaussian form in the supercritical phase,and transitions within the critical finite-size scaling window.Numerical results indicate that,at consistently defined pseudocritical points,this distribution exhibits a universal form across various lattices and percolation models(bond or site),within error bars,yet differs from the distribution at the critical point.The critical polynomial,universally zero for two-dimensional percolation at the critical point,becomes nonzero at pseudocritical points.Nevertheless,numerical evidence suggests that the critical polynomial,along with other dimensionless quantities such as wrapping probabilities and Binder cumulants,assumes fixed values at the pseudocritical point that are independent of the percolation type(bond or site)but vary with lattice structures.These findings imply that while strict universality breaks down at the pseudocritical point,certain extreme-value statistics and dimensionless quantities exhibit quasi-universality,revealing a subtle connection between scaling behaviors at critical and pseudocritical points.
基金Project supported by Yunnan Fundamental Research Projects(Grant No.202401AT070359)。
文摘Identifying vital nodes is one of the core issues of network science,and is crucial for epidemic prevention and control,network security maintenance,and biomedical research and development.In this paper,a new vital nodes identification method,named degree and cycle ratio(DC),is proposed by integrating degree centrality(weightα)and cycle ratio(weight 1-α).The results show that the dynamic observations and weightαare nonlinear and non-monotonicity(i.e.,there exists an optimal valueα^(*)forα),and that DC performs better than a single index in most networks.According to the value ofα^(*),networks are classified into degree-dominant networks(α^(*)>0.5)and cycle-dominant networks(α^(*)<0.5).Specifically,in most degree-dominant networks(such as Chengdu-BUS,Chongqing-BUS and Beijing-BUS),degree is dominant in the identification of vital nodes,but the identification effect can be improved by adding cycle structure information to the nodes.In most cycle-dominant networks(such as Email,Wiki and Hamsterster),the cycle ratio is dominant in the identification of vital nodes,but the effect can be notably enhanced by additional node degree information.Finally,interestingly,in Lancichinetti-Fortunato-Radicchi(LFR)synthesis networks,the cycle-dominant network is observed.
基金supported by the National Research Foundation of Korea(NRF)Grant(RS-2024-00343512,RS-2024-00416938).
文摘Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties.However,weak adhesion and low mechanical robustness of nanowire networks to substrates significantly undermine their reliability,necessitating the use of an insulating protective layer,which greatly limits their utility.Herein,we present a versatile and generalized laser-based process that simultaneously achieves strong adhesion and mechanical robustness of nanowire networks on diverse substrates without the need for a protective layer.In this method,the laser-induced photothermal energy at the interface between the nanowire network and the substrate facilitates the interpenetration of the nanowire network and the polymer matrix,resulting in mechanical interlocking through percolation.This mechanism is broadly applicable across different metallic nanowires and thermoplastic substrates,significantly enhancing its universality in diverse applications.Thereby,we demonstrated the mechanical robustness of nanowires in reusable wearable physiological sensors on the skin without compromising the performance of the sensor.Furthermore,enhanced robustness and electrical conductivity by the laser-induced interlocking enables a stable functionalization of conducting polymers in a wet environment,broadening its application into various electrochemical devices.
基金supported by National Natural Science Foundation of China(Grant No.42473017)Hong Kong RGC grants(JLFS/P-702/24 and 17308023)China Geological Survey project(Grant No.DD20242037).
文摘To investigate the stable chromium(Cr)isotope variations during melt percolation in the mantle,we ana-lyzed the Cr isotopic compositions of fresh ultramafic rocks from the Balmuccia and Baldissero peridotite massifs located in the Italian Alps.These massifs represent fragments of the subcontinental lithospheric mantle.The samples collected included lherzolites,harzburgites,dunites,and pyroxenites.Lherzolites,formed through 5%-15%fractional melting of a primitive mantle source,exhibited δ^(53)Crvalues ranging from−0.13‰±0.03‰to−0.03‰±0.03‰.These values correlated negatively with Al_(2)O_(3)content,sug-gesting that partial melting induces Cr isotopic fractionation between the melts and residual peridotites.Harzburgites and dunites,influenced by the silicate melt percolation,displayed distinctδ^(53)Cr values.Notably,dunites not spatially associated with the pyroxenite veins exhibited slightly elevatedδ^(53)Cr val-ues(−0.05‰±0.03‰to 0.10‰±0.03‰)relative to lherzolites.This difference likely resulted from pyroxene dissolution and olivine precipitation during melt percolation processes.However,one dunite sample in direct contact with pyroxenite veins showed lowerδ^(53)Cr values(−0.26‰±0.03‰),possibly owing to the kinetic effects during silicate melt percolation.Pyroxenites are formed through the interac-tion of basaltic melts with the surrounding peridotite via a metasomatic reaction or crystallization in a vein.Most of theirδ^(53)Cr values(−0.26‰±0.03‰to−0.13‰±0.03‰)are positively correlated with MgO contents,suggesting that they were influenced by magmatic differentiation.However,two subsam-ples from a single clinopyroxenite vein exhibit anomalously lowδ^(53)Crvalues(−0.30‰±0.03‰and−0.43‰±0.03‰),which are attributed to kinetic isotopic fractionation during melt-percolation pro-cesses.Our findings suggest that melt percolation processes in the mantle contribute to the Cr isotopic heterogeneity observed within the Earth’s mantle.
基金supported by the Fund from the Science and Technology Department of Henan Province,China(Grant Nos.222102210233 and 232102210064)the National Natural Science Foundation of China(Grant Nos.62373169 and 72474086)+5 种基金the Young and Midcareer Academic Leader of Jiangsu Province,China(Grant No.Qinglan Project in 2024)the National Statistical Science Research Project(Grant No.2022LZ03)Shaanxi Provincial Soft Science Project(Grant No.2022KRM111)Shaanxi Provincial Social Science Foundation(Grant No.2022R016)the Special Project for Philosophical and Social Sciences Research in Shaanxi Province,China(Grant No.2024QN018)the Fund from the Henan Office of Philosophy and Social Science(Grant No.2023CJJ112).
文摘Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investigate non-equilibrium phase transitions,specifically focusing on the directed percolation process.By converting lattices with varying dimensions and connectivity schemes into graph structures and embedding the temporal evolution of the percolation process into node features,our approach enables unified analysis across diverse systems.The framework utilizes a multi-layer graph attention mechanism combined with global pooling to autonomously extract critical features from local dynamics to global phase transition signatures.The model successfully predicts percolation thresholds without relying on lattice geometry,demonstrating its robustness and versatility.Our approach not only offers new insights into phase transition studies but also provides a powerful tool for analyzing complex dynamical systems across various domains.
基金Project supported by the National Natural Science Foundation of China(U2002215)。
文摘Weathered crust elution-deposited rare earth ores(WREOs)are rich in medium and heavy rare earth.In order to improve the in-situ leaching process,which is prone to landslides and poor permeability,cationic hydroxyethyl cellulose(PQ-10)was used as a novel green swelling inhibitor and percolation promoter and was mixed with conventional leaching agent ammonium sulfate((NH_(4))_(2)SO_(4))to form a composite leaching agent to study the performance and mechanism of swelling inhibition and percolation promotion.Adding PQ-10 can inhibit the hydration swelling of WREOs,promote the percolation effect of the leaching agent,improve the rare earth(RE)leaching efficiency,and reduce the im purity aluminum(Al)leaching efficiency.Compared with the conventional leaching agent 2 wt%(NH_(4))_(2)SO_(4),the percolation time is reduced by 50%by using the composite leaching agent(0.02 wt%PQ-10+2 wt%(NH_(4))_(2)SO_(4)).PQ-10 has positively charged quaternary ammonium groups and hydrophilic group hydroxyl groups,which makes it easy to adsorb on WREOs multiple sites through electrostatic interaction and hydrogen bonding,weakening the electrostatic repulsion between mineral particles,reducing the WREOs interlayer spacing,compressing the double electric layer thickness at the solid-liquid interface,weakening the mineral hydration swelling and increasing the percolation rate.The long carbon chains of the polymer entangle and link the fine mineral particles to agglomerate them,increasing their particle size and reduc ing their hydration dispersion,and preventing blockage of the pe rcolation pores caused by migration of the fine particles through the ore body with the solution.PQ-10 molecules also insert the mine ral interlayer and expulsion of the internal water,further inhibiting the swelling of WREOs.Adding PQ-10 reduces the surface tension of(NH_(4))_(2)SO_(4)solution,improving the spreading and spreading ability of the solution,reducing the adhesion work between molecules in the solid-liquid phase and the adhesion work reduction factor.It proves that PQ-10 promotes the percolation effect of the leaching process of WREOs.In addition,PQ-10 expands the leaching pore size and seepage channels,further improving the percolation rate.
基金supported by the National Key R&D Program(Grant No.2022YFA1203-100)sponsorship by Shanghai Sailing Program(Grant No.24YF2713800)+2 种基金financial support from the Local College Capacity Building Project of Shanghai Municipal Science and Technology Commission(Grant No.20010500700)the Natural Science Foundation of Shanghai(Grant No.23ZR1424300)Shanghai Shuguang Program(Grant No.22SG56)。
文摘In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applications.We proposed the thermal-percolation electrical-resistive TIM incorporating binary fillers of both insulating and metallic nanowires with an orientation in the insulating polymer matrix.High thermal conductivity can be achieved through thermal percolation,while electrical non-conductivity is preserved by carefully controlling the electrical percolation threshold through metallic nanowire orientation.The electrical conductivity of the composite can be further regulated by adjusting the orientation and aspect ratio of the metallic fillers.A thermal conductivity of 10 W·m^(-1)·K^(-1)is achieved,with electrical non-conductive behavior preserved.This approach offers a pathway to realizing“thermal-percolation electrical-resistive”in hybrid TIMs,providing a strategic framework for designing high-performance TIMs.
文摘目的:评价1层和2层Percoll密度梯度离心法分离精子的效果。方法:20份精液标本分别行50%1层,90%和45%Percoll2层密度梯度离心分离,处理前后应用SCA(sperm class analyzer)精子质量分析仪分析精子密度、活力和圆形细胞密度。结果:1层法分离后精子回收率为(65.5±12.8)%,明显高于2层法(P<0.01);1层和2层法分离后a级精子百分率明显高于处理前(P<0.05,P<0.01),而1层法分离后a级精子百分率明显低于2层法(P<0.05);1层法分离精子后c级精子百分率明显高于2层法(P<0.05),与处理前相比没有明显差异(P>0.05);2层法分离后a+b级精子百分率明显高于处理前(P<0.05),1层法分离后a+b级精子百分率与处理前相比没有明显差异(P>0.05);1层和2层法分离后圆形细胞密度明显低于处理前(P<0.05,P<0.01),两种方法之间没有差异(P>0.05)。结论:1层法分离后精子回收率较高,精子的活力改变不大;2层法分离后精子回收率较低,精子的活力明显改善;1层和2层法都可以较好地把精子与圆形细胞分开。两种方法各有优势,在精子体外处理中都有着重要的应用价值。