A modified Dakin-West one-pot, four-component condensation of an aryl aldehyde, aryl ketone, acetyl chloride and acetonitrile in the presence of silica supported perchloric acid as an active, inexpensive, recoverable ...A modified Dakin-West one-pot, four-component condensation of an aryl aldehyde, aryl ketone, acetyl chloride and acetonitrile in the presence of silica supported perchloric acid as an active, inexpensive, recoverable and recyclable catalyst is reported for the synthesis of β-acetamido ketones under mechanical stirring and ultrasonic irradiation conditions. This system has advantages of short reaction times, good to excellent yields and the ability to carry out the large scale reactions. The use of ultrasound increases the rate of reactions compared with reactions at reflux conditions.展开更多
An environmentally friendly and highly efficient procedure for the preparation of 1,4-dihydropyridines by the reaction between a,β-unsaturated aldehydes, aromatic amines and β-keto esters in the presence of silica s...An environmentally friendly and highly efficient procedure for the preparation of 1,4-dihydropyridines by the reaction between a,β-unsaturated aldehydes, aromatic amines and β-keto esters in the presence of silica supported perchloric acid is described.展开更多
Chemical or electrochemical oxidation of N-benzylaniline in perehloric acid solution yields a highly colored polymer——poly-N-benzylaniline (PBAn).The polymer has good solubility in a num- ber of organic solvents in ...Chemical or electrochemical oxidation of N-benzylaniline in perehloric acid solution yields a highly colored polymer——poly-N-benzylaniline (PBAn).The polymer has good solubility in a num- ber of organic solvents in either acid or base form.At room temperature,conductivity measurements on pressed pellets of the acid form PBAn give a conductivity of 9.3×10^(-6) S·cm^(-1).The soluble polymer was analyzed using a variety of common experimental techniques including UV-vis,IR,NMR,ESR spectroscopy,elemental analysis and electrochemieal analysis.All experimental results showed that PBAn has a structure similar to polyaniline with the elimination of some benzyl groups.展开更多
Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perch...Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perchlorate on aquatic autotrophs such cyanobacterium are still unclear.Herein,Synechocystis sp.PCC6803(Synechocystis)was used to investigate the response mechanisms of perchlorate on cyanobacterium by integrating physiological and transcriptome analyses.Physiological results showed that perchlorate mainly damaged the photosystem of Synechocystis,and the inhibition degree of photosystem II(PSII)was severer than that of photosystem I(PSI).When the exposed cells were moved to a clean medium,the photosynthetic activities were slightly repaired but still lower than in the control group,indicating irreversible damage.Furthermore,perchlorate also destroyed the cellular ultrastructure and induced oxidative stress in Synechocystis.The antioxidant glutathione(GSH)content and the superoxide dismutase(SOD)enzyme activity were enhanced to scavenge harmful reactive oxygen(ROS)in Synechocystis.Transcriptome analysis revealed that the genes associated with“photosynthesis”and“electron transport”were significantly regulated.For instance,most genes related to PSI(e.g.,psaf,psaJ)and the“electron transport chain”were upregulated,whereas most genes related to PSII(e.g.,psbA3,psbD1,psbB,and psbC)were downregulated.Additionally,perchlorate also induced the expression of genes related to the antioxidant system(sod2,gpx,gst,katG,and gshB)to reduce oxidative damage.Overall,this study is the first to investigate the impacts andmechanisms of cyanobacterium under perchlorate stress,which is conducive to assessing the risk of perchlorate in aquatic environments.展开更多
Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobi...Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobic cavities via interactions of cationic surfactants with montmorillonite to prioritize perchlorate bonding.The prepared adsorbent exhibited high selectivity over commonly occurring competing anions,including SO_(4)^(2−),NO_(3)^(−),PO_(4)^(3−),HCO_(3)^(−),and halide anions.High adsorption capacity,fast adsorption kinetics,and excellent regeneration ability(removal efficiency≥80%after 20 cycles)were confirmed via batch experiments.Unconventional CH···O hydrogen bonding was verified as the primary driving force for perchlorate adsorption,which relies on the higher bond energy(∼80 kcal·mol−1)than conventional bonding.The removal efficiency of anions followed the order of the Hofmeister Series,demonstrating the importance of hydrophobic cavities formed by the tail groups of cationic surfactants.The hydrophobic cavities sheltered the C–H bonds from interacting with anions of low hydration energy(e.g.,perchlorate).Furthermore,a fixed-bed column test demonstrated that about 2900 bed volumes of the feeding streams(∼500μg·L^(−1))can be treated to≤70μg·L^(−1),with an enrichment factor of 10.3.Overall,on the basis of the hydrophobicity-induced hydrogen bonding mechanism,a series of low-cost adsorbents can be synthesized and applied for specific perchlorate removal.展开更多
The present paper reports a new fluoride-free and energy-saving lead electrolytic refining process in order to solve the serious problems of the existing Betts lead electrorefining process, such as low production effi...The present paper reports a new fluoride-free and energy-saving lead electrolytic refining process in order to solve the serious problems of the existing Betts lead electrorefining process, such as low production efficiency,high energy consumption and fluorine pollution. In the process, a mixed solution of perchloric acid and lead perchlorate(HClO4-Pb(ClO4)2) with the additives of gelatin and sodium lignin sulfonate is employed as the new electrolyte. The cathodic polarization curves show that HClO4 is very stable, and there is no any reduction reaction of HClO4 during the electrolytic process. The redox reactions of lead ions in HClO4 solution are very reversible with an ultrahigh capacity efficiency, so the HClO4 acts as a stable support electrolyte with higher ionic conductivity than the traditional H2SiF6 electrolyte. The results of the scale-up experiments show that under the optimal conditions of 2.8 mol·L-1 HClO4, 0.4 mol·L-1 Pb(ClO4)2 and electrolysis temperature of 45 ℃, the energy consumption is as low as 24.5 kW·h·(t Pb)-1 , only about 20% of that by Betts method at the same current density of 20 mA·cm-2, and the purity of the refined lead is up to 99.9992%, much higher than that specified by Chinese national standard(99.994%, GB/T 469-2013) and European standard(99.99%, EN 12659–1999).展开更多
Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract lipid-soluble metabol...Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract lipid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Fur- thermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were as- signed in the acquired spectra according to the chemical shift, and the extraction efficiency of dif- ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain rela- tively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase ex- traction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts.展开更多
Regenerating spent graphite(SG)from retired lithium-ion batteries(LIBs)can effectively avoid resource waste.However,the technology is challenged by the impurity content and energy consumption.In this study,micro-expan...Regenerating spent graphite(SG)from retired lithium-ion batteries(LIBs)can effectively avoid resource waste.However,the technology is challenged by the impurity content and energy consumption.In this study,micro-expanded graphite(MEG)was synthesized by one-step oxidation method using waste LIBs anode graphite as material and perchloric acid as intercalation and oxidant agent.Then,its performance as a LIBs anode material were investigated as well as the greenhouse gas(GHG)emissions of the whole process were calculated.Perchloric acid was successfully embedded in the SG during the reaction,which effectively removed the impurities in the graphite.Defects introduced during intercalation and delamination,such as nanopores and intercrystalline cracks.Both provide additional space for Li ions during charging and discharging,thereby promoting capacity enhancement.The prepared MEG expresses a rate capability as high as 340.32 m Ah/g at a current density of 0.1 C and still retains 81.73%of the capacity after 100 cycles at a current density of 1 C.Additionally,the GHG emissions of the synthesis process of this article and other literatures are compared.The results demonstrated that perchloric acid treatment process provides a low-carbon,time-and energy-saving approach for regenerated SG as battery grade material.展开更多
The content of dimethylallylamine was determined using glacial acetic acid as solvent, acetic-formic mixture as an anhydrite, perchloric acid-glacial acetic acid as titrant, and 1% crystal violet in acetic acid as ind...The content of dimethylallylamine was determined using glacial acetic acid as solvent, acetic-formic mixture as an anhydrite, perchloric acid-glacial acetic acid as titrant, and 1% crystal violet in acetic acid as indicator in the presence of methylamine and dimethylamine The influences of inert constituents and water on the titration were investigated, and a complete analytical method was determined. The results showed that the determination error of total amines increased with water increasing, while the effect of water on the determination of dimethylallylamine was little when the amount of water was within 5%, the relative error was generally within 1%, and that the end-point was acutely when about 10% chloroform was added. Compared with gas chromatography, this method is simple, convenient and accurate.展开更多
The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were char...The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by transmission electron microscopy (TEM), BET equation, X-ray diffraction (XRD), and the corresponding selected area electron diffraction (SAED). The catalytic effect of Co nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by differential thermal analyzer (DTA). Compared with the thermal decomposition of pure AP, the addition of Co nanoparticles (2%-10%, by mass) decreases the decomposition temperature of AP by 145.01-155.72℃. Compared with Co3O4 nano-particles and microsized Co particles, the catalytic effect of Co nanoparticles for AP is stronger. Such effect is attributed to the large specific surface area and its interaction of Co with decomposition intermediate gases. The present work provides useful information for the application of Co nanoparficles in the AP-based propellant.展开更多
To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution cultu...To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution culture experiments under controlled condi- tions. Different concentrations of La (NO3)3 were used in our study. It was shown that 0. 1 and 0.5 mg/L La3+ alleviated the inhibition effect of perchlorate on A. philoxeroides, including relative growth yield, dry weight of different organs, leaf area and root activity. And La3+ prevented decline in the relative chlorophyll content and chlorophyll fluorescence parameters including Fv/Fm, Fv'/Frn', φPSll and ETR induced by perchlorate stress. Moreover, 0.5 mg/L La3+ showed an optimal mitigative effect, while excess La3+ (5.0 mg/L) led to synergistic effect on stress. Correlation analysis revealed a significant positive relationship between growth indexes and the chlorophyll fluorescence parameters, root activity and relative chlorophyll content (p〈0.05). The results suggested that appropriate concentration of La3+ could effectively alleviate growth inhibition and injury ofA. philoxeroides caused by perchlorate stress, and the mitigative effect of La3+ might be achieved by improving root activity, maintaining chlorophyll content and promoting photochemical efficiency of photosystem II ofA. philoxeroides under perchlorate stress.展开更多
Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination te...Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.展开更多
Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing...Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing FeSO 4 ·7H2O on GAC, reduced by NaBH 4 solution in polyethylene glycol 6000 and ethanol solution, dried in vacuum condition and exposed to air. Synthesized ICs/GAC was characterized using transmission electron micrograph (TEM), Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy (XPS). ICs/GAC was determined to be containing a large amount of FeOHSO 4 , Fe2O3 and a small amount of zero-valent iron (ZVI) nanoparticles according to TEM and XPS measurements. Batch static kinetic tests showed that 97% of ClO4^- was removed within 10 hr at 90°C and 86% of ClO4^- was removed within 12 hr at 25°C, at ICs/GAC dosage of 20 g/L. The experimental results also showed that FeOHSO 4 and Fe 2 O 3 nanoparticles have the function of perchlorate adsorption and play important roles in ClO4^- removal. The activation energy (E a ) was determined to be 9.56 kJ/mol.展开更多
The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried ...The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried out by utilizing XRD,FTIR,and SEM.The TGA/DSC technique was employed for the investigation of the catalytic proficiency of MONs on the AP.The DSC data were used for measuring activation energy of catalyzed AP by using Ozawa,Kissinger,and Starink method.The MONs were much sensitive for AP decomposition,and the performance of AP decomposition was further improved.Among all the MONs,the CuZnO exhibits higher catalytic action than others and decomposition temperature of AP is descending around 117℃ by CuZnO.The reduction in the activation energy was noticed after the incorporation of MONs in AP.展开更多
Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine...Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine the concentration ratios Cl-/ NO3- or Cl-/ ClO4- for studying the adsorption of the three anions by variable charge soils. It was found that all the concentration ratios CCl- / CNO3- and CCl- / CClO4- in suspension were smaller than unity when soil samples were in equilibrium with mixed KCl and KNO3 or KCl and KClO4 solutions of equal concentration. The order of the amount of chloride, nitrate and perchlorate adsorbed by variable charge soils was Cl-> NO3-> ClO4- when the soils adsorbed these anions from the solution containing equal concentrations of Cl-, NO3- and ClO4-. Such factors as the pH of the suspension, the iron oxide content of the soil etc. could affect the amounts and the ratios of anions adsorbed. The adsorption was chiefly caused by coulombic attraction, but a covalent force between the anion and the metal atom on the surface of soil particles may also be involved, at least for Cl- ions, even for NO3- ions.展开更多
To improve the catalytic activity of amorphous Co-B alloys, Co-B coated aluminum (Co-B/M) nanocomposites were prepared by electroless coating technique and evaluated as additives for the catalytic performance of amm...To improve the catalytic activity of amorphous Co-B alloys, Co-B coated aluminum (Co-B/M) nanocomposites were prepared by electroless coating technique and evaluated as additives for the catalytic performance of ammonium perchlorate (AP) and AP-based solid state propellants. X-ray diffractometry (XRD), scanning electron microscopy (SEM), inductive coupled plasma emission spectrometry (ICP), differential scanning calorimetry (DSC) as well as strand burner method were employed to characterize the crystal phase, morphologies, chemical composition, and catalytic activity of the as-synthesized material. The results show that a continuous layer of about 100 nm amorphous Co72.6B27.4 covers the surfaces of M particles. Addition of the as-synthesized Co-B/A1 nanocomposites as catalysts promotes AP decomposition, enhances the burning rate, and lowers the pressure exponent of the AP-based propellants considerably.展开更多
Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves ...Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves high activation energy and could render high burning rate regime.This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer.Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing.TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size.XRD diffractogram demonstrated highly crystalline material.The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent-antisolvent technique.The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques.APC demonstrated an initial endothermic decomposition stage at 242℃ with subsequent two exothermic decomposition stages at 297,8℃ and 452.8℃ respectively.At 1 wt%,copper oxide offered decrease in initial endothermic decomposition stage by 30%.The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%.These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.展开更多
In a quest of search for a new burning rate modifier for composite propellant, strontium titanate (SrTiO3), a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other ca...In a quest of search for a new burning rate modifier for composite propellant, strontium titanate (SrTiO3), a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other catalytic applications. Initially, SrTiO3 was characterized for particle size, morphology and material/ phase identification (using XRD). By varying SrTiO3 content in a standard composite propellant, different compositions were prepared and their performance and processing parameters like the end of mix (EOM) viscosity, mechanical properties, density, burning rate, pressure exponent (n-value), etc. were measured. The results reveal that 2% SrTiO3 causes more than 12% enhancement in propellant burning rate (at 70 ksc pressure) in comparison to the standard propellant composition. The pressure exponent also increases to 0.46, whereas the standard composition was having its value as 0.35.展开更多
The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism ...The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism between TKX-50 and AP is very important for designing TKX-50-AP compounds and judging the formation feasibility of composite particles,which can lay a theoretical foundation for the preparation of TKX-50-AP mixed crystals and the application of TKX-50 in propellant,propellant and explosive.Herein,in order to research the interaction mechanism between TKX-50 and AP,density-functional theory calculation was applied to optimize three configurations of TKX-50-AP compounds.The geometry structure,electrostatic potential and binding energy of the compounds were predicted,and the electronic density topological analysis was also carried out.Then TKX-50-AP mixed crystals structures were constructed,and the radial distribution function of H-O and H-N in mixed crystals was calculated.Finally,solvent/non-solvent method was applied to prepare TKX-50-AP composites,and the infrared spectro scopy and the non-isothermal decomposition perfo rmance of the composites were characterized.Results show that the superposition of positive charges in TKX-50 molecule and negative charges in AP makes the electrostatic potential distributions of TKX-50-AP compounds different from that of TKX-50 and AP.The interaction energies of TKX-50-AP 1,TKX-50-AP 2 and TKX-50-AP 3 are 39.743 kJ/mol,61.206 kJ/mol and 27.702 kJ/mol,respectively.The interaction between TKX-50 molecules and AP molecules in TKX-50-AP mixed crystals both depends on hydrogen bonds and van der Waals force,and the number and strength of hydrogen bonds are significantly greater than that of van der Waals force.The composition of AP and TKX-50 makes the absorption peak of the five-membered rings and NH_3 OH^+ of TKX-50 shift to low wavenumber in the infrared spectroscopy.In general,TKX-50 interacts with AP via hydrogen bonds and van der Waals force,and the calculated results are in good agreement with the experimental results.The composition of TKX-50 and AP can also prolong the decomposition process.展开更多
文摘A modified Dakin-West one-pot, four-component condensation of an aryl aldehyde, aryl ketone, acetyl chloride and acetonitrile in the presence of silica supported perchloric acid as an active, inexpensive, recoverable and recyclable catalyst is reported for the synthesis of β-acetamido ketones under mechanical stirring and ultrasonic irradiation conditions. This system has advantages of short reaction times, good to excellent yields and the ability to carry out the large scale reactions. The use of ultrasound increases the rate of reactions compared with reactions at reflux conditions.
文摘An environmentally friendly and highly efficient procedure for the preparation of 1,4-dihydropyridines by the reaction between a,β-unsaturated aldehydes, aromatic amines and β-keto esters in the presence of silica supported perchloric acid is described.
基金the National Natural Science Foundation of China
文摘Chemical or electrochemical oxidation of N-benzylaniline in perehloric acid solution yields a highly colored polymer——poly-N-benzylaniline (PBAn).The polymer has good solubility in a num- ber of organic solvents in either acid or base form.At room temperature,conductivity measurements on pressed pellets of the acid form PBAn give a conductivity of 9.3×10^(-6) S·cm^(-1).The soluble polymer was analyzed using a variety of common experimental techniques including UV-vis,IR,NMR,ESR spectroscopy,elemental analysis and electrochemieal analysis.All experimental results showed that PBAn has a structure similar to polyaniline with the elimination of some benzyl groups.
基金supported by the Project of Chinese Manned Spaceflight(No.YYWT-0801-EXP-09)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA17010502)Jiangsu Province Ecological Environment Scientific Research Project(No.2022008).
文摘Perchlorate(ClO_(4)^(−))is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility,poor degradability,and widespread distribution.However,the impacts of perchlorate on aquatic autotrophs such cyanobacterium are still unclear.Herein,Synechocystis sp.PCC6803(Synechocystis)was used to investigate the response mechanisms of perchlorate on cyanobacterium by integrating physiological and transcriptome analyses.Physiological results showed that perchlorate mainly damaged the photosystem of Synechocystis,and the inhibition degree of photosystem II(PSII)was severer than that of photosystem I(PSI).When the exposed cells were moved to a clean medium,the photosynthetic activities were slightly repaired but still lower than in the control group,indicating irreversible damage.Furthermore,perchlorate also destroyed the cellular ultrastructure and induced oxidative stress in Synechocystis.The antioxidant glutathione(GSH)content and the superoxide dismutase(SOD)enzyme activity were enhanced to scavenge harmful reactive oxygen(ROS)in Synechocystis.Transcriptome analysis revealed that the genes associated with“photosynthesis”and“electron transport”were significantly regulated.For instance,most genes related to PSI(e.g.,psaf,psaJ)and the“electron transport chain”were upregulated,whereas most genes related to PSII(e.g.,psbA3,psbD1,psbB,and psbC)were downregulated.Additionally,perchlorate also induced the expression of genes related to the antioxidant system(sod2,gpx,gst,katG,and gshB)to reduce oxidative damage.Overall,this study is the first to investigate the impacts andmechanisms of cyanobacterium under perchlorate stress,which is conducive to assessing the risk of perchlorate in aquatic environments.
基金supported by the National Key Research and Development Program of China(2023YFC3207904).
文摘Selective perchlorate(ClO_(4)^(−))removal from surface water is a pressing need due to the stringent perchlorate drinking water limits around the world.Herein,we anchored N^(+)–C–H hydrogen bond donors in hydrophobic cavities via interactions of cationic surfactants with montmorillonite to prioritize perchlorate bonding.The prepared adsorbent exhibited high selectivity over commonly occurring competing anions,including SO_(4)^(2−),NO_(3)^(−),PO_(4)^(3−),HCO_(3)^(−),and halide anions.High adsorption capacity,fast adsorption kinetics,and excellent regeneration ability(removal efficiency≥80%after 20 cycles)were confirmed via batch experiments.Unconventional CH···O hydrogen bonding was verified as the primary driving force for perchlorate adsorption,which relies on the higher bond energy(∼80 kcal·mol−1)than conventional bonding.The removal efficiency of anions followed the order of the Hofmeister Series,demonstrating the importance of hydrophobic cavities formed by the tail groups of cationic surfactants.The hydrophobic cavities sheltered the C–H bonds from interacting with anions of low hydration energy(e.g.,perchlorate).Furthermore,a fixed-bed column test demonstrated that about 2900 bed volumes of the feeding streams(∼500μg·L^(−1))can be treated to≤70μg·L^(−1),with an enrichment factor of 10.3.Overall,on the basis of the hydrophobicity-induced hydrogen bonding mechanism,a series of low-cost adsorbents can be synthesized and applied for specific perchlorate removal.
基金Supported by the National Natural Science Foundation of China(21676022)the Fundamental Research Funds for the Central Universities(BHYC170A&JD701)
文摘The present paper reports a new fluoride-free and energy-saving lead electrolytic refining process in order to solve the serious problems of the existing Betts lead electrorefining process, such as low production efficiency,high energy consumption and fluorine pollution. In the process, a mixed solution of perchloric acid and lead perchlorate(HClO4-Pb(ClO4)2) with the additives of gelatin and sodium lignin sulfonate is employed as the new electrolyte. The cathodic polarization curves show that HClO4 is very stable, and there is no any reduction reaction of HClO4 during the electrolytic process. The redox reactions of lead ions in HClO4 solution are very reversible with an ultrahigh capacity efficiency, so the HClO4 acts as a stable support electrolyte with higher ionic conductivity than the traditional H2SiF6 electrolyte. The results of the scale-up experiments show that under the optimal conditions of 2.8 mol·L-1 HClO4, 0.4 mol·L-1 Pb(ClO4)2 and electrolysis temperature of 45 ℃, the energy consumption is as low as 24.5 kW·h·(t Pb)-1 , only about 20% of that by Betts method at the same current density of 20 mA·cm-2, and the purity of the refined lead is up to 99.9992%, much higher than that specified by Chinese national standard(99.994%, GB/T 469-2013) and European standard(99.99%, EN 12659–1999).
基金supported by the Key Program of the National Natural Science Foundation of China,No.30930027the National Natural Science Foundation of China,No.60971075the Foundation for Basic and Clinical Medicine (2010) of Shantou University Medical College,China
文摘Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract lipid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Fur- thermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were as- signed in the acquired spectra according to the chemical shift, and the extraction efficiency of dif- ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain rela- tively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase ex- traction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1907900)the National Natural Science Foundation of China(Nos.52125002 and 52100043)the National Science Foundation of Jiangxi Province(No.20202BABL213037)。
文摘Regenerating spent graphite(SG)from retired lithium-ion batteries(LIBs)can effectively avoid resource waste.However,the technology is challenged by the impurity content and energy consumption.In this study,micro-expanded graphite(MEG)was synthesized by one-step oxidation method using waste LIBs anode graphite as material and perchloric acid as intercalation and oxidant agent.Then,its performance as a LIBs anode material were investigated as well as the greenhouse gas(GHG)emissions of the whole process were calculated.Perchloric acid was successfully embedded in the SG during the reaction,which effectively removed the impurities in the graphite.Defects introduced during intercalation and delamination,such as nanopores and intercrystalline cracks.Both provide additional space for Li ions during charging and discharging,thereby promoting capacity enhancement.The prepared MEG expresses a rate capability as high as 340.32 m Ah/g at a current density of 0.1 C and still retains 81.73%of the capacity after 100 cycles at a current density of 1 C.Additionally,the GHG emissions of the synthesis process of this article and other literatures are compared.The results demonstrated that perchloric acid treatment process provides a low-carbon,time-and energy-saving approach for regenerated SG as battery grade material.
文摘The content of dimethylallylamine was determined using glacial acetic acid as solvent, acetic-formic mixture as an anhydrite, perchloric acid-glacial acetic acid as titrant, and 1% crystal violet in acetic acid as indicator in the presence of methylamine and dimethylamine The influences of inert constituents and water on the titration were investigated, and a complete analytical method was determined. The results showed that the determination error of total amines increased with water increasing, while the effect of water on the determination of dimethylallylamine was little when the amount of water was within 5%, the relative error was generally within 1%, and that the end-point was acutely when about 10% chloroform was added. Compared with gas chromatography, this method is simple, convenient and accurate.
基金Supported by the National Natural Science Foundation of China (50306008, 50602024).
文摘The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by transmission electron microscopy (TEM), BET equation, X-ray diffraction (XRD), and the corresponding selected area electron diffraction (SAED). The catalytic effect of Co nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by differential thermal analyzer (DTA). Compared with the thermal decomposition of pure AP, the addition of Co nanoparticles (2%-10%, by mass) decreases the decomposition temperature of AP by 145.01-155.72℃. Compared with Co3O4 nano-particles and microsized Co particles, the catalytic effect of Co nanoparticles for AP is stronger. Such effect is attributed to the large specific surface area and its interaction of Co with decomposition intermediate gases. The present work provides useful information for the application of Co nanoparficles in the AP-based propellant.
基金Foundation item: Project supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and National Basic Research Program of China (2006CB403301)
文摘To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution culture experiments under controlled condi- tions. Different concentrations of La (NO3)3 were used in our study. It was shown that 0. 1 and 0.5 mg/L La3+ alleviated the inhibition effect of perchlorate on A. philoxeroides, including relative growth yield, dry weight of different organs, leaf area and root activity. And La3+ prevented decline in the relative chlorophyll content and chlorophyll fluorescence parameters including Fv/Fm, Fv'/Frn', φPSll and ETR induced by perchlorate stress. Moreover, 0.5 mg/L La3+ showed an optimal mitigative effect, while excess La3+ (5.0 mg/L) led to synergistic effect on stress. Correlation analysis revealed a significant positive relationship between growth indexes and the chlorophyll fluorescence parameters, root activity and relative chlorophyll content (p〈0.05). The results suggested that appropriate concentration of La3+ could effectively alleviate growth inhibition and injury ofA. philoxeroides caused by perchlorate stress, and the mitigative effect of La3+ might be achieved by improving root activity, maintaining chlorophyll content and promoting photochemical efficiency of photosystem II ofA. philoxeroides under perchlorate stress.
基金Project supported by the National Natural Science Foundation of China (50306008)Advance Research Foundation forGeneral Equipment Department (41328030507)
文摘Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.
基金supported by the National Natural Science Foundation of China(No.5087816350708067)+1 种基金the National Major Project of Science&Technology Ministry of China(No.2008ZX07421-002)the Research and Development Project of Ministry of Housing and Urban-Rural Development(No.2009K7-4)
文摘Synthesis and use of the iron compounds supported on granular activated carbon (ICs/GAC) have shown significant environmental implications for perchlorate (ClO4^- ) removal. ICs/GAC was synthesized via hydrolyzing FeSO 4 ·7H2O on GAC, reduced by NaBH 4 solution in polyethylene glycol 6000 and ethanol solution, dried in vacuum condition and exposed to air. Synthesized ICs/GAC was characterized using transmission electron micrograph (TEM), Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy (XPS). ICs/GAC was determined to be containing a large amount of FeOHSO 4 , Fe2O3 and a small amount of zero-valent iron (ZVI) nanoparticles according to TEM and XPS measurements. Batch static kinetic tests showed that 97% of ClO4^- was removed within 10 hr at 90°C and 86% of ClO4^- was removed within 12 hr at 25°C, at ICs/GAC dosage of 20 g/L. The experimental results also showed that FeOHSO 4 and Fe 2 O 3 nanoparticles have the function of perchlorate adsorption and play important roles in ClO4^- removal. The activation energy (E a ) was determined to be 9.56 kJ/mol.
文摘The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried out by utilizing XRD,FTIR,and SEM.The TGA/DSC technique was employed for the investigation of the catalytic proficiency of MONs on the AP.The DSC data were used for measuring activation energy of catalyzed AP by using Ozawa,Kissinger,and Starink method.The MONs were much sensitive for AP decomposition,and the performance of AP decomposition was further improved.Among all the MONs,the CuZnO exhibits higher catalytic action than others and decomposition temperature of AP is descending around 117℃ by CuZnO.The reduction in the activation energy was noticed after the incorporation of MONs in AP.
文摘Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine the concentration ratios Cl-/ NO3- or Cl-/ ClO4- for studying the adsorption of the three anions by variable charge soils. It was found that all the concentration ratios CCl- / CNO3- and CCl- / CClO4- in suspension were smaller than unity when soil samples were in equilibrium with mixed KCl and KNO3 or KCl and KClO4 solutions of equal concentration. The order of the amount of chloride, nitrate and perchlorate adsorbed by variable charge soils was Cl-> NO3-> ClO4- when the soils adsorbed these anions from the solution containing equal concentrations of Cl-, NO3- and ClO4-. Such factors as the pH of the suspension, the iron oxide content of the soil etc. could affect the amounts and the ratios of anions adsorbed. The adsorption was chiefly caused by coulombic attraction, but a covalent force between the anion and the metal atom on the surface of soil particles may also be involved, at least for Cl- ions, even for NO3- ions.
基金supported by the National Natural Science Foundation of China (No. 50876046)
文摘To improve the catalytic activity of amorphous Co-B alloys, Co-B coated aluminum (Co-B/M) nanocomposites were prepared by electroless coating technique and evaluated as additives for the catalytic performance of ammonium perchlorate (AP) and AP-based solid state propellants. X-ray diffractometry (XRD), scanning electron microscopy (SEM), inductive coupled plasma emission spectrometry (ICP), differential scanning calorimetry (DSC) as well as strand burner method were employed to characterize the crystal phase, morphologies, chemical composition, and catalytic activity of the as-synthesized material. The results show that a continuous layer of about 100 nm amorphous Co72.6B27.4 covers the surfaces of M particles. Addition of the as-synthesized Co-B/A1 nanocomposites as catalysts promotes AP decomposition, enhances the burning rate, and lowers the pressure exponent of the AP-based propellants considerably.
文摘Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves high activation energy and could render high burning rate regime.This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer.Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing.TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size.XRD diffractogram demonstrated highly crystalline material.The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent-antisolvent technique.The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques.APC demonstrated an initial endothermic decomposition stage at 242℃ with subsequent two exothermic decomposition stages at 297,8℃ and 452.8℃ respectively.At 1 wt%,copper oxide offered decrease in initial endothermic decomposition stage by 30%.The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%.These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.
文摘In a quest of search for a new burning rate modifier for composite propellant, strontium titanate (SrTiO3), a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other catalytic applications. Initially, SrTiO3 was characterized for particle size, morphology and material/ phase identification (using XRD). By varying SrTiO3 content in a standard composite propellant, different compositions were prepared and their performance and processing parameters like the end of mix (EOM) viscosity, mechanical properties, density, burning rate, pressure exponent (n-value), etc. were measured. The results reveal that 2% SrTiO3 causes more than 12% enhancement in propellant burning rate (at 70 ksc pressure) in comparison to the standard propellant composition. The pressure exponent also increases to 0.46, whereas the standard composition was having its value as 0.35.
文摘The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism between TKX-50 and AP is very important for designing TKX-50-AP compounds and judging the formation feasibility of composite particles,which can lay a theoretical foundation for the preparation of TKX-50-AP mixed crystals and the application of TKX-50 in propellant,propellant and explosive.Herein,in order to research the interaction mechanism between TKX-50 and AP,density-functional theory calculation was applied to optimize three configurations of TKX-50-AP compounds.The geometry structure,electrostatic potential and binding energy of the compounds were predicted,and the electronic density topological analysis was also carried out.Then TKX-50-AP mixed crystals structures were constructed,and the radial distribution function of H-O and H-N in mixed crystals was calculated.Finally,solvent/non-solvent method was applied to prepare TKX-50-AP composites,and the infrared spectro scopy and the non-isothermal decomposition perfo rmance of the composites were characterized.Results show that the superposition of positive charges in TKX-50 molecule and negative charges in AP makes the electrostatic potential distributions of TKX-50-AP compounds different from that of TKX-50 and AP.The interaction energies of TKX-50-AP 1,TKX-50-AP 2 and TKX-50-AP 3 are 39.743 kJ/mol,61.206 kJ/mol and 27.702 kJ/mol,respectively.The interaction between TKX-50 molecules and AP molecules in TKX-50-AP mixed crystals both depends on hydrogen bonds and van der Waals force,and the number and strength of hydrogen bonds are significantly greater than that of van der Waals force.The composition of AP and TKX-50 makes the absorption peak of the five-membered rings and NH_3 OH^+ of TKX-50 shift to low wavenumber in the infrared spectroscopy.In general,TKX-50 interacts with AP via hydrogen bonds and van der Waals force,and the calculated results are in good agreement with the experimental results.The composition of TKX-50 and AP can also prolong the decomposition process.