Objective:To evaluate the anti-inflammatory potential of peptide/polypeptide fraction of Aloe vera through in vitro and in vivo studies.Methods:The peptide/polypeptide fraction from Aloe vera was obtained through tric...Objective:To evaluate the anti-inflammatory potential of peptide/polypeptide fraction of Aloe vera through in vitro and in vivo studies.Methods:The peptide/polypeptide fraction from Aloe vera was obtained through trichloroacetic acid precipitation.The anti-inflammatory property of the peptide/polypeptide fraction was tested by protein denaturation,membrane stabilization assays.The effect of the fraction on RAW 264.7 cell viability was examined by MTT assays.The nitric oxide level was determined through Griess reagent.TNF-αand IL-6 levels were estimated using ELISA kits.In vivo studies were carried out in male Wistar rats through injection of Freund’s adjuvant in the hind paw.Paw edema was measured through the Vernier scale and levels of alanine aminotransferase,aspartate transaminase,TNF-α,IL-6,and secretory phospholipase A2 were estimated through their respective kits after fourteen days of treatment.Graph Pad Prism6 was used for analyzing the results.Results:The peptide/polypeptide extract inhibited protein denaturation with an IC50 value of(218.9±15.6)μg/m L and stabilized the membrane of red blood cells with an IC50 value of(275.9±19.1)μg/m L.The extract showed no changes in cell morphology or cytotoxicity up to the concentration of 20μg/mL in MTT assays.The peptide/polypeptide fraction markedly reduced the levels of proinflammatory markers and mediators in both in vitro and in vivo studies.Conclusions:The results indicate that the peptide/polypeptide fraction of Aloe vera has antiinflammatory property through inhibition of inflammatory markers and mediators responsible for NF-κB and mitogen-activated protein kinase pathways.展开更多
The preparation of polypeptide materials in continuous flow reactors shows great potential with improved reproducibility and scalability.However,conventional polypeptide synthesis from the polymerization of N-carboxya...The preparation of polypeptide materials in continuous flow reactors shows great potential with improved reproducibility and scalability.However,conventional polypeptide synthesis from the polymerization of N-carboxyanhydride(NCA)is conducted at relatively slow rates,requiring long tubing or ending up with low-molecular-weight polymers.Inspired by recent advances in accelerated NCA polymerization,we report the crown-ether-catalyzed,rapid synthesis of polypeptide materials in cosolvents in flow reactors.The incorporation of low-polarity dichloromethane and the use of catalysts enabled fast conversion of monomers in 30 min,yielding well-defined polypeptides(up to 30 k Da)through a 20-cm tubing reactor.Additionally,random or block copolypeptides were efficiently prepared by incorporating a second NCA monomer.We believe that this work highlights the accelerated polymerization design in flow polymerization processes,offering the continuous production of polypeptide materials.展开更多
BACKGROUND As a member of the chaperonin-containing tailless complex polypeptide 1(TCP1)complex,which plays a pivotal role in ensuring the accurate folding of numerous proteins,chaperonin-containing TCP1 subunit 6A(CC...BACKGROUND As a member of the chaperonin-containing tailless complex polypeptide 1(TCP1)complex,which plays a pivotal role in ensuring the accurate folding of numerous proteins,chaperonin-containing TCP1 subunit 6A(CCT6A)participates in various physiological and pathological processes.However,its effects on cell death and cancer therapy and the underlying mechanisms need further exploration in colorectal cancer(CRC)cells.AIM To explore the effects of CCT6A on cell death and cancer therapy and the underlying mechanisms in CRC.METHODS Cell proliferation was evaluated using the MTS assay,EdU staining,and colony growth assays.The expression of CCT6A was monitored by immunoblotting and quantitative PCR.CCT6A was knocked out by CRISPR-Cas9,and overexpressed by transfecting plasmids.Autophagy was examined by immunoblotting and the mCherry-GFP-LC3 assay.To monitor apoptosis and necroptosis,immunoblotting,co-immunoprecipitation,and flow cytometry were employed.RESULTS Cisplatin(DDP)exerted cytotoxic effects on CRC cells while simultaneously downregulating the expression of CCT6A.Depletion of CCT6A amplified the cytotoxic effects of DDP,whereas overexpression of CCT6A attenuated these adverse effects.CCT6A suppressed autophagy,apoptosis,and necroptosis under both basal and DDP-treated conditions.Autophagy inhibitors significantly enhanced the cytotoxic effects of DDP,whereas a necroptosis inhibitor partially reversed the cell viability loss induced by DDP.Furthermore,inhibiting autophagy enhanced both apoptosis and necroptosis induced by DDP.CONCLUSION CCT6A negatively modulates autophagy,apoptosis,and necroptosis,and CCT6A confers resistance to DDP therapy in CRC,suggesting its potential as a therapeutic target.展开更多
Ischemic stroke is the leading cause of death in China,accounting for approximately one-third of all stroke-associated deaths worldwide.Currently,thrombolysis is employed for ischemic strokes.However,due to the limite...Ischemic stroke is the leading cause of death in China,accounting for approximately one-third of all stroke-associated deaths worldwide.Currently,thrombolysis is employed for ischemic strokes.However,due to the limited therapeutic window of thrombolytic agents,most patients do not receive the drug at the right time.Moreover,these agents are associated with risks of hemorrhage and reperfusion damage.Herein,Angiopep-2(ANG)-black phosphorus(BP)-resveratrol(RES),a drug-loaded system,was used to deliver drugs across the blood–brain barrier(BBB).ANG-BP-RES has a uniform size,stable structure,good photothermal effect,and strong drug release ability under near-infrared(NIR)irradiation and acidic conditions.Furthermore,ANG-BP-RES can efficiently target the brain and improve BBB permeability,exerting a significant therapeutic effect against ischemic brain injury,especially after NIR irradiation.ANG-BP-RES is also biocompatible and shows minimal toxicity toward cells and tissues.This study offers novel insights into the therapeutic management of ischemic brain injury.展开更多
Gliomas are the most common intracranial tumors with poor survival and high mortality.Furthermore,the clinical efficacy of current drugs is still not ideal;despite the development of several therapeutic drugs over the...Gliomas are the most common intracranial tumors with poor survival and high mortality.Furthermore,the clinical efficacy of current drugs is still not ideal;despite the development of several therapeutic drugs over the past decades and tumor progression or recurrence is inevitable in many patients.RNAibased therapy presents a novel disease-related gene targeting therapy,including otherwise undruggable genes,and generates therapeutic options.However,the therapeutic effect of siRNA is hindered by multiple biological barriers,primarily the blood-brain barrier(BBB).A glycoprotein-derived peptide-mediated delivery system is the preferred option to resolve this phenomenon.RDP,a polypeptide composed of 15 amino acids derived from rabies virus glycoprotein(RVG),possesses an N-type acetylcholine receptor(nAChR)-binding efficiency similar to that of RVG29.Given its lower cost and small particle size when used as a ligand,RDP should be extensively evaluated.First,we verified the brain-targeting efficacyy of RDP at the cellular and animal levels and further explored the possibility of using the RDP-oligoarginine peptide(designated RDP-5R)as a bio-safe vehicle to deliver therapeutic siRNA into glioma cells in vitro and in vivo.The polypeptide carrier possesses a diblock design composed of oligoarginine for binding siRNA through electrostatic interactions and RDP for cascade BBB-and glioma cell-targeting.The results indicated that RDP-R5/siRNA nanoparticles exhibited stable and suitable physicochemical properties for in vivo application,desirable glioma-targeting effects,and therapeutic efficiency.As a novel and efficient polypeptide carrier,RDP-based polypeptides hold great promise as a noninvasive,safe,and efficient treatment for various brain diseases.展开更多
Ulcerative colitis(UC)is a recurrent inflammatory bowel disease that imposes a severe burden on families and society.In recent years,exploiting the potential of marine bioactive peptides for the treatment of diseases ...Ulcerative colitis(UC)is a recurrent inflammatory bowel disease that imposes a severe burden on families and society.In recent years,exploiting the potential of marine bioactive peptides for the treatment of diseases has become a topic of intense research interest.This study revealed the mechanism underlying the protective effect of the dominant polypeptide PKKVV(Pro-Lys-Lys-Val-Val)of Rhopilema esculentum cnidoblasts against DSS-induced UC through a combined analysis of the metagenome and serum metabolome.Specifically,the polypeptide composition of R.esculentum cnidoblasts was determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry(MALDI-TOF/TOF-MS).Molecular docking showed that the dominant peptide PKKVV could bind better with tumor necrosis factor-α(TNF-α)than the original ligand.Subsequent animal experiments suggested that PKKVV could modulate disorganized gut microorganisms in mice with UC;affect serum metabolites through the arachidonic acid,glycerophospholipid and linoleic acid metabolism pathways;and further alleviate UC symptoms.This study provides a reference for the comprehensive development of marine bioactive substances and nonpharmaceutical treatments for UC.展开更多
Practical guide:Glucagon-like peptide-1 and dual glucosedependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonists in diabetes mellitus common second-line choice after metformin for treating T2...Practical guide:Glucagon-like peptide-1 and dual glucosedependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonists in diabetes mellitus common second-line choice after metformin for treating T2DM.Various considerations can make selecting and switching between different GLP-1 RAs challenging.Our study aims to provide a comprehensive guide for the usage of GLP-1 RAs and dual GIP and GLP-1 RAs for the management of T2DM.展开更多
In order to study the action mechanism of Sacha Inchi polypeptide in liquid crystal emulsion,oil-in-water liquid crystal emulsions with Sacha Inchi fermented polypeptide as the active component were prepared.The micro...In order to study the action mechanism of Sacha Inchi polypeptide in liquid crystal emulsion,oil-in-water liquid crystal emulsions with Sacha Inchi fermented polypeptide as the active component were prepared.The microstructures,particle sizes,stabilities,thermodynamic properties,and rheological properties of liquid crystal emulsions with different concentrations of the fermentation products were observed by Polarizing microscope,Particle size meter,Thermogravimetric differential thermal synchronous measurement system,and Rheometer,respectively.The results showed that the average particle size of fermented peptide liquid crystal emulsion was(25.7±2.8)μm,and the liquid crystal structure was complete and stable.The content of bound water and liquid crystal in the emulsion with 1%Sacha Inchi polypeptide were higher than those in the blank emulsion and the emulsions with 3%and 5%Sacha Inchi polypeptide.Rheological results indicated that the viscosity of liquid crystal emulsion with the change curve of shear rate registered the shear thinning phenomenon,which belongs to non-Newtonian fluid.The hysteresis area,energy storage modulus,and loss modulus of the 1%additive amount of liquid crystal emulsion were larger than those of the blank emulsion and the emulsions with 3%and 5%Sacha Inchi polypeptide,indicating greater thixotropy and stronger shear resistance.The hydrophilic amino acid residues of the peptide in the 1%additive amount of the emulsion were combined with the water phase,while the hydrophobic amino acid residues of the peptide entered the oil phase,which formed a viscoelastic film at the oil-water interface,so that the liquid crystal emulsion had a more stable gel network structure.展开更多
Excessive secretion of human islet amyloid polypeptide(hIAPP)is an important pathological basis of diabetic encephalopathy(DE).In this study,we aimed to investigate the potential implications of hIAPP in DE pathogenes...Excessive secretion of human islet amyloid polypeptide(hIAPP)is an important pathological basis of diabetic encephalopathy(DE).In this study,we aimed to investigate the potential implications of hIAPP in DE pathogenesis.Brain magnetic resonance imaging and cognitive scales were applied to evaluate white matter damage and cognitive function.We found that the concentration of serum hIAPP was positively correlated with white matter damage but negatively correlated with cognitive scores in patients with type 2 diabetes mellitus.In vitro assays revealed that oligodendrocytes,compared with neurons,were more prone to acidosis under exogenous hIAPP stimulation.Moreover,western blotting and co-immunoprecipitation indicated that hIAPP interfered with the binding process of monocarboxylate transporter(MCT)1 to its accessory protein CD147 but had no effect on the binding of MCT2 to its accessory protein gp70.Proteomic differential analysis of proteins co-immunoprecipitated with CD147 in oligodendrocytes revealed Yeast Rab GTPase-Interacting protein 2(YIPF2,which modulates the transfer of CD147 to the cell membrane)as a significant target.Furthermore,YIPF2 inhibition significantly improved hIAPP-induced acidosis in oligodendrocytes and alleviated cognitive dysfunction in DE model mice.These findings suggest that increased CD147 translocation by inhibition of YIPF2 optimizes MCT1 and CD147 binding,potentially ameliorating hIAPP-induced acidosis and the consequent DE-related demyelination.展开更多
Natural antimicrobial peptides(AMPs)are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens.They have found extensive applications in the fields of m...Natural antimicrobial peptides(AMPs)are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens.They have found extensive applications in the fields of medicine,food,and agriculture.However,efficiently screening AMPs from natural sources poses several challenges,including low efficiency and high antibiotic resistance.This review focuses on the action mechanisms of AMPs,both through membrane and non-membrane routes.We thoroughly examine various highly efficient AMP screening methods,including whole-bacterial adsorption binding,cell membrane chromatography(CMC),phospholipid membrane chromatography binding,membranemediated capillary electrophoresis(CE),colorimetric assays,thin layer chromatography(TLC),fluorescence-based screening,genetic sequencing-based analysis,computational mining of AMP databases,and virtual screening methods.Additionally,we discuss potential developmental applications for enhancing the efficiency of AMP discovery.This review provides a comprehensive framework for identifying AMPs within complex natural product systems.展开更多
Background Broiler chickens are most vulnerable immediately after hatching due to their immature immune systems,making them susceptible to infectious diseases.The yolk plays an important role in early immune defence b...Background Broiler chickens are most vulnerable immediately after hatching due to their immature immune systems,making them susceptible to infectious diseases.The yolk plays an important role in early immune defence by showing relevant antioxidant and passive immunity capabilities during broiler embryonic development.The immunomodulatory effects of phytogenic compound carvacrol have been widely reported.After in ovo delivery in the amniotic fluid during embryonic development carvacrol is known to migrate to the yolk sac.However,it is unknown whether carvacrol in the yolk could enhance defence responsiveness in the yolk sac.Therefore,the aim of this study was to improve early immune function in chicken embryos,and it was hypothesized that in ovo delivery of carvacrol would result in immunomodulatory effects in the yolk sac,potentially improving post-hatch resilience.Methods On embryonic day(E)17.5,either a saline(control)or carvacrol solution was injected into the amniotic fluid.Yolk sac tissue samples were collected at E19.5,and transcriptomic analyses using RNA sequencing were performed,following functional enrichment analyses comparing the control(saline)and carvacrol-injected groups.Results The results showed that 268 genes were upregulated and 174 downregulated in the carvacrol group compared to the control(P<0.05;logFC<-0.5 or log FC>0.5).Functional analyses of these differentially expressed genes,using KEGG,REACTOME,and Gene Ontology databases,showed enrichment of several immune-related pathways.This included the pathways‘Antimicrobial peptides’(P=0.001)and‘Chemoattractant activity’(P=0.004),amongst others.Moreover,the‘NOD-like receptor signaling’pathway was enriched(P=0.002).Antimicrobial peptides are part of the innate immune defence and are amongst the molecules produced after the nucleotide oligomeriza-tion domain(NOD)-like receptor pathway activation.While these responses may be associated with an inflammatory reaction to an exogenous threat,they could also indicate that in ovo delivery of carvacrol could prepare the newly hatched chick against bacterial pathogens by potentially promoting antimicrobial peptide production through acti-vation of NOD-like receptor signaling in the yolk sac.Conclusion In conclusion,these findings suggest that in ovo delivery of carvacrol has the potential to enhance anti-pathogenic and pro-inflammatory responses in the yolk sac via upregulation of antimicrobial peptides,and NOD-like receptor pathways.展开更多
Despite ongoing advancements in cancer treatment,the emergence of primary and acquired resistance poses a significant challenge for both traditional chemotherapy and immune checkpoint blockade therapies.The demand for...Despite ongoing advancements in cancer treatment,the emergence of primary and acquired resistance poses a significant challenge for both traditional chemotherapy and immune checkpoint blockade therapies.The demand for targeted therapeutics for multidrug-resistant cancer is more important than ever.Peptides,as emerging alternatives to current anticancer drugs,offer exquisite versatility in facilitating the design of novel oncology drugs,with the core superiorities of good biocompatibility and a low tendency to induce drug resistance.This review comprehensively introduces the pharmacological mechanisms of peptide-based drugs and strategies for overcoming multidrug resistance(MDR)in cancers,including inducing cell membrane lysis,targeting organelles,activating anticancer immune responses,enhancing drug uptake,targeting ATP-binding cassette(ABC)transporters,and targeting B-cell lymphoma-2(BCL-2)family proteins.Additionally,the current clinical applications of representative peptides in combating MDR cancers and their potential directions for medicinal chemistry research have been thoroughly discussed.This review offers essential insights into the novel treatment approaches for MDR cancers and highlights the trends and perspectives in this field.展开更多
The rising prevalence of drug-resistant Gram-positive pathogens,particularly methicillin-resistant Staphy-lococcus aureus(MRSA)and vancomycin-resistant Enterococci(VRE),poses a substantial clinical challenge.Biofilm-a...The rising prevalence of drug-resistant Gram-positive pathogens,particularly methicillin-resistant Staphy-lococcus aureus(MRSA)and vancomycin-resistant Enterococci(VRE),poses a substantial clinical challenge.Biofilm-associated infections exacerbate this problem due to their inherent antibiotic resistance and complex structure.Current antibiotic treatments struggle to penetrate biofilms and eradicate persister cells,leading to prolonged antibiotic use and increased resistance.Host defense peptides(HDPs)have shown promise,but their clinical application is limited by factors such as enzymatic degradation and difficulty in largescale preparation.Synthetic HDP mimics,such as poly(2-oxazoline),have emerged as effective alter-natives.Herein,we found that the poly(2-oxazoline),Gly-POX_(20),demonstrated rapid and potent activity against clinically isolated multidrug-resistant Gram-positive strains.Gly-POX_(20) showed greater stability under physiological conditions compared to natural peptides,including resistance to protease degradation.Importantly,Gly-POX_(20) inhibited biofilm formation and eradicated mature biofilm and demonstrated superior in vivo therapeutic efficacy to vancomycin in a MRSA biofilm-associated mouse keratitis model,suggesting its potential as a novel antimicrobial agent against drug-resistant Gram-positive bacteria,especially biofilm-associated infections.展开更多
Solid lipid nanoparticles(SLN)could enhance the oral bioavailability of loaded protein and peptide drugs through lymphatic transport.Natural oligopeptides regulate nearly all vital processes and serve as a nitrogen so...Solid lipid nanoparticles(SLN)could enhance the oral bioavailability of loaded protein and peptide drugs through lymphatic transport.Natural oligopeptides regulate nearly all vital processes and serve as a nitrogen source for nourishment.They are mainly transported by oligopeptide transporter-1(PepT-1)which are primarily expressed in the intestine with the characteristics of high-capacity and low energy consumption.Our preliminary research discovered the transmembrane transport of SLN could be improved by stimulating the oligopeptide absorption pathway.This implied the potential of combining the advantages of SLN with oligopeptide transporter mediated transportation.Herein,two kinds of dipeptide modified SLN were designed with insulin and glucagon like peptide-1(GLP-1)analogue exenatide as model drugs.These drugs loaded SLN showed enhanced oral bioavailability and hypoglycemic effect in both type I diabetic C57BL/6mice and type II diabetic KKAymice.Compared with un-modified SLN,dipeptide-modified SLN could be internalized by intestinal epithelial cells via PepT-1-mediated endocytosis with higher uptake.Interestingly,after internalization,more SLN could access the systemic circulation via lymphatic transport pathway,highlighting the potential to combine the oligopeptide-absorption route with SLN for oral drug delivery.展开更多
Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ab...Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.展开更多
In order to study the effects of Saussurea laniceps polysaccharides(SLPs)on the expression of inflammatory factors and antimicrobial peptide LL-37 in UVB-induced keratinocytes,SLPs were extracted by the ethanol therma...In order to study the effects of Saussurea laniceps polysaccharides(SLPs)on the expression of inflammatory factors and antimicrobial peptide LL-37 in UVB-induced keratinocytes,SLPs were extracted by the ethanol thermal reflux method,and SLPs at different concentrations were used to examine the inhibitory effect of COX-2(a key mediator of inflammatory pathway).A cell model of UVB irradiation-induced inflammation was established to determine the influence of SLPs on prostaglandin E2(PGE-2),TNF-αand IL-1βinflammatory factors,as well as the relationships of SLPs with LL-37 expression.An enzyme-linked immunosorbent assay(ELISA)and western blot analysis were used to detect the production of inflammatory factors and LL-37 antimicrobial peptide.The results showed that the inhibition rate of COX-2 was 82.41%at 1000μg/mL,and the expression of PGE-2,TNF-αand IL-1βinflammatory factors in HaCaT cells was significantly downregulated at 100μg/mL(P<0.01).In addition,SLPs at 50μg/mL and 100μg/mL concentrations enhanced the expression of LL-37 antimicrobial peptide(P<0.01),thereby down-regulating the expression of TNF-αand IL-1βinflammatory factors,then reducing skin inflammation.Conclusion:SLP can significantly inhibit the inflammatory response induced by UVB,and can further slow down the damage caused by inflammation to the skin by regulating LL-37 antimicrobial peptides,which has the potential to prevent skin inflammatory damage caused by UVB irradiation.展开更多
This article comments on the work by Soresi and Giannitrapani.The authors have stated that one of the most novel and promising treatments for metabolic dysfunction-associated steatotic liver disease(MASLD)is the use o...This article comments on the work by Soresi and Giannitrapani.The authors have stated that one of the most novel and promising treatments for metabolic dysfunction-associated steatotic liver disease(MASLD)is the use of glucagon-like peptide 1 receptor agonists,especially when used in combination therapy.However,despite their notable efficacy,these drugs were not initially designed to target MASLD directly.In a groundbreaking development,the Food and Drug Administration has recently approved resmetirom,the first treatment specifically aimed at reducing liver fibrosis in metabolic-associated steatohepatitis.Resmetirom,an orally administered,liver-directed thyroid hormone beta-selective agonist,acts directly on intrahepatic pathways,enhancing its therapeutic potential and marking the beginning of a new era in the treatment of MASLD.Furthermore,the integration of lifestyle modifications into liver disease management is an essential component that should be considered and reinforced.By incorporating dietary changes and regular physical exercise into treatment,patients may achieve improved outcomes,reducing the need for pharmacological interventions and/or improving treatment efficacy.As a complement to medical therapies,lifestyle factors should not be overlooked in the broader strategy for managing MASLD.展开更多
Targeted cancer therapy has emerged as a promising alternative to conventional chemotherapy,which is often plagued by poor selectivity,off-target effects,and drug resistance.Among the various targeting agents in devel...Targeted cancer therapy has emerged as a promising alternative to conventional chemotherapy,which is often plagued by poor selectivity,off-target effects,and drug resistance.Among the various targeting agents in development,peptides stand out for their unique advantages,including minimal immunogenicity,high tissue penetration,and ease of modification.Their small size,specificity,and flexibility allow them to target cancer cells while minimizing damage to healthy tissue selectively.Peptide-based therapies have shown great potential in enhancing the efficacy of drug delivery,improving tumor imaging,and reducing adverse effects.With cancer responsible for millions of deaths worldwide,the development of peptide-based therapeutics offers new hope in addressing the limitations of current treatments.As detailed studies on different aspects of targeting peptides are crucial for optimizing drug development,this review provides a comprehensive overview of the literature on tumor-targeting peptides,including their structure,sources,modes of action,and their application in cancer therapy—both as standalone agents and in fusion drugs.Additionally,various computational tools for peptide-based tumor-targeting drug design and validation are explored.The promising results from these studies highlight peptides as ideal candidates for targeted cancer therapies,offering valuable insights for researchers and accelerating the discovery of novel anti-tumor peptide base drug candidates.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Central nervous system disorders constitute a major global public health burden,contributing substantially to morbidity and mortality.Advances in elucidating their underlying pathogenesis have facilitated the approval...Central nervous system disorders constitute a major global public health burden,contributing substantially to morbidity and mortality.Advances in elucidating their underlying pathogenesis have facilitated the approval of an increasing number of proprietary drugs for clinical management of neurological conditions.A critical challenge in drug delivery lies in achieving appropriate tissue distribution,particularly within the brain,where effective therapeutic intervention requires traversing the blood-brain barrier and precisely targeting localized regions.Nanodelivery systems have emerged as a promising approach in biomedicine to address these challenges.Among these,peptides-characterized by their high specificity and relatively small size-are extensively employed to functionalize nanocarriers,thereby enhancing targeted tissue distribution.The conjugation of diverse functional peptides onto heterogeneous nanoscale carriers enables precise,efficient,and multidimensional targeting.This review highlights several representative neurological diseases and systematically discusses strategies for peptide-based functionalization of nanocarriers tailored to these pathological contexts.展开更多
文摘Objective:To evaluate the anti-inflammatory potential of peptide/polypeptide fraction of Aloe vera through in vitro and in vivo studies.Methods:The peptide/polypeptide fraction from Aloe vera was obtained through trichloroacetic acid precipitation.The anti-inflammatory property of the peptide/polypeptide fraction was tested by protein denaturation,membrane stabilization assays.The effect of the fraction on RAW 264.7 cell viability was examined by MTT assays.The nitric oxide level was determined through Griess reagent.TNF-αand IL-6 levels were estimated using ELISA kits.In vivo studies were carried out in male Wistar rats through injection of Freund’s adjuvant in the hind paw.Paw edema was measured through the Vernier scale and levels of alanine aminotransferase,aspartate transaminase,TNF-α,IL-6,and secretory phospholipase A2 were estimated through their respective kits after fourteen days of treatment.Graph Pad Prism6 was used for analyzing the results.Results:The peptide/polypeptide extract inhibited protein denaturation with an IC50 value of(218.9±15.6)μg/m L and stabilized the membrane of red blood cells with an IC50 value of(275.9±19.1)μg/m L.The extract showed no changes in cell morphology or cytotoxicity up to the concentration of 20μg/mL in MTT assays.The peptide/polypeptide fraction markedly reduced the levels of proinflammatory markers and mediators in both in vitro and in vivo studies.Conclusions:The results indicate that the peptide/polypeptide fraction of Aloe vera has antiinflammatory property through inhibition of inflammatory markers and mediators responsible for NF-κB and mitogen-activated protein kinase pathways.
基金financially supported by the National Natural Science Foundation of China(No.22101194)Natural Science Foundation of Jiangsu Province(No.BK20210733)+3 种基金Suzhou Municipal Science and Technology Bureau(No.ZXL2021447)Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices。
文摘The preparation of polypeptide materials in continuous flow reactors shows great potential with improved reproducibility and scalability.However,conventional polypeptide synthesis from the polymerization of N-carboxyanhydride(NCA)is conducted at relatively slow rates,requiring long tubing or ending up with low-molecular-weight polymers.Inspired by recent advances in accelerated NCA polymerization,we report the crown-ether-catalyzed,rapid synthesis of polypeptide materials in cosolvents in flow reactors.The incorporation of low-polarity dichloromethane and the use of catalysts enabled fast conversion of monomers in 30 min,yielding well-defined polypeptides(up to 30 k Da)through a 20-cm tubing reactor.Additionally,random or block copolypeptides were efficiently prepared by incorporating a second NCA monomer.We believe that this work highlights the accelerated polymerization design in flow polymerization processes,offering the continuous production of polypeptide materials.
基金Supported by Shandong Provincial Natural Science Foundation,No.ZR2023MH329Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,No.2023KJ263and Natural Science Foundation of Gansu Province,China,No.22JR5RA953.
文摘BACKGROUND As a member of the chaperonin-containing tailless complex polypeptide 1(TCP1)complex,which plays a pivotal role in ensuring the accurate folding of numerous proteins,chaperonin-containing TCP1 subunit 6A(CCT6A)participates in various physiological and pathological processes.However,its effects on cell death and cancer therapy and the underlying mechanisms need further exploration in colorectal cancer(CRC)cells.AIM To explore the effects of CCT6A on cell death and cancer therapy and the underlying mechanisms in CRC.METHODS Cell proliferation was evaluated using the MTS assay,EdU staining,and colony growth assays.The expression of CCT6A was monitored by immunoblotting and quantitative PCR.CCT6A was knocked out by CRISPR-Cas9,and overexpressed by transfecting plasmids.Autophagy was examined by immunoblotting and the mCherry-GFP-LC3 assay.To monitor apoptosis and necroptosis,immunoblotting,co-immunoprecipitation,and flow cytometry were employed.RESULTS Cisplatin(DDP)exerted cytotoxic effects on CRC cells while simultaneously downregulating the expression of CCT6A.Depletion of CCT6A amplified the cytotoxic effects of DDP,whereas overexpression of CCT6A attenuated these adverse effects.CCT6A suppressed autophagy,apoptosis,and necroptosis under both basal and DDP-treated conditions.Autophagy inhibitors significantly enhanced the cytotoxic effects of DDP,whereas a necroptosis inhibitor partially reversed the cell viability loss induced by DDP.Furthermore,inhibiting autophagy enhanced both apoptosis and necroptosis induced by DDP.CONCLUSION CCT6A negatively modulates autophagy,apoptosis,and necroptosis,and CCT6A confers resistance to DDP therapy in CRC,suggesting its potential as a therapeutic target.
基金funded by the National Natural Science Foundation of China (No. 81960334)the Guiding Plan of Xinjiang Production Construction Corps (No. 2022ZD007)+4 种基金the Science and Technology Innovation Leading Talents Program of Guangdong Province (No. 2019TX05C343)the Basic and Applied Basic Research Foundation of Guangdong Province-Regional Joint Fund-Key Projects (No. 2019B1515120043)the Project supported by the State Key Laboratory of Luminescence and Applications (No. SKLA-2020-03)the support from Instrumental Analysis Center of Shenzhen University (Xili Campus)Instrumental Analysis Center of Shihezi University.
文摘Ischemic stroke is the leading cause of death in China,accounting for approximately one-third of all stroke-associated deaths worldwide.Currently,thrombolysis is employed for ischemic strokes.However,due to the limited therapeutic window of thrombolytic agents,most patients do not receive the drug at the right time.Moreover,these agents are associated with risks of hemorrhage and reperfusion damage.Herein,Angiopep-2(ANG)-black phosphorus(BP)-resveratrol(RES),a drug-loaded system,was used to deliver drugs across the blood–brain barrier(BBB).ANG-BP-RES has a uniform size,stable structure,good photothermal effect,and strong drug release ability under near-infrared(NIR)irradiation and acidic conditions.Furthermore,ANG-BP-RES can efficiently target the brain and improve BBB permeability,exerting a significant therapeutic effect against ischemic brain injury,especially after NIR irradiation.ANG-BP-RES is also biocompatible and shows minimal toxicity toward cells and tissues.This study offers novel insights into the therapeutic management of ischemic brain injury.
基金supported by CAMS Innovation Fund for Medical Sciences(No.2021-I2M-1-026,China).
文摘Gliomas are the most common intracranial tumors with poor survival and high mortality.Furthermore,the clinical efficacy of current drugs is still not ideal;despite the development of several therapeutic drugs over the past decades and tumor progression or recurrence is inevitable in many patients.RNAibased therapy presents a novel disease-related gene targeting therapy,including otherwise undruggable genes,and generates therapeutic options.However,the therapeutic effect of siRNA is hindered by multiple biological barriers,primarily the blood-brain barrier(BBB).A glycoprotein-derived peptide-mediated delivery system is the preferred option to resolve this phenomenon.RDP,a polypeptide composed of 15 amino acids derived from rabies virus glycoprotein(RVG),possesses an N-type acetylcholine receptor(nAChR)-binding efficiency similar to that of RVG29.Given its lower cost and small particle size when used as a ligand,RDP should be extensively evaluated.First,we verified the brain-targeting efficacyy of RDP at the cellular and animal levels and further explored the possibility of using the RDP-oligoarginine peptide(designated RDP-5R)as a bio-safe vehicle to deliver therapeutic siRNA into glioma cells in vitro and in vivo.The polypeptide carrier possesses a diblock design composed of oligoarginine for binding siRNA through electrostatic interactions and RDP for cascade BBB-and glioma cell-targeting.The results indicated that RDP-R5/siRNA nanoparticles exhibited stable and suitable physicochemical properties for in vivo application,desirable glioma-targeting effects,and therapeutic efficiency.As a novel and efficient polypeptide carrier,RDP-based polypeptides hold great promise as a noninvasive,safe,and efficient treatment for various brain diseases.
基金sponsored by the National Key R&D Program of China (2018YFD0901102)the Natural Science Foundation of Zhejiang Province (LQ22D060002)+2 种基金the Fund of State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products (ZS20190105)the Fundamental Research Funds for the Provincial Universities of Zhejiang (SJLY2021015)the K.C.Wong Magna Fund of Ningbo University。
文摘Ulcerative colitis(UC)is a recurrent inflammatory bowel disease that imposes a severe burden on families and society.In recent years,exploiting the potential of marine bioactive peptides for the treatment of diseases has become a topic of intense research interest.This study revealed the mechanism underlying the protective effect of the dominant polypeptide PKKVV(Pro-Lys-Lys-Val-Val)of Rhopilema esculentum cnidoblasts against DSS-induced UC through a combined analysis of the metagenome and serum metabolome.Specifically,the polypeptide composition of R.esculentum cnidoblasts was determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry(MALDI-TOF/TOF-MS).Molecular docking showed that the dominant peptide PKKVV could bind better with tumor necrosis factor-α(TNF-α)than the original ligand.Subsequent animal experiments suggested that PKKVV could modulate disorganized gut microorganisms in mice with UC;affect serum metabolites through the arachidonic acid,glycerophospholipid and linoleic acid metabolism pathways;and further alleviate UC symptoms.This study provides a reference for the comprehensive development of marine bioactive substances and nonpharmaceutical treatments for UC.
文摘Practical guide:Glucagon-like peptide-1 and dual glucosedependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonists in diabetes mellitus common second-line choice after metformin for treating T2DM.Various considerations can make selecting and switching between different GLP-1 RAs challenging.Our study aims to provide a comprehensive guide for the usage of GLP-1 RAs and dual GIP and GLP-1 RAs for the management of T2DM.
文摘In order to study the action mechanism of Sacha Inchi polypeptide in liquid crystal emulsion,oil-in-water liquid crystal emulsions with Sacha Inchi fermented polypeptide as the active component were prepared.The microstructures,particle sizes,stabilities,thermodynamic properties,and rheological properties of liquid crystal emulsions with different concentrations of the fermentation products were observed by Polarizing microscope,Particle size meter,Thermogravimetric differential thermal synchronous measurement system,and Rheometer,respectively.The results showed that the average particle size of fermented peptide liquid crystal emulsion was(25.7±2.8)μm,and the liquid crystal structure was complete and stable.The content of bound water and liquid crystal in the emulsion with 1%Sacha Inchi polypeptide were higher than those in the blank emulsion and the emulsions with 3%and 5%Sacha Inchi polypeptide.Rheological results indicated that the viscosity of liquid crystal emulsion with the change curve of shear rate registered the shear thinning phenomenon,which belongs to non-Newtonian fluid.The hysteresis area,energy storage modulus,and loss modulus of the 1%additive amount of liquid crystal emulsion were larger than those of the blank emulsion and the emulsions with 3%and 5%Sacha Inchi polypeptide,indicating greater thixotropy and stronger shear resistance.The hydrophilic amino acid residues of the peptide in the 1%additive amount of the emulsion were combined with the water phase,while the hydrophobic amino acid residues of the peptide entered the oil phase,which formed a viscoelastic film at the oil-water interface,so that the liquid crystal emulsion had a more stable gel network structure.
基金supported by the National Natural Science Foundation of China (82100863)Hebei Natural Science Foundation (H2020206643 and H2020206105)+3 种基金Funding project for introducing overseas students of Hebei Province (C20210346)Medical Science Research Project of Hebei Province (20211628)Hebei Province Government-funded Excellent Talents Project in Clinical Medicine (ZF2023029)Spark Scientific Research Project of the First Hospital of Hebei Medical University (XH202004).
文摘Excessive secretion of human islet amyloid polypeptide(hIAPP)is an important pathological basis of diabetic encephalopathy(DE).In this study,we aimed to investigate the potential implications of hIAPP in DE pathogenesis.Brain magnetic resonance imaging and cognitive scales were applied to evaluate white matter damage and cognitive function.We found that the concentration of serum hIAPP was positively correlated with white matter damage but negatively correlated with cognitive scores in patients with type 2 diabetes mellitus.In vitro assays revealed that oligodendrocytes,compared with neurons,were more prone to acidosis under exogenous hIAPP stimulation.Moreover,western blotting and co-immunoprecipitation indicated that hIAPP interfered with the binding process of monocarboxylate transporter(MCT)1 to its accessory protein CD147 but had no effect on the binding of MCT2 to its accessory protein gp70.Proteomic differential analysis of proteins co-immunoprecipitated with CD147 in oligodendrocytes revealed Yeast Rab GTPase-Interacting protein 2(YIPF2,which modulates the transfer of CD147 to the cell membrane)as a significant target.Furthermore,YIPF2 inhibition significantly improved hIAPP-induced acidosis in oligodendrocytes and alleviated cognitive dysfunction in DE model mice.These findings suggest that increased CD147 translocation by inhibition of YIPF2 optimizes MCT1 and CD147 binding,potentially ameliorating hIAPP-induced acidosis and the consequent DE-related demyelination.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82373835,82304437,and 82173781)Regional Joint Fund Project of Guangdong Basic and Applied Basic Research Fund,China(Grant Nos.:2023A1515110417 and 2023A1515140131)+2 种基金Regional Joint Fund-Key Project of Guangdong Basic and Applied Basic Research Fund,China(Grant No.:2020B1515120033)the Key Field Projects of General Universities in Guangdong Province,China(Grant Nos.:2020ZDZX2057 and 2022ZDZX2056)Medical Scientific Research Foundation of Guangdong Province of China(Grant No.:A2022061).
文摘Natural antimicrobial peptides(AMPs)are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens.They have found extensive applications in the fields of medicine,food,and agriculture.However,efficiently screening AMPs from natural sources poses several challenges,including low efficiency and high antibiotic resistance.This review focuses on the action mechanisms of AMPs,both through membrane and non-membrane routes.We thoroughly examine various highly efficient AMP screening methods,including whole-bacterial adsorption binding,cell membrane chromatography(CMC),phospholipid membrane chromatography binding,membranemediated capillary electrophoresis(CE),colorimetric assays,thin layer chromatography(TLC),fluorescence-based screening,genetic sequencing-based analysis,computational mining of AMP databases,and virtual screening methods.Additionally,we discuss potential developmental applications for enhancing the efficiency of AMP discovery.This review provides a comprehensive framework for identifying AMPs within complex natural product systems.
基金support by AgriFutures Australia’s Chicken Meat Program[grant number PRJ-011584]is gratefully acknowledged.
文摘Background Broiler chickens are most vulnerable immediately after hatching due to their immature immune systems,making them susceptible to infectious diseases.The yolk plays an important role in early immune defence by showing relevant antioxidant and passive immunity capabilities during broiler embryonic development.The immunomodulatory effects of phytogenic compound carvacrol have been widely reported.After in ovo delivery in the amniotic fluid during embryonic development carvacrol is known to migrate to the yolk sac.However,it is unknown whether carvacrol in the yolk could enhance defence responsiveness in the yolk sac.Therefore,the aim of this study was to improve early immune function in chicken embryos,and it was hypothesized that in ovo delivery of carvacrol would result in immunomodulatory effects in the yolk sac,potentially improving post-hatch resilience.Methods On embryonic day(E)17.5,either a saline(control)or carvacrol solution was injected into the amniotic fluid.Yolk sac tissue samples were collected at E19.5,and transcriptomic analyses using RNA sequencing were performed,following functional enrichment analyses comparing the control(saline)and carvacrol-injected groups.Results The results showed that 268 genes were upregulated and 174 downregulated in the carvacrol group compared to the control(P<0.05;logFC<-0.5 or log FC>0.5).Functional analyses of these differentially expressed genes,using KEGG,REACTOME,and Gene Ontology databases,showed enrichment of several immune-related pathways.This included the pathways‘Antimicrobial peptides’(P=0.001)and‘Chemoattractant activity’(P=0.004),amongst others.Moreover,the‘NOD-like receptor signaling’pathway was enriched(P=0.002).Antimicrobial peptides are part of the innate immune defence and are amongst the molecules produced after the nucleotide oligomeriza-tion domain(NOD)-like receptor pathway activation.While these responses may be associated with an inflammatory reaction to an exogenous threat,they could also indicate that in ovo delivery of carvacrol could prepare the newly hatched chick against bacterial pathogens by potentially promoting antimicrobial peptide production through acti-vation of NOD-like receptor signaling in the yolk sac.Conclusion In conclusion,these findings suggest that in ovo delivery of carvacrol has the potential to enhance anti-pathogenic and pro-inflammatory responses in the yolk sac via upregulation of antimicrobial peptides,and NOD-like receptor pathways.
基金supported by the Science and Technology Innovation Program of Hunan Province(No.2022RC1168)National Natural Science Foundation of China(Nos.82322073,82173846,82304533)+12 种基金CAMS Innovation Fund for Medical Sciences(CIFMS)(No.2023-I2M-3-009)Key project at central government level:The ability establishment of sustainable use for valuable Chinese medicine resources(No.2060302)China Postdoctoral Science Foundation(No.2021M702215)Oriental Scholars of Shanghai Universities(No.TP2022081)Jiangxi Province Thousand Talents Program(No.jxsq2023102168)Young Talent Lifting Project of China Association of Chinese Medicine(No.CACM-(2021-QNRC2-A08))Shanghai Rising-Star Program(No.22QA1409100)Shanghai Sailing Program(No.22YF1445000)2021 Shanghai Science and Technology Innovation Action Plan(No.21S11902800)Three-year Action Plan for Shanghai TCM Development and Inheritance Program(Nos.ZY(2021-2023)-0208,ZY(2021-2023)-0401)High level Key Discipline of National Administration of Traditional Chinese Medicine(No.71)Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(No.ZYYCXTD-D-202004)Innovation team of high-level local universities in Shanghai:Strategic Innovation Team of TCM Chemical Biology。
文摘Despite ongoing advancements in cancer treatment,the emergence of primary and acquired resistance poses a significant challenge for both traditional chemotherapy and immune checkpoint blockade therapies.The demand for targeted therapeutics for multidrug-resistant cancer is more important than ever.Peptides,as emerging alternatives to current anticancer drugs,offer exquisite versatility in facilitating the design of novel oncology drugs,with the core superiorities of good biocompatibility and a low tendency to induce drug resistance.This review comprehensively introduces the pharmacological mechanisms of peptide-based drugs and strategies for overcoming multidrug resistance(MDR)in cancers,including inducing cell membrane lysis,targeting organelles,activating anticancer immune responses,enhancing drug uptake,targeting ATP-binding cassette(ABC)transporters,and targeting B-cell lymphoma-2(BCL-2)family proteins.Additionally,the current clinical applications of representative peptides in combating MDR cancers and their potential directions for medicinal chemistry research have been thoroughly discussed.This review offers essential insights into the novel treatment approaches for MDR cancers and highlights the trends and perspectives in this field.
基金financially supported by the National Key Research and Development Program of China(no.2022YFC2303100)National Natural Science Foundation of China(nos.T2325010,22305082,52203162,and 22075078)+1 种基金Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission),the Fundamental Research Funds for the Central Universities(nos.JKVD1241029 and JKD01241701)Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry(Changchun Institute of Applied Chemistry,Chinese Academy of Sciences),the Open Project of Engineering Research Center of Dairy Quality and Safety Control Technology(Ministry of Education,no.R202201).
文摘The rising prevalence of drug-resistant Gram-positive pathogens,particularly methicillin-resistant Staphy-lococcus aureus(MRSA)and vancomycin-resistant Enterococci(VRE),poses a substantial clinical challenge.Biofilm-associated infections exacerbate this problem due to their inherent antibiotic resistance and complex structure.Current antibiotic treatments struggle to penetrate biofilms and eradicate persister cells,leading to prolonged antibiotic use and increased resistance.Host defense peptides(HDPs)have shown promise,but their clinical application is limited by factors such as enzymatic degradation and difficulty in largescale preparation.Synthetic HDP mimics,such as poly(2-oxazoline),have emerged as effective alter-natives.Herein,we found that the poly(2-oxazoline),Gly-POX_(20),demonstrated rapid and potent activity against clinically isolated multidrug-resistant Gram-positive strains.Gly-POX_(20) showed greater stability under physiological conditions compared to natural peptides,including resistance to protease degradation.Importantly,Gly-POX_(20) inhibited biofilm formation and eradicated mature biofilm and demonstrated superior in vivo therapeutic efficacy to vancomycin in a MRSA biofilm-associated mouse keratitis model,suggesting its potential as a novel antimicrobial agent against drug-resistant Gram-positive bacteria,especially biofilm-associated infections.
基金supported by National Key Research and Development Program of China(Grant No.2021YFE0115200)the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(Grant No.U22A20356).
文摘Solid lipid nanoparticles(SLN)could enhance the oral bioavailability of loaded protein and peptide drugs through lymphatic transport.Natural oligopeptides regulate nearly all vital processes and serve as a nitrogen source for nourishment.They are mainly transported by oligopeptide transporter-1(PepT-1)which are primarily expressed in the intestine with the characteristics of high-capacity and low energy consumption.Our preliminary research discovered the transmembrane transport of SLN could be improved by stimulating the oligopeptide absorption pathway.This implied the potential of combining the advantages of SLN with oligopeptide transporter mediated transportation.Herein,two kinds of dipeptide modified SLN were designed with insulin and glucagon like peptide-1(GLP-1)analogue exenatide as model drugs.These drugs loaded SLN showed enhanced oral bioavailability and hypoglycemic effect in both type I diabetic C57BL/6mice and type II diabetic KKAymice.Compared with un-modified SLN,dipeptide-modified SLN could be internalized by intestinal epithelial cells via PepT-1-mediated endocytosis with higher uptake.Interestingly,after internalization,more SLN could access the systemic circulation via lymphatic transport pathway,highlighting the potential to combine the oligopeptide-absorption route with SLN for oral drug delivery.
文摘Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.
文摘In order to study the effects of Saussurea laniceps polysaccharides(SLPs)on the expression of inflammatory factors and antimicrobial peptide LL-37 in UVB-induced keratinocytes,SLPs were extracted by the ethanol thermal reflux method,and SLPs at different concentrations were used to examine the inhibitory effect of COX-2(a key mediator of inflammatory pathway).A cell model of UVB irradiation-induced inflammation was established to determine the influence of SLPs on prostaglandin E2(PGE-2),TNF-αand IL-1βinflammatory factors,as well as the relationships of SLPs with LL-37 expression.An enzyme-linked immunosorbent assay(ELISA)and western blot analysis were used to detect the production of inflammatory factors and LL-37 antimicrobial peptide.The results showed that the inhibition rate of COX-2 was 82.41%at 1000μg/mL,and the expression of PGE-2,TNF-αand IL-1βinflammatory factors in HaCaT cells was significantly downregulated at 100μg/mL(P<0.01).In addition,SLPs at 50μg/mL and 100μg/mL concentrations enhanced the expression of LL-37 antimicrobial peptide(P<0.01),thereby down-regulating the expression of TNF-αand IL-1βinflammatory factors,then reducing skin inflammation.Conclusion:SLP can significantly inhibit the inflammatory response induced by UVB,and can further slow down the damage caused by inflammation to the skin by regulating LL-37 antimicrobial peptides,which has the potential to prevent skin inflammatory damage caused by UVB irradiation.
文摘This article comments on the work by Soresi and Giannitrapani.The authors have stated that one of the most novel and promising treatments for metabolic dysfunction-associated steatotic liver disease(MASLD)is the use of glucagon-like peptide 1 receptor agonists,especially when used in combination therapy.However,despite their notable efficacy,these drugs were not initially designed to target MASLD directly.In a groundbreaking development,the Food and Drug Administration has recently approved resmetirom,the first treatment specifically aimed at reducing liver fibrosis in metabolic-associated steatohepatitis.Resmetirom,an orally administered,liver-directed thyroid hormone beta-selective agonist,acts directly on intrahepatic pathways,enhancing its therapeutic potential and marking the beginning of a new era in the treatment of MASLD.Furthermore,the integration of lifestyle modifications into liver disease management is an essential component that should be considered and reinforced.By incorporating dietary changes and regular physical exercise into treatment,patients may achieve improved outcomes,reducing the need for pharmacological interventions and/or improving treatment efficacy.As a complement to medical therapies,lifestyle factors should not be overlooked in the broader strategy for managing MASLD.
文摘Targeted cancer therapy has emerged as a promising alternative to conventional chemotherapy,which is often plagued by poor selectivity,off-target effects,and drug resistance.Among the various targeting agents in development,peptides stand out for their unique advantages,including minimal immunogenicity,high tissue penetration,and ease of modification.Their small size,specificity,and flexibility allow them to target cancer cells while minimizing damage to healthy tissue selectively.Peptide-based therapies have shown great potential in enhancing the efficacy of drug delivery,improving tumor imaging,and reducing adverse effects.With cancer responsible for millions of deaths worldwide,the development of peptide-based therapeutics offers new hope in addressing the limitations of current treatments.As detailed studies on different aspects of targeting peptides are crucial for optimizing drug development,this review provides a comprehensive overview of the literature on tumor-targeting peptides,including their structure,sources,modes of action,and their application in cancer therapy—both as standalone agents and in fusion drugs.Additionally,various computational tools for peptide-based tumor-targeting drug design and validation are explored.The promising results from these studies highlight peptides as ideal candidates for targeted cancer therapies,offering valuable insights for researchers and accelerating the discovery of novel anti-tumor peptide base drug candidates.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金supported by the National Key Research and Development Program of China(No.2024YFF1106600).
文摘Central nervous system disorders constitute a major global public health burden,contributing substantially to morbidity and mortality.Advances in elucidating their underlying pathogenesis have facilitated the approval of an increasing number of proprietary drugs for clinical management of neurological conditions.A critical challenge in drug delivery lies in achieving appropriate tissue distribution,particularly within the brain,where effective therapeutic intervention requires traversing the blood-brain barrier and precisely targeting localized regions.Nanodelivery systems have emerged as a promising approach in biomedicine to address these challenges.Among these,peptides-characterized by their high specificity and relatively small size-are extensively employed to functionalize nanocarriers,thereby enhancing targeted tissue distribution.The conjugation of diverse functional peptides onto heterogeneous nanoscale carriers enables precise,efficient,and multidimensional targeting.This review highlights several representative neurological diseases and systematically discusses strategies for peptide-based functionalization of nanocarriers tailored to these pathological contexts.