The aim of the present study was to investigate the effect of electromagnetic radio frequency treatment of water on the growth of pepper (Capsicum annuum) plants. For this experiment, one hundred one-week old plants w...The aim of the present study was to investigate the effect of electromagnetic radio frequency treatment of water on the growth of pepper (Capsicum annuum) plants. For this experiment, one hundred one-week old plants were divided into two groups. The first group of plants was watered with water subjected to radio frequency electromagnetic radiation from an internet router for one hour a day, while the other group was watered with tap water (control). The overall results showed changes of growth characters of plant watered with electromagnetic water. The length of pepper plants is significantly affected by the treated water, where the length of shoot was lower in plants grown under the effect of treated water (22.43 ± 7.17 cm) than those grown without treated water (28.11 ± 8.57 cm). The results revealed that the stem diameter of control plants (1.74 ± 0.39 cm) was significantly higher than that of the treated plants (1.66 ± 0.35 cm). In addition, the root length was lower in plants grown under the effect of treated water than those grown without treated water. Pepper plants watered with electromagnetic treated water exhibited marked decreases in health index, fresh and dry weight, relative water content, number of flowers and fruits/plant as well as number of seeds/fruit. In addition, the current experiment showed a significant decrease in the number of leaves, branch and flower per plant when watered with electromagnetic treated water. The results revealed that the first flowering time for plants in treated group was remarkably decelerated when compared to other plants in control group.展开更多
In this experiment carried out on Caribbean chili pepper plants(Capsicum chinensis),the bio-insecticide azadirachtin in combination with an NPK fertilizer proved to have a greater lethal impact on the larvae of Aedes ...In this experiment carried out on Caribbean chili pepper plants(Capsicum chinensis),the bio-insecticide azadirachtin in combination with an NPK fertilizer proved to have a greater lethal impact on the larvae of Aedes albopictus than each substance on its own.This synergistic effect is noticeably important when both inputs are sprayed directly on the leaves of the plant(foliar application).While the plants treated with azadirachtin or NPK alone cause a 33.6%and 36.4%mortal-ity respectively of the Ae.albopictus larvae,the combination of the two inputs induces a 74.4%mortality on the mosquito larvae.To account for this synergistic effect phenomenon inside the plant,the azadirachtin+NPK combination most likely interacts with the capsaicinoid compounds naturally produced by the plant.Not only does this study carried out on azadirachtin reveal major results but the methodology itself offers a most interesting approach on how to boost the agricultural inputs within the plants.As a matter of fact,this research axis demands developing since the control of pests harmful to men has been dramatically lacking insecticide molecules acting on new targets over the past three decades.展开更多
This study was conducted to verify the effect of an electric pulse on growth of crops (lettuce and hot pepper) that were cultivated in lab-scale soil. The electric pulse generated from direct-circuited 2, 4, 6, 8, and...This study was conducted to verify the effect of an electric pulse on growth of crops (lettuce and hot pepper) that were cultivated in lab-scale soil. The electric pulse generated from direct-circuited 2, 4, 6, 8, and 10 V of electricity by periodic exchange of the anode and cathode was charged to a culture soil that is an electrically pulsed culture soil (EPCS) but not charged to a conventional culture soil (CCS). Growth of lettuce increased and growth duration of hot pepper plants was more prolonged at 4, 6, 8, and 10 V of EPCS than at 2 V of EPCS and CCS. The fruiting duration and yield of hot pepper fruits were proportional to the growth duration of the hot pepper plants. Temperature gradient gel electrophoresis (TGGE) patterns of 16S-rDNA obtained from the bacterial community inhabiting the CCS and EPCS were identical at the initial time and did not change significantly at days 28 and 56 of cultivation. The bacterial communities inhabiting the surface of lettuce roots were not influenced by the electric pulse but were significantly different from those inhabiting the culture soil based on the TGGE patterns. Growth of lettuce and hot pepper plants that were cultivated in 4 - 10 V of EPCS may increase;however, the bacterial community inhabiting the soil and the surface of plant roots may not be influenced by an electric pulse.展开更多
An efficient and reproducible in vitro mass propagation protocol was developed for Mareko Fana cultivar of hot pepper (C. annuum L.) through direct organogenesis using nodal and shoot tip explants. Three percent activ...An efficient and reproducible in vitro mass propagation protocol was developed for Mareko Fana cultivar of hot pepper (C. annuum L.) through direct organogenesis using nodal and shoot tip explants. Three percent active chlorine for 20 minutes was found to be optimum treatment combination yielding 82.5% ± 5.00% contaminant-free germinated seedlings. For shoot induction, MS + 4.5 mg/l BAP + 0.5 mg/l IAA and MS medium containing eight mg/l Zeatin were found to be optimum resulting 77.5% ± 5.00% and 67.50% ± 5.00% induction percentage for nodal and shoot tip explants respectively. Maximum shoot multiplication responses were obtained on MS + 3 mg/l BAP + 2 mg/l Kinetin with mean number of 9.2 ± 0.2 and 8.6 ± 0.00 shoots for nodal and shoot tip explants respectively. Best shoot elongation and rooting responses were obtained on MS + 0.5 mg/l IBA resulting mean value of 29.6 ± 0.12 root number, 4.25 ± 0.20 cm root length and 5.12 ± 0.20 cm shoot height. The plantlets showed 77.5% survival during acclimatization and transplanting.展开更多
为探究不同植物生长调节剂处理对辣椒挥发性香气物质的影响,采用顶空固相微萃取-气相色谱-质谱(headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry,HS-SPME-GC-MS)联用技术,通过化学计量学分...为探究不同植物生长调节剂处理对辣椒挥发性香气物质的影响,采用顶空固相微萃取-气相色谱-质谱(headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry,HS-SPME-GC-MS)联用技术,通过化学计量学分析对复硝酚钠、赤霉素、芸苔素内酯处理的辣椒以及对照辣椒挥发性香气物质进行综合评价。结果表明,在4种处理中共检测出43种挥发性香气物质,其中对照组38种、复硝酚钠组40种、芸苔素内酯和赤霉素组43种。芸苔素内酯和赤霉素处理提高了辣椒挥发性香气物质的总含量,复硝酚钠处理的总含量无差异。以PLS-DA模型的变量重要性投影VIP值>1.0为条件,共筛选出12种差异挥发物,对挥发性香气成分进行主成分分析并构建主成分综合评价函数,香气品质综合得分最高为芸苔素内酯组,其次为赤霉素组。研究结果为植物生长调节剂的合理、高效利用提供了理论依据,有助于促进辣椒优质产品的生产。展开更多
文摘The aim of the present study was to investigate the effect of electromagnetic radio frequency treatment of water on the growth of pepper (Capsicum annuum) plants. For this experiment, one hundred one-week old plants were divided into two groups. The first group of plants was watered with water subjected to radio frequency electromagnetic radiation from an internet router for one hour a day, while the other group was watered with tap water (control). The overall results showed changes of growth characters of plant watered with electromagnetic water. The length of pepper plants is significantly affected by the treated water, where the length of shoot was lower in plants grown under the effect of treated water (22.43 ± 7.17 cm) than those grown without treated water (28.11 ± 8.57 cm). The results revealed that the stem diameter of control plants (1.74 ± 0.39 cm) was significantly higher than that of the treated plants (1.66 ± 0.35 cm). In addition, the root length was lower in plants grown under the effect of treated water than those grown without treated water. Pepper plants watered with electromagnetic treated water exhibited marked decreases in health index, fresh and dry weight, relative water content, number of flowers and fruits/plant as well as number of seeds/fruit. In addition, the current experiment showed a significant decrease in the number of leaves, branch and flower per plant when watered with electromagnetic treated water. The results revealed that the first flowering time for plants in treated group was remarkably decelerated when compared to other plants in control group.
文摘In this experiment carried out on Caribbean chili pepper plants(Capsicum chinensis),the bio-insecticide azadirachtin in combination with an NPK fertilizer proved to have a greater lethal impact on the larvae of Aedes albopictus than each substance on its own.This synergistic effect is noticeably important when both inputs are sprayed directly on the leaves of the plant(foliar application).While the plants treated with azadirachtin or NPK alone cause a 33.6%and 36.4%mortal-ity respectively of the Ae.albopictus larvae,the combination of the two inputs induces a 74.4%mortality on the mosquito larvae.To account for this synergistic effect phenomenon inside the plant,the azadirachtin+NPK combination most likely interacts with the capsaicinoid compounds naturally produced by the plant.Not only does this study carried out on azadirachtin reveal major results but the methodology itself offers a most interesting approach on how to boost the agricultural inputs within the plants.As a matter of fact,this research axis demands developing since the control of pests harmful to men has been dramatically lacking insecticide molecules acting on new targets over the past three decades.
文摘This study was conducted to verify the effect of an electric pulse on growth of crops (lettuce and hot pepper) that were cultivated in lab-scale soil. The electric pulse generated from direct-circuited 2, 4, 6, 8, and 10 V of electricity by periodic exchange of the anode and cathode was charged to a culture soil that is an electrically pulsed culture soil (EPCS) but not charged to a conventional culture soil (CCS). Growth of lettuce increased and growth duration of hot pepper plants was more prolonged at 4, 6, 8, and 10 V of EPCS than at 2 V of EPCS and CCS. The fruiting duration and yield of hot pepper fruits were proportional to the growth duration of the hot pepper plants. Temperature gradient gel electrophoresis (TGGE) patterns of 16S-rDNA obtained from the bacterial community inhabiting the CCS and EPCS were identical at the initial time and did not change significantly at days 28 and 56 of cultivation. The bacterial communities inhabiting the surface of lettuce roots were not influenced by the electric pulse but were significantly different from those inhabiting the culture soil based on the TGGE patterns. Growth of lettuce and hot pepper plants that were cultivated in 4 - 10 V of EPCS may increase;however, the bacterial community inhabiting the soil and the surface of plant roots may not be influenced by an electric pulse.
文摘An efficient and reproducible in vitro mass propagation protocol was developed for Mareko Fana cultivar of hot pepper (C. annuum L.) through direct organogenesis using nodal and shoot tip explants. Three percent active chlorine for 20 minutes was found to be optimum treatment combination yielding 82.5% ± 5.00% contaminant-free germinated seedlings. For shoot induction, MS + 4.5 mg/l BAP + 0.5 mg/l IAA and MS medium containing eight mg/l Zeatin were found to be optimum resulting 77.5% ± 5.00% and 67.50% ± 5.00% induction percentage for nodal and shoot tip explants respectively. Maximum shoot multiplication responses were obtained on MS + 3 mg/l BAP + 2 mg/l Kinetin with mean number of 9.2 ± 0.2 and 8.6 ± 0.00 shoots for nodal and shoot tip explants respectively. Best shoot elongation and rooting responses were obtained on MS + 0.5 mg/l IBA resulting mean value of 29.6 ± 0.12 root number, 4.25 ± 0.20 cm root length and 5.12 ± 0.20 cm shoot height. The plantlets showed 77.5% survival during acclimatization and transplanting.
文摘为探究不同植物生长调节剂处理对辣椒挥发性香气物质的影响,采用顶空固相微萃取-气相色谱-质谱(headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry,HS-SPME-GC-MS)联用技术,通过化学计量学分析对复硝酚钠、赤霉素、芸苔素内酯处理的辣椒以及对照辣椒挥发性香气物质进行综合评价。结果表明,在4种处理中共检测出43种挥发性香气物质,其中对照组38种、复硝酚钠组40种、芸苔素内酯和赤霉素组43种。芸苔素内酯和赤霉素处理提高了辣椒挥发性香气物质的总含量,复硝酚钠处理的总含量无差异。以PLS-DA模型的变量重要性投影VIP值>1.0为条件,共筛选出12种差异挥发物,对挥发性香气成分进行主成分分析并构建主成分综合评价函数,香气品质综合得分最高为芸苔素内酯组,其次为赤霉素组。研究结果为植物生长调节剂的合理、高效利用提供了理论依据,有助于促进辣椒优质产品的生产。