An effective numerical algorithm for computing the determinant of a pentadiagonal Toeplitz matrix has been proposed by Xiao-Guang Lv and others [1]. The complexity of the algorithm is (9n + 3). In this paper, a new al...An effective numerical algorithm for computing the determinant of a pentadiagonal Toeplitz matrix has been proposed by Xiao-Guang Lv and others [1]. The complexity of the algorithm is (9n + 3). In this paper, a new algorithm with the cost of (4n + 6) is presented to compute the determinant of a pentadiagonal Toeplitz matrix. The inverse of a pentadiagonal Toeplitz matrix is also considered.展开更多
This work essentially consists in inverting in an exact, explicit, and original way the pentadiagonal Toeplitz matrix or tridiagonal block matrix resulting from the discretization of the two-dimensional Laplace operat...This work essentially consists in inverting in an exact, explicit, and original way the pentadiagonal Toeplitz matrix or tridiagonal block matrix resulting from the discretization of the two-dimensional Laplace operator. This method is an algorithm facilitating the resolution of a large number of problems governed by PDEs involving the Laplacian in two dimensions. It guarantees high precision and high efficiency in solving various differential equations.展开更多
文摘An effective numerical algorithm for computing the determinant of a pentadiagonal Toeplitz matrix has been proposed by Xiao-Guang Lv and others [1]. The complexity of the algorithm is (9n + 3). In this paper, a new algorithm with the cost of (4n + 6) is presented to compute the determinant of a pentadiagonal Toeplitz matrix. The inverse of a pentadiagonal Toeplitz matrix is also considered.
文摘This work essentially consists in inverting in an exact, explicit, and original way the pentadiagonal Toeplitz matrix or tridiagonal block matrix resulting from the discretization of the two-dimensional Laplace operator. This method is an algorithm facilitating the resolution of a large number of problems governed by PDEs involving the Laplacian in two dimensions. It guarantees high precision and high efficiency in solving various differential equations.