What we are doing is three-fold. First, we examine the gist of the Penrose suggestion as to signals from a prior universe showing up in the CMBR. <i>i.e. </i>, this shows up as data in the CMBR. Second, we...What we are doing is three-fold. First, we examine the gist of the Penrose suggestion as to signals from a prior universe showing up in the CMBR. <i>i.e. </i>, this shows up as data in the CMBR. Second, we give a suggestion as to how super massive black holes could be broken up s of a prior Universe cycle by pre big bang conditions, with say millions of pre-Planck black holes coming up out of a breakup of prior universe black holes. Three, we utilize a discussion as to Bose Einstein Condensates set as Gravitons as to composing the early universe black holes. The BEC formulation gives a number N of gravitons, linked to entropy, per black hole, which could lead to contributions to the alleged CMBR perturbations, which were identified by Penrose <i>et al</i>.展开更多
We examine if there are grounds to entertain the Penrose suggestion as to black holes from a prior cycle of creation appearing in the present cosmos. There are two cases to consider. One a singular start to the Univer...We examine if there are grounds to entertain the Penrose suggestion as to black holes from a prior cycle of creation appearing in the present cosmos. There are two cases to consider. One a singular start to the Universe or as Karen Freeze and others have modeled a non-singular start. The two cases are different and touch upon the limits of validity of the Penrose singularity theorem. We will first of all state the two cases, singular and nonsingular, and then afterwards, briefly allude to the Penrose singularity theorem. The plausibility of the singular cosmological expansion start point w case analysis of Black holes from a prior universe will be discussed first Afterwards, a synopsis of the Penrose singularity theorem. After that, the Nonsingular case of a starting point of the expansion of the Universe will be entertained and described. Since the nonsingular start to the expansion of the Universe is not so well known, a considerable amount of space will be spent upon what I view as mathematical constructions allowing for its analysis. About the only way to ascertain these cases will be by GW astronomy, hence the details of GW production from the early Universe will be covered in excruciating detail. The methodology for that section is simple. Use a construction for a minimal time-step, then from there get emergent space-time conditions for a bridge from a nonsingular start to the universe, to potential Quantum gravity conditions. Our Methodology is to construct using a “trivial” solution to massive gravitons, and a nonsingular start for expansion of the universe. Our methodology has many unintended consequences, not the least is a relationship between a small timestep, which is called <i>t</i>, and then the minimum scale factor and even the tension or property values of the initial space-time wall, all of which are a consequence of a “trivial” solution taking into account “massive” gravitons. From there we next will in future articles postulate conditions for experimental detectors for subsequent data sets to obtain falsifiable data sets. Finally upon doing this, the outlines of the way to ascertain data sets as to either falsify or confirm the Penrose suggestion will be the final concluding part of the manuscript.展开更多
Our Methodology is to construct using a “trivial” solution to massive gravitons, and a nonsingular start for expansion of the universe. Our methodology has many unintended consequences, not the least is a relationsh...Our Methodology is to construct using a “trivial” solution to massive gravitons, and a nonsingular start for expansion of the universe. Our methodology has many unintended consequences, not the least is a relationship between a small time step, t, the minimum scale factor and even the tension or property values of the initial space-time wall, and that is a consequence of a “trivial” solution taking into account “massive” gravitons. <i>I.e.</i> this solution has a mass term times the partial derivative with respect to time of an expression in brackets. The expression in brackets is the cube of a scale factor minus the square of the scale factor. Bonus that this equation is set to zero. It is deemed trivial due to the insistence of having a singular solution. If that is dropped, we have a different venue. In addition, the Friedman equation for nonsingular cosmology can have a quadratic dependence upon a density (of space-time), leading to a way to incorporate right at the surface of the initial “space-time” bubble an uncertainty principle. From there we suggest a first principle Schrodinger equation, with the caveat that time does not exist, within the space-time nonsingular bubble, but is formed right afterwards. From there we again form solutions for strength of GW signals and suggestions as to polarization states. Our quest is motivated by our last articles question, where “We conclude by stating the following question. Can extra dimensions come from a Multiverse feed into Pre-Planckian space-time? See Theorem at the end of this publication. Our answer is in the affirmative, and it has intellectual similarities to George Chapline’s work with Black hole physics”. From there we next will in future articles postulate conditions for experimental detectors for subsequent data sets to obtain falsifiable data sets.展开更多
文摘What we are doing is three-fold. First, we examine the gist of the Penrose suggestion as to signals from a prior universe showing up in the CMBR. <i>i.e. </i>, this shows up as data in the CMBR. Second, we give a suggestion as to how super massive black holes could be broken up s of a prior Universe cycle by pre big bang conditions, with say millions of pre-Planck black holes coming up out of a breakup of prior universe black holes. Three, we utilize a discussion as to Bose Einstein Condensates set as Gravitons as to composing the early universe black holes. The BEC formulation gives a number N of gravitons, linked to entropy, per black hole, which could lead to contributions to the alleged CMBR perturbations, which were identified by Penrose <i>et al</i>.
文摘We examine if there are grounds to entertain the Penrose suggestion as to black holes from a prior cycle of creation appearing in the present cosmos. There are two cases to consider. One a singular start to the Universe or as Karen Freeze and others have modeled a non-singular start. The two cases are different and touch upon the limits of validity of the Penrose singularity theorem. We will first of all state the two cases, singular and nonsingular, and then afterwards, briefly allude to the Penrose singularity theorem. The plausibility of the singular cosmological expansion start point w case analysis of Black holes from a prior universe will be discussed first Afterwards, a synopsis of the Penrose singularity theorem. After that, the Nonsingular case of a starting point of the expansion of the Universe will be entertained and described. Since the nonsingular start to the expansion of the Universe is not so well known, a considerable amount of space will be spent upon what I view as mathematical constructions allowing for its analysis. About the only way to ascertain these cases will be by GW astronomy, hence the details of GW production from the early Universe will be covered in excruciating detail. The methodology for that section is simple. Use a construction for a minimal time-step, then from there get emergent space-time conditions for a bridge from a nonsingular start to the universe, to potential Quantum gravity conditions. Our Methodology is to construct using a “trivial” solution to massive gravitons, and a nonsingular start for expansion of the universe. Our methodology has many unintended consequences, not the least is a relationship between a small timestep, which is called <i>t</i>, and then the minimum scale factor and even the tension or property values of the initial space-time wall, all of which are a consequence of a “trivial” solution taking into account “massive” gravitons. From there we next will in future articles postulate conditions for experimental detectors for subsequent data sets to obtain falsifiable data sets. Finally upon doing this, the outlines of the way to ascertain data sets as to either falsify or confirm the Penrose suggestion will be the final concluding part of the manuscript.
文摘Our Methodology is to construct using a “trivial” solution to massive gravitons, and a nonsingular start for expansion of the universe. Our methodology has many unintended consequences, not the least is a relationship between a small time step, t, the minimum scale factor and even the tension or property values of the initial space-time wall, and that is a consequence of a “trivial” solution taking into account “massive” gravitons. <i>I.e.</i> this solution has a mass term times the partial derivative with respect to time of an expression in brackets. The expression in brackets is the cube of a scale factor minus the square of the scale factor. Bonus that this equation is set to zero. It is deemed trivial due to the insistence of having a singular solution. If that is dropped, we have a different venue. In addition, the Friedman equation for nonsingular cosmology can have a quadratic dependence upon a density (of space-time), leading to a way to incorporate right at the surface of the initial “space-time” bubble an uncertainty principle. From there we suggest a first principle Schrodinger equation, with the caveat that time does not exist, within the space-time nonsingular bubble, but is formed right afterwards. From there we again form solutions for strength of GW signals and suggestions as to polarization states. Our quest is motivated by our last articles question, where “We conclude by stating the following question. Can extra dimensions come from a Multiverse feed into Pre-Planckian space-time? See Theorem at the end of this publication. Our answer is in the affirmative, and it has intellectual similarities to George Chapline’s work with Black hole physics”. From there we next will in future articles postulate conditions for experimental detectors for subsequent data sets to obtain falsifiable data sets.