In this paper, a two level finite difference scheme of Crank-Nicholson type is constructed and used to numerically investigate nonlinear temperature distribution in biological tissues described by bioheat transfer equ...In this paper, a two level finite difference scheme of Crank-Nicholson type is constructed and used to numerically investigate nonlinear temperature distribution in biological tissues described by bioheat transfer equation of Pennes’ type. For the equation under consideration, the thermal conductivity is either depth-dependent or tem-perature-dependent, while blood perfusion is temperature-dependent. In both cases of depth- dependent and temperature-dependent thermal conductivity, it is shown that blood perfusion decreases the temperature of the living tissue. Our numerical simulations show that neither the localization nor the magnitude of peak tempera-ture is affected by surface temperature;however, the width of peak temperature increases with surface temperature.展开更多
Based on the Pennes’ bioheat transfer equation, a simplified one-dimensional bioheat transfer model of the cylindrical living tissues in the steady state has been set up for application in limb and whole body heat tr...Based on the Pennes’ bioheat transfer equation, a simplified one-dimensional bioheat transfer model of the cylindrical living tissues in the steady state has been set up for application in limb and whole body heat transfer studies, and by using the Bessel’s equation, its corresponding analytic solution has been derived in this paper. With the obtained analytic solution, the effects of the thermal conductivity, the blood perfusion, the metabolic heat generation, and the coefficient of heat transfer on the temperature distribution in living tissues are analyzed. The results show that the derived analytic solution is useful to easily and accurately study the thermal behavior of the biological system, and can be extended to such applications as parameter measurement, temperature field reconstruction and clinical treatment.展开更多
文摘In this paper, a two level finite difference scheme of Crank-Nicholson type is constructed and used to numerically investigate nonlinear temperature distribution in biological tissues described by bioheat transfer equation of Pennes’ type. For the equation under consideration, the thermal conductivity is either depth-dependent or tem-perature-dependent, while blood perfusion is temperature-dependent. In both cases of depth- dependent and temperature-dependent thermal conductivity, it is shown that blood perfusion decreases the temperature of the living tissue. Our numerical simulations show that neither the localization nor the magnitude of peak tempera-ture is affected by surface temperature;however, the width of peak temperature increases with surface temperature.
文摘Based on the Pennes’ bioheat transfer equation, a simplified one-dimensional bioheat transfer model of the cylindrical living tissues in the steady state has been set up for application in limb and whole body heat transfer studies, and by using the Bessel’s equation, its corresponding analytic solution has been derived in this paper. With the obtained analytic solution, the effects of the thermal conductivity, the blood perfusion, the metabolic heat generation, and the coefficient of heat transfer on the temperature distribution in living tissues are analyzed. The results show that the derived analytic solution is useful to easily and accurately study the thermal behavior of the biological system, and can be extended to such applications as parameter measurement, temperature field reconstruction and clinical treatment.