In this study, we developed a computer program for automatic prediction of watering time point by considering the environmental factors such as solar radiation, air temperature and relative humidity based on the multi...In this study, we developed a computer program for automatic prediction of watering time point by considering the environmental factors such as solar radiation, air temperature and relative humidity based on the multiple linear regression equation of leaf area and Penman Method. The experiments were carried out for a year in two watering experimental plots, one of which was controlled by pF value, and the other by the computer program. After comparing the results of the two plots, the following findings were obtained. In the computer program plot, the observed and predicted values of both leaf area and evapotranspiration indicated significant correlation at the 1% level, which suggested that the computer program had high prediction accuracy. In addition, no significant difference was observed between the two experimental plots with respects to the plant height, plant diameter, leaf area, leaf number, fresh weight, and dry weight, which demonstrated that the plants in the computer program plot had normal growth. On the other hand, although the number of flower buds and flowering shoots showed higher values at the end of certain cultivations in the computer program plot than those in pF value plot, we proposed that it was due to the effect of cumulative daily solar radiation in the greenhouse, rather than the watering. Thus, we have reached the conclusion that the computer program for automatic prediction of watering time point developed by this study has high applicability in miniature pot rose production.展开更多
The need to allocate the existing water in a sustainable manner, even with the projected population growth, has made to assess the consumptive use or evapotranspiration (ET), which determines the irrigation demand. As...The need to allocate the existing water in a sustainable manner, even with the projected population growth, has made to assess the consumptive use or evapotranspiration (ET), which determines the irrigation demand. As underscored in the literature, Penman-Monteith method which is a combination of aerodynamic and energy balance method is widely used and accepted as the method of estimation of ET. However, the application of Penman-Monteith relies on many climate parameters such as relative humidity, solar radiation, temperature, and wind speed. Therefore, there exists a need to determine the parameters that are most sensitive and correlated with dependent variable (i.e., ET), to strengthen the knowledge base. However, the sensitivity of ET using Penman-Monteith is oftentimes estimated using meteorological data from climate stations. Such estimation of sensitivity may vary spatially and thus there exists a need to estimate sensitivity of ET spatially. Thus, in this paper, based on One-AT-A-Time (OAT) method, a spatial sensitivity tool that can geographically encompass all the best available climate datasets to produce ET and its sensitivity at different spatial scales is developed. The spatial tool is developed as a Python toolbox in ArcGIS using Python, an open source programming language, and the ArcPy site-package of ArcGIS. The developed spatial tool is demonstrated using the meteorological data from Automated Weather Data Network in Nebraska in 2010. To summarize the outcome of the sensitivity analysis using OAT method, sensitivity indices are developed for each raster cell. The demonstration of the tool shows that, among the considered parameters, the computed ET using Penman-Monteith is highly sensitive to solar radiation followed by temperature for the state of Nebraska, as depicted by the sensitivity index. The computed sensitivity index of wind speed and the relative humidity are not that significant compared to the sensitivity index of solar radiation and temperature.展开更多
新疆维吾尔自治区地域辽阔,气候特征空间差异性显著。准确估算各地区的参考作物腾发量(ET0)是新疆节水灌溉设计的基础。该文选用6种计算公式利用新疆4个典型气候区的气象资料计算了ET0。并以Penm an-M on te ith方法作为标准,对其它方...新疆维吾尔自治区地域辽阔,气候特征空间差异性显著。准确估算各地区的参考作物腾发量(ET0)是新疆节水灌溉设计的基础。该文选用6种计算公式利用新疆4个典型气候区的气象资料计算了ET0。并以Penm an-M on te ith方法作为标准,对其它方法进行评价。结果表明在新疆各气候区1948Penm an法估算的ET0值较FAO-24 Penm an与FAO-24R ad iation方法更接近于P-M法的计算结果;在缺少资料的地区,H argreaves方法或湿润区用P riestley-T ay lor方法均可以得到与P-M法估值相当的结果;同时分析了P-M法计算的ET0值和水面蒸发量之间的关系,为利用水面蒸发资料估算新疆地区ET0值提供参考。展开更多
参照腾发量ET0的实时预测对实时灌溉预报很重要。通过对普通天气预报信息进行解析,取得可用的合理数据,利用Penm an-M on te ith方法估算了北京大兴试区近10年逐日参照腾发量,最后与由实测气象数据计算的结果进行了对比分析。结果表明:...参照腾发量ET0的实时预测对实时灌溉预报很重要。通过对普通天气预报信息进行解析,取得可用的合理数据,利用Penm an-M on te ith方法估算了北京大兴试区近10年逐日参照腾发量,最后与由实测气象数据计算的结果进行了对比分析。结果表明:解析气象因子与实测数据中,日照时数的相关系数为0.99,风速为0.90;t检验值日照时数为376.9042,风速为122.4295,远远大于t分布相应临界值2.576(α=0.01),表明其可以认为是来自一个近似的总体样本。由日最低气温确定的实际水汽压和由实测相对湿度计算的实际水汽压,二者相关系数达到0.93,t检验值为153.3015。运用天气预报信息计算预测的ET0与实测数据用Penm an-M on te ith方法计算的ET0相比,相关系数达到0.9613,t检验值为209.1194,说明二者具有高度显著的线性相关性。如果日常天气预报准确度能够达到90%以上,用此理论预测参照腾发量将具有较大的参考价值和实际意义。展开更多
基金supported by the Science Founda-tion of Guangxi Zhuang Autonomous Region, China(0832002)
文摘In this study, we developed a computer program for automatic prediction of watering time point by considering the environmental factors such as solar radiation, air temperature and relative humidity based on the multiple linear regression equation of leaf area and Penman Method. The experiments were carried out for a year in two watering experimental plots, one of which was controlled by pF value, and the other by the computer program. After comparing the results of the two plots, the following findings were obtained. In the computer program plot, the observed and predicted values of both leaf area and evapotranspiration indicated significant correlation at the 1% level, which suggested that the computer program had high prediction accuracy. In addition, no significant difference was observed between the two experimental plots with respects to the plant height, plant diameter, leaf area, leaf number, fresh weight, and dry weight, which demonstrated that the plants in the computer program plot had normal growth. On the other hand, although the number of flower buds and flowering shoots showed higher values at the end of certain cultivations in the computer program plot than those in pF value plot, we proposed that it was due to the effect of cumulative daily solar radiation in the greenhouse, rather than the watering. Thus, we have reached the conclusion that the computer program for automatic prediction of watering time point developed by this study has high applicability in miniature pot rose production.
文摘The need to allocate the existing water in a sustainable manner, even with the projected population growth, has made to assess the consumptive use or evapotranspiration (ET), which determines the irrigation demand. As underscored in the literature, Penman-Monteith method which is a combination of aerodynamic and energy balance method is widely used and accepted as the method of estimation of ET. However, the application of Penman-Monteith relies on many climate parameters such as relative humidity, solar radiation, temperature, and wind speed. Therefore, there exists a need to determine the parameters that are most sensitive and correlated with dependent variable (i.e., ET), to strengthen the knowledge base. However, the sensitivity of ET using Penman-Monteith is oftentimes estimated using meteorological data from climate stations. Such estimation of sensitivity may vary spatially and thus there exists a need to estimate sensitivity of ET spatially. Thus, in this paper, based on One-AT-A-Time (OAT) method, a spatial sensitivity tool that can geographically encompass all the best available climate datasets to produce ET and its sensitivity at different spatial scales is developed. The spatial tool is developed as a Python toolbox in ArcGIS using Python, an open source programming language, and the ArcPy site-package of ArcGIS. The developed spatial tool is demonstrated using the meteorological data from Automated Weather Data Network in Nebraska in 2010. To summarize the outcome of the sensitivity analysis using OAT method, sensitivity indices are developed for each raster cell. The demonstration of the tool shows that, among the considered parameters, the computed ET using Penman-Monteith is highly sensitive to solar radiation followed by temperature for the state of Nebraska, as depicted by the sensitivity index. The computed sensitivity index of wind speed and the relative humidity are not that significant compared to the sensitivity index of solar radiation and temperature.
文摘新疆维吾尔自治区地域辽阔,气候特征空间差异性显著。准确估算各地区的参考作物腾发量(ET0)是新疆节水灌溉设计的基础。该文选用6种计算公式利用新疆4个典型气候区的气象资料计算了ET0。并以Penm an-M on te ith方法作为标准,对其它方法进行评价。结果表明在新疆各气候区1948Penm an法估算的ET0值较FAO-24 Penm an与FAO-24R ad iation方法更接近于P-M法的计算结果;在缺少资料的地区,H argreaves方法或湿润区用P riestley-T ay lor方法均可以得到与P-M法估值相当的结果;同时分析了P-M法计算的ET0值和水面蒸发量之间的关系,为利用水面蒸发资料估算新疆地区ET0值提供参考。
文摘参照腾发量ET0的实时预测对实时灌溉预报很重要。通过对普通天气预报信息进行解析,取得可用的合理数据,利用Penm an-M on te ith方法估算了北京大兴试区近10年逐日参照腾发量,最后与由实测气象数据计算的结果进行了对比分析。结果表明:解析气象因子与实测数据中,日照时数的相关系数为0.99,风速为0.90;t检验值日照时数为376.9042,风速为122.4295,远远大于t分布相应临界值2.576(α=0.01),表明其可以认为是来自一个近似的总体样本。由日最低气温确定的实际水汽压和由实测相对湿度计算的实际水汽压,二者相关系数达到0.93,t检验值为153.3015。运用天气预报信息计算预测的ET0与实测数据用Penm an-M on te ith方法计算的ET0相比,相关系数达到0.9613,t检验值为209.1194,说明二者具有高度显著的线性相关性。如果日常天气预报准确度能够达到90%以上,用此理论预测参照腾发量将具有较大的参考价值和实际意义。