期刊文献+
共找到134篇文章
< 1 2 7 >
每页显示 20 50 100
Insights into room-and elevated-temperature micro-mechanisms of laser shock peened M50 steel with superior tribological performance 被引量:1
1
作者 Zhenyang Cao Luqing Cui +6 位作者 Sihai Luo Jingdong Song Hao Su Zhicong Pang Wang Zhao Weifeng He Xiaoqing Liang 《Journal of Materials Science & Technology》 2025年第2期270-285,共16页
M50 steel,commonly utilized in aircraft engine bearings,is susceptible to friction-induced failures,particularly in high-temperature service conditions.To address this issue,various strategies have been proposed,with ... M50 steel,commonly utilized in aircraft engine bearings,is susceptible to friction-induced failures,particularly in high-temperature service conditions.To address this issue,various strategies have been proposed,with laser shock peening(LSP)garnering significant attention due to its deeper residual stress penetration and excellent surface integrity,whereas the underlying strengthening mechanisms have not yet been fully elucidated.In this study,we systematically investigate the impact of LSP treatment on the tribological properties of M50 steel at temperatures of 25 and 300℃,alongside elucidating the relevant micro-mechanisms.Microstructural analysis reveals that laser impact strengthening primarily arises from dislocation proliferation,resulting in a surface hardness increase of approximately 14%and the formation of a substantial compressive stress layer reaching a maximum value of about 1200 MPa,with a depth of around 2 mm.Friction test results demonstrate reduced coefficients of friction and wear rates following LSP treatment at both temperatures.Notably,a more pronounced reduction is observed at 300℃,with values decreasing by 41.4%and 55.8%,respectively.The enhanced performance is attributed to the synergistic interplay of compressive residual stresses,work-hardening layers,increased density of dislocations,and substantial microstructure refinement. 展开更多
关键词 M50 bearing steel Laser shock peening Tribological performance Elevated temperatures Compressive residual stress
原文传递
Microstructure and nanoindentation hardness of shot-peened ultrafine-grained low-alloy steel 被引量:2
2
作者 Xiao-wei Feng Juan Xie +3 位作者 Wen-ying Xue Yong-feng Shen Hong-bo Wang Zhen-yu Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第5期472-482,共11页
The effect of shot peening (SP) on microstructure and hardness of ultrafine-grained (UFG) low-alloy steel was investigated. With increasing shot-peening time from 0.5 to 1.5 h, grain size of UFG low-alloy steel decrea... The effect of shot peening (SP) on microstructure and hardness of ultrafine-grained (UFG) low-alloy steel was investigated. With increasing shot-peening time from 0.5 to 1.5 h, grain size of UFG low-alloy steel decreases from 400 to 280 nm at surface whilst that of the layer with a depth of 160μm decreases from (230 ± 15) to (75 ± 5) nm. Interestingly, nanoindentation shows that hardness increases linearly with increasing the SP duration, reaching a value as high as (7.10 ± 0.1) GPa at the depth of 160 μm after the SP duration of 1.5 h. The thickness of the SP treated layer is measured as^300 μm. The Hall-Petch (H-P) relationship was established for the hardening layer. Correspondingly, abrasion resistance should be ~51% higher than that of as-prepared UFG low-alloy steel. As shown in SP processing, grain refinement is the key factor responsible for the strengthening of the studied steel. 展开更多
关键词 Low-alloy steel Shot PEENING GRAIN REFINEMENT NANOINDENTATION HARDNESS
原文传递
Surface profile and microstructure of laser peened Ti-6Al-4V 被引量:1
3
作者 ZOU Shikun GONG Shuili GUO Enming 《Rare Metals》 SCIE EI CAS CSCD 2012年第5期430-433,共4页
The surface profile of laser peening with square spots was compared with that of circle spots, and the microstructure of laser peened titanium alloy Ti-6Al-4V in the center of a square spot and at the edge of the squa... The surface profile of laser peening with square spots was compared with that of circle spots, and the microstructure of laser peened titanium alloy Ti-6Al-4V in the center of a square spot and at the edge of the square spot was investigated in this paper. The results show that a smaller size crystal is produced at the edge of square spots because the shearing strain produces nanoscale crystals in laser peening titanium alloy Ti-6Al-4V. 展开更多
关键词 laser peening surface profile square spot TI-6AL-4V nanoscale crystals
在线阅读 下载PDF
Effect of Surface Polishing Treatment on the Fatigue Performance of Shot-Peened Ti–6Al–4V Alloy 被引量:5
4
作者 Z.G.Liu T.I.Wong +2 位作者 W.Huang N.Sridhar S.J.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第7期630-640,共11页
In this study, shot peening is applied to the titanium alloy Ti–6Al–4V, and the surface treatment effect on fatigue life of shot-peened specimens under high cycle loading is investigated. The induced residual stress... In this study, shot peening is applied to the titanium alloy Ti–6Al–4V, and the surface treatment effect on fatigue life of shot-peened specimens under high cycle loading is investigated. The induced residual stress is measured by using the orbital hole-drilling method. Surface profilometer and optical microscopy are employed to characterize the surface roughness and morphology. The deformed microstructure layers of the shot-peened specimens are investigated by using scanning electron microscopy. Experiments reveal that the fatigue life of Ti–6Al–4V is improved by the shot peening process, and the surface pre-peening polishing. The combination of pre-and post-peening polishing treatments further improves fatigue life of Ti–6Al–4V specimens. The present work provides useful guidelines for developing more efficient shot peening strategies. 展开更多
关键词 Shot peening Surface polishing treatment Fatigue Residual stress Ti–6Al–4V alloy
原文传递
EFFECT OF MICROSTRUCTURE ON FATIGUE CRACK INITIATION OF SHOT PEENED COPPER AND BRASS
5
作者 K.W.Xu N.S.Hu and J.W.He(State-Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University, Xi’an 710049, ) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第6期607-611,共5页
The effect of microstructure on fatigue crack initiation was considered in the shot peened surface layer by eliminating the influence of compressive residual stress. Results indicate that the drastically deformed stru... The effect of microstructure on fatigue crack initiation was considered in the shot peened surface layer by eliminating the influence of compressive residual stress. Results indicate that the drastically deformed structure by shot peening would keep the dislocations from moving out of the surface and hold the dislocations inside the cell structure of copper or the palling structure of brass. The fatigue damage of intrusion and extrusion type could thus be depressed and the fatigue life is enhanced. 展开更多
关键词 shot peening fatigue microstructure
在线阅读 下载PDF
Laser shock processing of titanium alloys:A critical review on the microstructure evolution and enhanced engineering performance 被引量:2
6
作者 Qian Liu Shuangjie Chu +6 位作者 Xing Zhang Yuqian Wang Haiyan Zhao Bohao Zhou Hao Wang Genbin Wu Bo Mao 《Journal of Materials Science & Technology》 2025年第6期262-291,共30页
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ... Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends. 展开更多
关键词 Laser shock peening Titanium alloys Microstructure evolution Mechanical properties
原文传递
Experiments and Multiscale Simulation on Enhancement Mechanism of Zirconium Alloy Microstructure and Properties by Laser Shock Peening
7
作者 Zhiyuan Liu Feng Pan +4 位作者 Xueran Deng Yujie Zhu Fei Fan Du Wang Qiao Xu 《Chinese Journal of Mechanical Engineering》 2025年第3期243-258,共16页
Zirconium alloys are critical materials in nuclear engineering due to their exceptional irradiation resistance and corrosion stability.However,prolonged exposure to extreme operational environments,including a high ra... Zirconium alloys are critical materials in nuclear engineering due to their exceptional irradiation resistance and corrosion stability.However,prolonged exposure to extreme operational environments,including a high radiation,mechanical stress,and corrosive media,induces surface degradation mechanisms including stress corrosion cracking and erosion from impurity particle impacts,necessitating advanced surface treatments to improve hardness and corrosion resistance.We explore the application of laser shock peening(LSP)to enhance the surface properties of the Zr4 alloy.Experimental analyses reveal substantial microstructural modifications upon the LSP.The surface grain refinement achieved a maximum reduction of 52.7%in average grain size(from 22.88 to 10.8μm^(2)),accompanied by an increase of 59%in hardness(204 to 326 HV).Additionally,a compressive residual stress layer(approximately-100 MPa)was generated on the treated surface,which reduces the risk of stress corrosion cracking.To elucidate the mechanistic basis of these improvements,a multiscale computational framework was developed,integrating finite-element models for macroscale stress field evolution and molecular dynamics simulations for nanoscale dislocation dynamics.By incorporating the strain rate as a critical variable,this framework bridges microstructure evolution with macroscopic mechanical enhancements.The simulations not only elucidated the dynamic interplay between shockwave-induced plastic deformation and property improvements but also exhibited a good consistency with experimental residual stress profiles.Notably,we propose the application of strain rate-driven multiscale modeling in LSP research for Zr alloys,providing a predictive method to optimize laser parameters for a tailored surface strengthening.This study not only confirms that LSP is a feasible strategy capable of effectively enhancing the comprehensive surface properties of Zr alloys and extending their service life in nuclear environments,but also provides a reliable simulation methodology in the field of laser surface engineering of alloy materials. 展开更多
关键词 Zirconium alloy MICROSTRUCTURE Mechanical properties Laser shock peening Multiscale simulation
在线阅读 下载PDF
Microstructure Evolution and Residual Stress Redistribution in Selective Laser Melted TA15 Titanium Alloy Under Severe Shot Peening Treatment
8
作者 Ang Yin Wenbo Li +2 位作者 Chengxi Wang Vincent Ji Chuanhai Jiang 《Acta Metallurgica Sinica(English Letters)》 2025年第11期1953-1964,共12页
A gradient nanostructured layer was fabricated on the surface of TA15(Ti-6Al-2Zr-1Mo-1V)alloy(produced by selective laser melting)using severe shot peening(SSP).This study focuses on the evolution of the microstructur... A gradient nanostructured layer was fabricated on the surface of TA15(Ti-6Al-2Zr-1Mo-1V)alloy(produced by selective laser melting)using severe shot peening(SSP).This study focuses on the evolution of the microstructure and the mechanism of grain refinement in TA15 titanium alloy during SSP treatment.Transmission electron microscopyand Rietveld refinement methods were employed.The residual stress and microhardness variations with depth were also characterized.The results show:(1)At the initial stage of deformation,plastic deformation is primarily accommodated through twinning and dislocation slip.(2)As the strain increases,twinning disappears,and dislocations interact to form tangles.Some dislocations annihilate and rearrange into subgrain boundaries,subdividing the original grains into subgrains.(3)With continued dislocation activity,the subgrain size decreases until nanocrystals are formed through the dynamic rotational recrystallization.SSP introduced compressive residual stress(CRS)in the near-surface layer of the material,with the maximum CRS of approximately−1141 MPa observed in the subsurface layer.It also induced work hardening,increasing the surface hardness to approximately 479 HV.However,the surface roughness increases,leading to a slight deterioration in surface quality. 展开更多
关键词 Severe shot peening Selective laser melting TA15 Residual stress Gradient nanostructured layer Microstructure
原文传递
Evidence of microstructural evolution linked to non-monotonic distribution of micromechanical properties induced by shot peening
9
作者 Guoxin Lu Qiang Wang +2 位作者 Bonnie Attard Huhu Su Shijian Zheng 《Journal of Materials Science & Technology》 2025年第4期238-245,共8页
The residual stress field induced by surface strengthening processes such as mechanical shot peening and other forms of plastic deformation does not generally exhibit a simple“monotonic”distribution trend.Some resea... The residual stress field induced by surface strengthening processes such as mechanical shot peening and other forms of plastic deformation does not generally exhibit a simple“monotonic”distribution trend.Some researchers have analyzed this fact from a mechanical perspective based on Hertz theory.However,the micro/nano-scale microstructural changes corresponding to the distribution of residual stress fields still appear to be lacking.In this study,we focused on a widely used material in aviation manufacturing,namely nickel-based superalloy GH4169,as our experimental material.We subjected GH4169 alloy to me-chanical strengthening treatment using a shot peening intensity of 0.25 mmA,followed by quantitative testing of micromechanical performance indicators such as microhardness and residual stress.To thoroughly investigate the relationship between micromechanical properties and microstructure changes,we utilized transmission electron microscopy(TEM)to observe and analyze shot-peened materials at different depths.Our findings revealed that the most severe microstructural distortion induced by mechanical shot peening in GH4169 alloy was likely to occur within a depth range of 25 to 75μm.This observation aligns with the actual phenomenon that the maximum microhardness and maximum residual compressive stress did not manifest on the outermost surface of the material.By presenting a detailed analysis of deformation defects such as dislocations,stacking faults,and twinning in different depths of mechan-ically strengthened layers,our study contributes to a deeper understanding and practical application of post-processing technologies based on plastic deformation. 展开更多
关键词 Mechanical shot peening Surface strengthening Residual stress MICROSTRUCTURE
原文传递
Influence of laser shock peening on microstructure and high-temperature oxidation resistance of Ti45Al8Nb alloy fabricated via laser melting deposition
10
作者 Lu-lu JIANG Liang LAN +6 位作者 Cheng-yan BAI Ru-yi XIN Shuang GAO Hao-yu WANG Bo HE Chao-yue CHEN Guo-xin LU 《Transactions of Nonferrous Metals Society of China》 2025年第1期157-168,共12页
Laser shock peening(LSP)was used to enhance the high-temperature oxidation resistance of laser melting deposited Ti45Al8Nb alloy.The microstructure and high-temperature oxidation behavior of the as-deposited Ti45Al8Nb... Laser shock peening(LSP)was used to enhance the high-temperature oxidation resistance of laser melting deposited Ti45Al8Nb alloy.The microstructure and high-temperature oxidation behavior of the as-deposited Ti45Al8Nb alloy before and after LSP were investigated by scanning electron microscopy,X-ray diffraction,and electron backscatter diffraction.The results indicated that the rate of mass gain in the as-deposited sample after LSP exhibited a decrease when exposed to an oxidation temperature of 900℃,implying that LSP-treated samples exhibited superior oxidation resistance at high temperatures.A gradient structure with a fine-grain layer,a deformed-grain layer,and a coarse-grain layer was formed in the LSP-treated sample,which facilitated the diffusion of the Al atom during oxidation,leading to the formation of a dense Al_(2)O_(3)layer on the surface.The mechanism of improvement in the oxidation resistance of the as-deposited Ti45Al8Nb alloy via LSP was discussed. 展开更多
关键词 TiAl alloy laser melting deposition laser shock peening additive manufacturing oxidation resistance
在线阅读 下载PDF
Improved surface integrity in Inconel 718 using small diameter hammer peening tools
11
作者 Aitor MADARIAGA Gorka ORTIZ-DE-ZARATE Pedro JoséARRAZOLA 《Chinese Journal of Aeronautics》 2025年第7期608-626,共19页
Machine Hammer Peening(MHP)is an emergent treatment that induces high compressive Residual Stresses(RS)which can enhance the in-service performance of components.This paper studies the use of small diameter MHP tools ... Machine Hammer Peening(MHP)is an emergent treatment that induces high compressive Residual Stresses(RS)which can enhance the in-service performance of components.This paper studies the use of small diameter MHP tools to improve the Surface Integrity(SI)of the nickel-based alloy Inconel 718 used in critical aero-engine components.Complementarily,the relaxation of RS is analyzed by in-situ annealing tests at in-service temperature combined with X-ray diffraction measurement.For this purpose,age hardened Inconel 718 discs were turned as reference condition,and then a pneumatic MHP tool was used under different conditions:two tool diameters(4 mm and 12 mm),feed rates(2.5 m/min and 5.0 m/min)and stepover distances(0.07 mm and 0.35 mm).Subsequently,surface topography characterization,RS measurements,nanoindentation tests,and microstructural observations were conducted.The in-situ annealing tests were done in the X-ray diffractometer at 550°C for exposure periods from 0 to 20 h.The results demonstrate that 4 mm diameter tools generate smooth surfaces and induce significant compressive RS within a0.5 mm thick layer.Residual stresses are relaxed,but they remain compressive even after a long thermal exposure.The microstructure of the surface layer(<10–15μm)was affected by the preceding turning operation,but importantly,MHP did not induce additional damage. 展开更多
关键词 In-situ tests Machine hammer peening Nickel-based alloy Residual stresses Surface integrity X-ray diffraction
原文传递
Gradient nanostructure enabled exceptional fretting fatigue properties of Inconel 718 superalloy through submerged abrasive waterjet peening
12
作者 Shulei YAO Yuxin CHI +8 位作者 Xianhao ZHU Kaiming ZHANG Tiwen LU Kaishang LI Ning WANG Chengcheng ZHANG Shuang LIU Xiancheng ZHANG Shantung TU 《Chinese Journal of Aeronautics》 2025年第1期586-606,共21页
Submerged Abrasive Waterjet Peening(SAWJP)shows great application potential in augmenting the fatigue properties of metallic parts.Thus,the present work aims to investigate the influence of SAWJP on the Surface Integr... Submerged Abrasive Waterjet Peening(SAWJP)shows great application potential in augmenting the fatigue properties of metallic parts.Thus,the present work aims to investigate the influence of SAWJP on the Surface Integrity(SI)and Fretting Fatigue(FF)properties of Inconel 718(IN718)superalloy and illustrate the microstructural evolution,FF life improvement,and fretting wear mechanism.First,the SI of the IN718 specimen was examined following treatment via SAWJP.Results showed that the specimen subjected to SAWJP formed a total plastic deformation layer of 56μm.The maximum microhardness and Compressive Residual Stress(CRS)measured across the depth of the SAWJP-treated specimens exhibited an increase in values ranging between 522 HV and 541 HV and 1171–1380 MPa,respectively.The FF test results of the specimen before and after SAWJP treatment at ambient temperatures indicated that the FF life of the SAWJP-treated specimen surpassed that of the as-received specimen by a factor of 2.81.The examination of the FF fracture,contact surface,and crack propagation behavior revealed the crucial factors contributing to the enhanced FF resistance of the IN718 specimen,including the gradient nanostructure characterized by ultra-refined grains,substantial CRS,and elevated microhardness,which were all induced by the SAWJP treatment. 展开更多
关键词 Submerged abrasive waterjet peening Inconel 718 superalloy Microstructural evolution Surface integrity Fretting fatigue
原文传递
Effect of Ultrasonic Shot Peening on the Corrosion Resistance and Antibacterial Properties of 304 Cu-Bearing Stainless Steel
13
作者 Yuntian Lou Shengyu He +5 位作者 Xudong Chen Weiwei Chang Hao Zhang Jingzhi Yang Hongchang Qian Dawei Zhang 《Acta Metallurgica Sinica(English Letters)》 2025年第8期1371-1384,共14页
This study investigated the effects of ultrasonic shot peening(USSP)treatment at various durations on the corrosion resistance and antibacterial properties of 304 Cu-bearing stainless steel(304-Cu SS).The results show... This study investigated the effects of ultrasonic shot peening(USSP)treatment at various durations on the corrosion resistance and antibacterial properties of 304 Cu-bearing stainless steel(304-Cu SS).The results showed that USSP treatment refined the surface microstructure,enhancing hardness,wear resistance,and dislocation density.With longer treatment time,grain size decreased,and martensitic phase formation was promoted,improving mechanical properties.However,extended USSP treatment induced internal stresses,negatively affecting corrosion resistance.Cu addition to 304 stainless steel resulted in large Cu-rich phases,leading to uneven elemental distribution and reduced corrosion resistance.USSP effectively fragmented these phases,promoting a uniform distribution and enhancing the formation of a dense passive film,with the 304-Cu-5 min coupon showing the best corrosion performance.Cu also significantly improved antibacterial properties,demonstrating strong activity against Eescherichia coli and Staphylococcus aureus after 72 h.Overall,USSP treatment optimized both corrosion resistance and antibacterial performance,with the 5 min treatment providing the best balance. 展开更多
关键词 Ultrasonic shot peening Cu-bearing stainless steel Corrosion resistance Antibacterial ability
原文传递
Effect of Aluminizing and Laser Shock Peening Treatments on the High-Temperature Oxidation Resistance of AISI 321 Stainless Steel for Solar Thermal Power Heat Exchanger
14
作者 Wei Li Wenyang Qin +12 位作者 Dapeng Jiang Guowei Bo Song Ni Hui Chen Yilin Zhao Weiying Huang Xulong Peng Jianjun He Yanjie Ren Cong Li Libo Zhou Shengde Zhang Jian Chen 《Chinese Journal of Mechanical Engineering》 2025年第2期193-214,共22页
The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments... The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments were employed to improve the high-temperature oxidation resistance of AISI 321 stainless steel at 620°C.These two treatments decreased the oxidation rate of AISI 321 steel.Specifically,the optimal oxidation resistance was observed in aluminized steel before oxidation for 144 h owing to the increased entropy of the LSP-treated specimen.After 144 h,LSP-treated steel achieved the best oxidation resistance because of the formation of a protectiveα-Al2O3film.Moreover,the large amount of subgrain boundaries formed on the aluminized layer of the LSP-treated samples could act as short-circuit paths for the outward diffusion of Al,facilitating the rapid nucleation ofα-Al2O3.Meanwhile,the aluminized layer could isolate the contact between the oxidation environment and matrix,thereby decreasing the oxidation rate.Furthermore,the minimum oxidation parabolic constant was calculated for LSP-treated steel(6.45787×10^(-14)),which was 69.18%and 36.36%that of aluminized and 321 steel,respectively,during the entire oxidation process.Therefore,the combination of aluminizing and LSP treatments can improve the high-temperature oxidation resistance of 321 stainless steel,providing a new idea for its surface treatment to achieve a long service life at high temperatures. 展开更多
关键词 AISI 321 stainless steel ALUMINIZING Laser shock peening Oxidation film High-temperature oxidation resistance
在线阅读 下载PDF
Fretting Wear Performance of CrN Coating after Laser Shock Peening
15
作者 Chuangming Ning Ke Li +4 位作者 Guocan Tang Yujie Xie Lunlin Shang Guangan Zhang Zhenbing Cai 《Chinese Journal of Mechanical Engineering》 2025年第5期508-523,共16页
CrN coatings are also employed to protect structural materials in nuclear power plants.It should be noted that the preparation process utilizing physical vapor deposition(PVD)techniques inevitably entails certain defe... CrN coatings are also employed to protect structural materials in nuclear power plants.It should be noted that the preparation process utilizing physical vapor deposition(PVD)techniques inevitably entails certain defects.Such a phenomenon will affect the protective properties of CrN coatings.In this study,low-energy laser shock peening(LE-LSP)with varying energies was employed for the post-treatment of CrN coatings.The effects of different laser energy LE-LSP treatments on the surface morphology,crystal structure and fretting wear properties of CrN coatings were investigated.The results revealed that the surface of the CrN coatings subjected to LE-LSP underwent significant plastic deformation and displayed a regular texture structure.The surface roughness and Vickers hardness of the CrN coatings exhibit a significant increase.Under a laser energy of 150 mJ,the surface hardness exhibits a maximum increase of 2.35 times.The residual stress of CrN coatings diminishes with the augmentation of laser energy due to the formation of surface cracks.Following LE-LSP treatment,the columnar crystal structure of the CrN coating was disrupted and fragmented into fine grains due to the impact force.As the laser energy augments,the fragmented CrN grains undergo further compaction.During fretting wear,all specimens were in the gross slip regime.The wear mechanism of the CrN coating,120 and 150 mJ specimens are primarily dominated by abrasive wear,and accompanied by oxidative wear.For specimens treated with 30,60 and 90 mJ,the predominant wear mechanisms are mainly peeling and abrasive wear,and accompanied by oxidative wear.Both the wear area and wear volume initially increase and then decrease as the laser energy increases.The 150 mJ specimen exhibited the smallest wear area and wear volume of all tested specimens.The wear volume was reduced by 76.32%when compared to that of the CrN coating.This study complements the existing research on PVD/LSP composite strengthening techniques.Introduces a novel post-treatment methodology for PVD coatings.Provides certain theoretical support for subsequent PVD/LSP composite strengthening. 展开更多
关键词 CrN coating Low energy laser shock peening Fretting wear Abrasive wear
在线阅读 下载PDF
Surface Quality Improvement of Aerospace Material of Inconel 718 by GOV(Flow Peening)Process
16
作者 BurakŞahin İbrahim Göv +2 位作者 Mustafa Sait Koca Murat Kalak Kürşad Göv 《Chinese Journal of Mechanical Engineering》 2025年第1期273-294,共22页
Inconel 718 superalloy has extensive applications in a variety of industries such as the moulding,aerospace and medical due to its excellent mechanical features such as poor thermal conductivity,high strength at high ... Inconel 718 superalloy has extensive applications in a variety of industries such as the moulding,aerospace and medical due to its excellent mechanical features such as poor thermal conductivity,high strength at high temperatures and corrosion resistance.However,it is very difficult to process by traditional machining and finishing methods.Abrasive based finishing process is one of non-traditional finishing method applied to complex surfaces.Shot peening process is one of the surface treatment processes mostly applied to improve the surface strength.The superior advantages of these two processes are combined into one process.This newly developed and patented process is called as GOV process.In this study,the effects of GOV process parameters(number of cycles,steel ball size,media concentration)on the surface quality of Inconel 718 already pre-processed by wire electric discharge machining are investigated.The performance parameters are identified as surface roughness,material removal and white layer thickness.Surface finishing with the GOV process improves the surface roughness,Ra value by decreasing from 2.63μm to 0.46μm by removing micro-level chips up to 10.7 mg which is supported by SEM images.White layer formed due to nature of EDM process is completely removed from specimen surface. 展开更多
关键词 Flow peening(GOV)process Surface finishing Abrasive flow machining Inconel 718
在线阅读 下载PDF
Effect of wet shot peening on Ti-6Al-4V alloy treated by ceramic beads 被引量:10
17
作者 陈国清 焦岩 +3 位作者 田唐永 张新华 李志强 周文龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期690-696,共7页
Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigu... Ti-6Al-4V alloy was processed by wet shot peening with ceramic beads. The effects of the shot peened intensity on the microstructure, surface morphology, and residual stress were investigated. A tensile-tensile fatigue test was performed and the fracture mechanism was proposed. The results demonstrate that the surface roughness after wet shot peening is obviously lower than that after dry shot peening. With the increase of the shot peened intensity, the depth of the residual stress layer increases to 250 ktrn, and the maximum stress in this layer increases to -895 MPa. The fatigue strength also increases by 12.4% because of the wet shot peening treatment. The dislocation density of the surface layer is significantly enhanced after the wet shot peening with ceramic beads. The microstructure of the surface layer is obviously refined into ultra-fine grains. 展开更多
关键词 Ti-6Al-4V alloy wet shot peening microstructure residual stress fatigue property
在线阅读 下载PDF
Surface recrystallization of single crystal nickel-based superalloy 被引量:9
18
作者 张兵 曹雪刚 +1 位作者 刘德林 刘新灵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1286-1292,共7页
As-cast single crystal (SC) superalloy samples were shot peened and then annealed at different temperatures to investigate the effect of annealing temperature on the surface recrystallization behavior of the SC supe... As-cast single crystal (SC) superalloy samples were shot peened and then annealed at different temperatures to investigate the effect of annealing temperature on the surface recrystallization behavior of the SC superalloy. The results show that the depth of recrystallized layers increases with the increase of annealing temperature. Below 1200 °C, the recrystallization depth climbs slowly with temperature rising. Above 1200 °C, the recrystallization depth increases sharply with the rise of temperature. The morphology of recrystallized grains is significantly affected by annealing temperature. Below the γ′ solvus, cellular recrystallization may be observed. Above the γ′ solvus, recrystallization occurs through the growth of well developed recrystallized grains. In addition, the microstructure evolution of recrystallized grains at the homogenization annealing temperature was studied. It is found that recrystallized grains first nucleate in the dendritic core areas on the shot-peened surface and then grow inwards along the dendritic core areas. With the dissolution of the coarse γ′ precipitates and γ/γ′ eutectics in the interdendritic areas, the recrystallized grain boundaries move through the interdendritic areas. Finally, the fully developed grains nearly have a uniform depth. The dissolution of primary γ′ precipitates is a critical factor influencing the recrystallization behavior of SC superalloys. 展开更多
关键词 single crystal superalloy RECRYSTALLIZATION shot peening heat treatment
在线阅读 下载PDF
SURFACE CHARACTERISTICS OF 10Ni3MnCuAl STEEL BY SHOT PEENING 被引量:7
19
作者 缪宏 左敦稳 +1 位作者 王红军 汪洪峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第3期178-183,共6页
The surface of grinding 10Ni3MnCuAl steel is processed by the shot peening with different intensities. After shot peening, the metallographic structure of 10Ni3MnCuAl steel and the micro-structure on the surface layer... The surface of grinding 10Ni3MnCuAl steel is processed by the shot peening with different intensities. After shot peening, the metallographic structure of 10Ni3MnCuAl steel and the micro-structure on the surface layer are analyzed. The micro-hardness in the shot peening affected layer and the residual pressure stress are surveyed. The changes of surface quality, such as micro-hardness, metallographic structure and residual stress caused by shot peening are investigated. The result shows that shot peening can significantly improve surface quality and fatigue life of 10Ni3MnCuAl steel. The over peening effect is produced when the shot peening intensity is high, and it leads to the decrease of the fatigue life. When the optimal arc high value of shot peening is 0. 40 mm in experiments, the best surface quality is obtained and the depth of the residual stress in the precipitation-hardening layer reaches 450μm. 展开更多
关键词 shot peening surface properties residual stress over peening
在线阅读 下载PDF
PROPERTY AND THERMOSTABLITY STUDY ON TC6 TITANIUM ALLOY NANOSTRUCTURE PROCESSED BY LSP 被引量:6
20
作者 王学德 李应红 +3 位作者 李启鹏 何卫锋 聂祥樊 李玉琴 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期68-76,共9页
TC6 titanium alloy samples are processed by laser shock peening (LSP). Then, some samples are vacu- um annealed at 623 K for 10 h for the study on the thermost.ablity of the nanostructure produced by LSP. The charac... TC6 titanium alloy samples are processed by laser shock peening (LSP). Then, some samples are vacu- um annealed at 623 K for 10 h for the study on the thermost.ablity of the nanostructure produced by LSP. The characteristics of the strengthened layer and nanostructure are studied by atomic force microscopy(AFM), scan- ning electron microscope (SEM), electron backscatter diffraction(EBSD), X-ray diffraction(XRD), and transmis- sion electron microscopy(TEM) appliances, meanwhile the enhanced microhardness is tested at cross section. AFM of the processed surface indicates that the deformation is approximately uniform, and LSP slightly increases the roughness. SEM and EBSD of the strengthened cross section show that a phases are compressed to strip- shaped, a proportion of a and ~ phases is shattered to smaller phases from surface to 200 ttm in depth. The sur- face XRD shows that although there is no new produced phase during LSP, the grain size refinement and the in- troduction of lattice micro-strains lead to the broadened peak. The TEM photographs and diffraction patterns in- dicate that the shock wave provides high strain rate deformation and leads to the formation of nanocrystal. Com- pared with the samples before annealing, the dislocation density is lower and the grain-boundary is more distinct in the annealed samples, but the nanocrystal size does not grow bigger after annealing. The microhardness measurement indicates that LSP improves the microhardness of TC6 for about 12.2% on the surface, and the layer affected by LSP is about 500/~m in depth. The microhardness after annealing is 10 HVo.5 lower, but the affected depth does not change. The thermostable study shows that the strengthened layer of TC6 processed by LSP is stable at 623 K. The strengthened thermostable layer can significantly improve the fatigue resistance, wear resis- tance and stress corrosion resistance of the titanium alloy. The study results break the USA standard AMS2546 that titanium parts after LSP are subjected in subsequent processing within 589 K. 展开更多
关键词 laser shock peening(LSP) TC6 titanium alloy NANOSTRUCTURE MICROHARDNESS thermostablity
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部