Clinical diagnosis and early intervention employ pedobarometry,which analyzes gait,posture,and foot health.Athletes utilize smart insoles to track step count,distance,and other parameters to improve performance.Curren...Clinical diagnosis and early intervention employ pedobarometry,which analyzes gait,posture,and foot health.Athletes utilize smart insoles to track step count,distance,and other parameters to improve performance.Current sensor platforms are bulky and limited to indoor or clinical environments,despite the trend of developing specialized insoles for recuperation and therapy.Hence,we presented a fully flexible,typically portable,and multi-functional insole monitoring technology powered by Archimedean algorithmic spiral TENG-based power system strictly produced from biopolymers such as bacterial cellulose,conjugate-blend of polydimethylsiloxane(PDMS),poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),and more.Along with exceptional mechanical and electrical performance[current density(JSC)≈40-50μA/cm2 and power density(PD)≈500-600μW/cm2],the smart insole system exhibited good sensor-human foot interfacial analysis results,proving to be capable of biomechanical analysis of gait,posture,and many other podiatry-related conditions,albeit being soft,portable,and having compatibility potential for IoT integration.展开更多
基金the support received from the National Natural Science Foundation of China(52003191)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20221539)Science and Technology Program of Jiangsu Administration for Market Regulation(KJ2024013)National Key R&D Program(2023YFC3605800)the Program of Introducing Talents of Jiangnan University(1065219032210150).
文摘Clinical diagnosis and early intervention employ pedobarometry,which analyzes gait,posture,and foot health.Athletes utilize smart insoles to track step count,distance,and other parameters to improve performance.Current sensor platforms are bulky and limited to indoor or clinical environments,despite the trend of developing specialized insoles for recuperation and therapy.Hence,we presented a fully flexible,typically portable,and multi-functional insole monitoring technology powered by Archimedean algorithmic spiral TENG-based power system strictly produced from biopolymers such as bacterial cellulose,conjugate-blend of polydimethylsiloxane(PDMS),poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),and more.Along with exceptional mechanical and electrical performance[current density(JSC)≈40-50μA/cm2 and power density(PD)≈500-600μW/cm2],the smart insole system exhibited good sensor-human foot interfacial analysis results,proving to be capable of biomechanical analysis of gait,posture,and many other podiatry-related conditions,albeit being soft,portable,and having compatibility potential for IoT integration.