This study investigates pedestrian safety perception in Ho Chi Minh City under mixed traffic conditions by evaluating comfort,crash risk,and injury risk perceptions in two scenarios:walking along and crossing multilan...This study investigates pedestrian safety perception in Ho Chi Minh City under mixed traffic conditions by evaluating comfort,crash risk,and injury risk perceptions in two scenarios:walking along and crossing multilane roads.Using visual experiments with 510 participants,the study identifies how sidewalk quality,obstructions,crossing infrastructure,and traffic conditions shape pedestrian experiences.Statistical modeling reveals that protected sidewalks and comprehensive crossing features significantly enhance perceived safety and comfort.Findings emphasize the need for improved pedestrian infrastructure and traffic calming in dense urban settings to support safer,more inclusive mobility under mixed traffic conditions like Vietnam.展开更多
Due to multi-scale variations and occlusion problems,accurate traffic road pedestrian detection faces great challenges.This paper proposes an improved pedestrian detection method called Multi Scales Attention-YOLOv5x(...Due to multi-scale variations and occlusion problems,accurate traffic road pedestrian detection faces great challenges.This paper proposes an improved pedestrian detection method called Multi Scales Attention-YOLOv5x(MSA-YOLOv5x)based on the YOLOv5x framework.Firstly,by replacing the first convolutional operation of the backbone network with the Focus module,this method expands the number of image input channels to enhance feature expressiveness.Secondly,we construct C3_CBAM module instead of the original C3 module for better feature fusion.In this way,the learning process could achieve more multi-scale features and occluded pedestrian target features through channel attention and spatial attention.Additionally,a new feature pyramid detection layer and a new detection channel are embedded in the feature fusion part for enhancing multi-scale pedestrian detection accuracy.Compared with the baseline methods,experimental results on a public dataset demonstrate that the proposed method achieves optimal detection accuracy for traffic road pedestrian detection.展开更多
Pedestrian detection has been a hot spot in computer vision over the past decades due to the wide spectrum of promising applications,and the major challenge is false positives that occur during pedestrian detection.Th...Pedestrian detection has been a hot spot in computer vision over the past decades due to the wide spectrum of promising applications,and the major challenge is false positives that occur during pedestrian detection.The emergence of various Convolutional Neural Network-based detection strategies substantially enhances pedestrian detection accuracy but still does not solve this problem well.This paper deeply analyzes the detection framework of the two-stage CNN detection methods and finds out false positives in detection results are due to its training strategy misclassifying some false proposals,thus weakening the classification capability of the following subnetwork and hardly suppressing false ones.To solve this problem,this paper proposes a pedestrian-sensitive training algorithm to help two-stage CNN detection methods effectively learn to distinguish the pedestrian and non-pedestrian samples and suppress the false positives in the final detection results.The core of the proposed algorithm is to redesign the training proposal generating scheme for the two-stage CNN detection methods,which can avoid a certain number of false ones that mislead its training process.With the help of the proposed algorithm,the detection accuracy of the MetroNext,a smaller and more accurate metro passenger detector,is further improved,which further decreases false ones in its metro passenger detection results.Based on various challenging benchmark datasets,experiment results have demonstrated that the feasibility of the proposed algorithm is effective in improving pedestrian detection accuracy by removing false positives.Compared with the existing state-of-the-art detection networks,PSTNet demonstrates better overall prediction performance in accuracy,total number of parameters,and inference time;thus,it can become a practical solution for hunting pedestrians on various hardware platforms,especially for mobile and edge devices.展开更多
This study presents an interpretable surrogate framework for predicting pedestrian-leg injury severity that integrates high-fidelity finite-element(FE)simulations with a TabNet-based deep-learning model.We generated a...This study presents an interpretable surrogate framework for predicting pedestrian-leg injury severity that integrates high-fidelity finite-element(FE)simulations with a TabNet-based deep-learning model.We generated a parametric dataset of 3000 impact scenarios-covering ten vehicle types and various legform impactors-using automated FE runs configured via Latin hypercube sampling.After preprocessing and one-hot encoding of categorical features,we trained TabNet alongside Support-Vector Regression,Random Forest,and Decision-Tree ensembles.All models underwent hyperparameter tuning via Optuna’s Bayesian optimization coupled with repeated four-fold crossvalidation(20 trials per model).TabNet achieved the best balance of explanatory power and predictive accuracy,with an average R^(2)=0.94±0.01 and RMSE=0.14±0.02.On an independent test set,85%,88%,and 90%of predictions for tibial acceleration,knee-flexion angle,and shear displacement,respectively,fell within±20%of true peaks.SHAPbased analyses confirm that collision-point location and bumper geometry dominate injury outcomes.These results demonstrate TabNet’s capacity to deliver rapid,robust,and explainable injury predictions,offering actionable design insights for vehicle front-end optimization and regulatory assessment in early development stages.展开更多
Visual indoor positioning methods have the potential for widespread application in complex large-scale indoor environments,such as shopping centers and hospitals.However,during the visual positioning process,passing p...Visual indoor positioning methods have the potential for widespread application in complex large-scale indoor environments,such as shopping centers and hospitals.However,during the visual positioning process,passing pedestrians may cause occlusion in the visual image,leading to large deviations in the visual positioning results.Aiming at the problem of feature occlusion in visual images caused by pedestrians,this paper proposes a visual indoor positioning system that combines semantic segmentation and image restoration.The paper proposes a method called the fast image segmentation repair(FISR),which segments and rapidly repairs the selected image to eliminate the influence of pedestrians on image feature extraction and improve positioning accuracy.In addition,the paper proposes a method called local feature based bag-of-visual-words combined with high-level semantic information(LFHS)for image retrieval.LFHS uses both local features and high-level semantic information to obtain more comprehensive and accurate representations of image features.This approach improves the accuracy and robustness of image retrieval by harnessing the combined power of local features and high-level semantic information.Experimental results show that the proposed positioning method reduces the average positioning error by 0.35 m compared with NetVLAD and 0.49 m compared with MixVPR,significantly improving the performance of visual positioning technology.展开更多
When arranging the pedestrian infrastructure,one of the most important components that make a tangible contribution to the safety of pedestrians is to organize the safe road crossing.In cities,pedestrians often cross ...When arranging the pedestrian infrastructure,one of the most important components that make a tangible contribution to the safety of pedestrians is to organize the safe road crossing.In cities,pedestrians often cross a road in the wrong place due to established routes or inadequate location of crosswalks.Accidents with the participation of pedestrians who crossed the road neglecting the traffic rules,make up a significant part of the total amount of road accidents.In this paper,we propose a method that allows us,on the basis of the results of a computer simulation of pedestrian traffic,to obtain predicted routes for road crossing and to indicate optimal locations for crosswalks that take into account established pedestrian routes and increase their safety.The work describes an extension for the existing AntRoadPlanner simulation algorithm,which searches for and clusters points where pedestrians cross the roadway and suggests locations for new crosswalks.This method was tested on the basis of a comparative simulation of several territories before and after its application,as well as on the basis of a field study of the territories.The developed algorithm can also be used to search for other potentially dangerous places for pedestrians on plans of districts,for example,crossings in places with limited visibility.展开更多
The pedestrian timing at signalized intersections is studied aiming at the problems of the inconsistency of the vehicular and pedestrian timing requirements and the insufficiency of pedestrian clearance. Based on the ...The pedestrian timing at signalized intersections is studied aiming at the problems of the inconsistency of the vehicular and pedestrian timing requirements and the insufficiency of pedestrian clearance. Based on the formulae of WALK and flashing DON'T WALK (FDW) in the highway capacity manual (HCM), the relationship between pedestrian signal indications and vehicular signal indications is discussed using the theory of traffic flow. Then, methods of pedestrian timing for different cases are established, particularly the methods of the pedestrian green adjustment. Ways of pedestrian crossing are analyzed for roadways with different forms and widths of the median island. The sampling values of calculation parameters are studied, and the recommended formulae of pedestrian timing for different conditions are presented.展开更多
In view of the deficiencies in landscaping of commercial pedestrian streets,this study elaborated the functions of plant landscapes,such as improving the street environment,beautifying the street,creating spaces of di...In view of the deficiencies in landscaping of commercial pedestrian streets,this study elaborated the functions of plant landscapes,such as improving the street environment,beautifying the street,creating spaces of diversified uses,and attracting more pedestrians.On the basis of this,plant landscape design principles and techniques for commercial pedestrian streets were put forward,by combining with successful cases,relevant design suggestions were given for particular streets or environments,so as to provide references for the landscaping of commercial pedestrian streets.展开更多
The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability a...The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability and pedestrian safety.Therefore,this study proposes a fuzzy cellular automata(FCA)model to explore the safety and efficiency impacts of pedestrian-vehicle conflicts at a two-lane roundabout.To reason the decision-making process of individual drivers before crosswalks,membership functions in the fuzzy inference system were calibrated with field data conducted in Changsha,China.Using specific indicators of efficiency and safety performance,it was shown that circulating vehicles can move smoothly in low traffic flow,but the roundabout system is prone to the traffic congestion if traffic flow reaches to a certain level.Also,the high yielding rate of drivers has a negative impact on the traffic efficiency but can improve pedestrian safety.Furthermore,a pedestrian restriction measure was deduced for the roundabout crosswalk from the FCA model and national guideline of setting traffic lights.展开更多
The Multi-dimensional Pedestrian System( MPS) is an integral part of the new campus of University of Macao. It observes the principle of "pedestrian first " and features a pedestrian-vehicle dividing system....The Multi-dimensional Pedestrian System( MPS) is an integral part of the new campus of University of Macao. It observes the principle of "pedestrian first " and features a pedestrian-vehicle dividing system.Based on a comprehensive analysis of the location,climate,ecology and other factors of the project site,the conception of the idea of MPS and the related researches are illustrated. The transportation features of the MPS,as summarized,include multi-dimensions,short-distance and weather-resistance. Its features for the sake of livability include integration of nature, respect for the environment and sharing of landscape. Upon the completion of the project, the effects on its users were tested. Finally, some constructive rules for the construction of similar campus pedestrian systems were proposed.展开更多
A new heuristics model based on the Voronoi diagram is presented to simulate pedestrian dynamics with the noncrowded state, in which these mechanisms of preference demand evading and surpassing, microscopic anti-deadl...A new heuristics model based on the Voronoi diagram is presented to simulate pedestrian dynamics with the noncrowded state, in which these mechanisms of preference demand evading and surpassing, microscopic anti-deadlock, and site-fine-tuning are considered. The preference demand describes the willingness determination of detouring or following other pedestrians. In the evading and surpassing mechanisms, in order to achieve a balance between avoiding conflicts and minimizing detour distances, a new pair of concepts: "allow-areas and denial-areas" are introduced to divide the feasible region for pedestrians detour behaviors, in which the direction and magnitude of detour velocity are determined.A microscopic anti-deadlock mechanism is inserted to avoid deadlock problem of the counter-directional pedestrian. A site-fine-tuning mechanism is introduced to describe the behavior of avoiding getting too close to the neighbors in pedestrian movement. The presented model is verified through multiple scenarios, including the uni-or bi-direction pedestrian flow in the corridor without obstacles, the uni-direction pedestrian flow in the corridor with obstacles, and the pedestrian evacuation from a room with single-exit. The simulation results show that the velocity–density relationship is consistent with empirical data. Some self-organizing phenomena, such as lanes formation and arching are observed in the simulation.When pedestrians detour an obstacle, the avoiding area before the obstacle and the unoccupied area after the obstacle can be observed. When pedestrians evacuate through a bottleneck without panic, the fan-shaped crowd can be found, which is consistent with the actual observation. It is also found that the behavior of following others in an orderly manner is more conducive to the improvement of the overall movement efficiency when the crowd moves in a limited space.展开更多
For studying the law of pedestrian cross-time in the signalized intersection, based on gap theory, a probability chorological discipline model of crossing pedestrians is built based on the observed data. Moreover, the...For studying the law of pedestrian cross-time in the signalized intersection, based on gap theory, a probability chorological discipline model of crossing pedestrians is built based on the observed data. Moreover, the number of pedestrians passing through in a critical gap is estimated under different conditions by three models. Then the models of pedestrian crosswalk average time, the 85th percentile pedestrian cross-time and the 90th percentile pedestrian cross-time are deduced. By quantitative analyses and the exemplification of the models, the main correlative factors acting on pedestrian cross-time are found, including the length of the crosswalk, the probability of the time-headway being less than the critical gap and the number of the turned motor vehicles in the intersection. The results indicate that the estimated errors of the models are less than 5%.展开更多
Pedestrianisation is seen as a necessity in many cities of the world.Streets are main representatives of the city image,which have its reflection of its home country.Haileselassie Street in Piazza is shaped after the ...Pedestrianisation is seen as a necessity in many cities of the world.Streets are main representatives of the city image,which have its reflection of its home country.Haileselassie Street in Piazza is shaped after the short-term confrontations of the Italians that profoundly affected the entire downtown.The prideful victory of Ethiopia is an important landmark of the urban fabric in Piazza,Addis Ababa.The Haileselassie Street lacks its vista and approach it deserves.Therefore,this paper introduces the scheme of pedestrianisation in Haileselassie Street by reclaiming the street for the people in order to remember the history.The pertinent questions this article seeks to address are:the factors that aim to transform the street into a‘pedestrian’street only?Which aspects of the pedestrianisation should be considered to improve the quality of the Haileselassie Street?Moreover,this article recommends the strategic proposal to improve the quality of the pedestrians in urban space.展开更多
The increasing availability of ubiquitous sensor data on the built environment holds great potential for a new generation of travel and mobility research.Bluetooth technology,for example,is already vastly used in vehi...The increasing availability of ubiquitous sensor data on the built environment holds great potential for a new generation of travel and mobility research.Bluetooth technology,for example,is already vastly used in vehicular transportation management solutions and services.Current studies discuss the potential of this emerging technology for pedestrian mobility research,but it has yet to be examined in a large urban setting.One of the main problems is detecting pedestrians from Bluetooth records since their behavior and movement patterns share similarities with other urban transportation modes.This study aims to accurately detect pedestrians using a network of 65 Bluetooth detectors located in Tel-Aviv,Israel,which record on average over 60,000 unique daily Bluetooth Media-Access-Control addresses.We propose a detection methodology that includes system calibration,effective travel time calculation,and classification by velocity that takes into consideration the probability of vehicular traffic jams.An evaluation of the proposed methodology presents a promising pedestrian detection accuracy rate of 89%.We showcase the results of pedestrian traffic analysis,together with a discussion on the data analysis challenges and limitations.To the best of our knowledge,this work is the first to analyze pedestrian records detection from a Bluetooth network employed in a dynamic urban environment setting.展开更多
At a typical signalized intersection, the pedestrian phase consists of a walk interval and a change/clearance interval, during which pedestrians are given the right of way. The walk interval is intended to allow pedes...At a typical signalized intersection, the pedestrian phase consists of a walk interval and a change/clearance interval, during which pedestrians are given the right of way. The walk interval is intended to allow pedestrians to exit the curb ramp and enter the crosswalk. The clearance interval will enable them to cross entirely to the other side of the road. Unfortunately, the literature is quite vague on how long the walk interval should be and provides values ranging from 4 to 15 seconds based on qualitative pedestrian demand ranging from Negligible to High. To provide some quantitative guidance for walk interval selection, this paper reports on a study that collected 1,500 pedestrian movement data from 12 signalized intersections with varying pedestrian demand, pedestrian storage areas, and pedestrian push-button locations. The data was used to propose a quantitative model for designers to select the appropriate walk interval. Specifically, this paper seeks to add values to the Traffic Operations Handbook walk-interval guidelines as to how many pedestrians are considered “negligible volume” and can be accommodated by the 4 second minimum time, how many pedestrians are considered “typical volume” and require 7 to 10 seconds, and how many pedestrians are considered “high volume” and require 10 to 15 seconds, or perhaps longer. In addition to examining pedestrian demand, this paper looks at the impact of storage areas and pedestrian push-button location on pedestrian start-up time and, consequently, an appropriate walk interval.展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
With the development of business management model,commercial spaces have required more and more supporting services from the city.However,although commercial pedestrian streets lying on historical blocks have advantag...With the development of business management model,commercial spaces have required more and more supporting services from the city.However,although commercial pedestrian streets lying on historical blocks have advantages in geological culture,they are not able to organically combine with the city environment,landscape creation on such streets have more and more problems.Taking the Five Horses Street in Wenzhou City for an example,this study through field investigation and document consultation proposes the principles and approaches of creating landscapes in historical commercial pedestrian streets,to provide support for the rational utilization of such streets.展开更多
Simulation of pedestrians’behavior in the hub can help decision-makers to formulate better evacuation strategies.With this aim,this study develops an improved cellular automata model considering pedestrian’s mass-fo...Simulation of pedestrians’behavior in the hub can help decision-makers to formulate better evacuation strategies.With this aim,this study develops an improved cellular automata model considering pedestrian’s mass-following psychology and competitive awareness,and based on this model,pedestrian’s evacuation process from the channel of the hub with two exits is simulated.Moreover,dynamic guidance information,e.g.,the realtime congestion situation of the evacuation routes,plays an important role during pedestrian evacuation processes in a hub,as the evaluation routes can be adjusted based on this information.That is,the congestion situation during the evaluation can be improved.Thus,dynamic signs are incorporated into the proposed model to study the influence of dynamic guidance information on pedestrian evacuation behavior.In simulation experiments,the influence of two parameters,namely the proportion of pedestrians unfamiliar with the hub and update interval of dynamic signs,on pedestrian evacuation behavior is studied.Results show that dynamic guidance information can improve the efficiency of pedestrian evacuation.In particular,the higher the proportion of pedestrians unfamiliar with the hub is,the more obvious the effect of dynamic guidance information is.Besides,different proportions of pedestrians unfamiliar with the hub lead to different update intervals of dynamic signs.Finally,the results of this study can provide some implications to the practical hub operation and evacuation,e.g.,to standardize the order of evacuation routes and improve the information service level in the hub.展开更多
With the development of micro-electromechanical systems(MEMS), miniaturized, low-power and low-cost inertial measurement units(IMUs) have been widely integrated into mobile terminals and smart wearable devices. This p...With the development of micro-electromechanical systems(MEMS), miniaturized, low-power and low-cost inertial measurement units(IMUs) have been widely integrated into mobile terminals and smart wearable devices. This provides the prospect of a broad application for the inertial sensor-based pedestrian dead-reckoning(IPDR) systems. Especially for indoor navigation and indoor positioning, the IPDR systems have many unique advantages that other methods do not have. At present, a large number of technologies and methods for IPDR systems are proposed. In this paper, we have analyzed and outlined the IPDR systems based on about 80 documents in the field of IPDR in recent years. The article is structured in the form of an introduction-elucidation-conclusion framework. First, we proposed a general framework to explore the structure of an IPDR system. Then, according to this framework, the IPDR system was divided into six relatively independent sub-problems, which were discussed and summarized separately. Finally, we proposed a graph structure of IPDR systems, and a sub-directed graph, formed by selecting a combined path from the start node to the end node, skillfully constitutes a technical route of one specific IPDR system. At the end of the article, we summarized some key issues that need to be resolved before the IPDR systems are widely used.展开更多
Lower limb injures are frequently observed in passenger car traffic accidents.Previous studies of the injuries focus on long bone fractures by using either cadaver component tests or simulations of the long bone kinem...Lower limb injures are frequently observed in passenger car traffic accidents.Previous studies of the injuries focus on long bone fractures by using either cadaver component tests or simulations of the long bone kinematics,which lack in-depth study on the fractures in stress analysis.This paper aims to investigate lower limb impact biomechanics in real-world car to pedestrian accidents and to predict fractures of long bones in term of stress parameter for femur,tibia,and fibula.For the above purposes,a 3D finite element(FE) model of human body lower limb(HBM-LL) is developed based on human anatomy.The model consists of the pelvis,femur,tibia,fibula,patella,foot bones,primary tendons,knee joint capsule,meniscus,and ligaments.The FE model is validated by comparing the results from a lateral impact between simulations and tests with cadaver lower limb specimens.Two real-world accidents are selected from an in-depth accident database with detailed information about the accident scene,car impact speed,damage to the car,and pedestrian injuries.Multi-body system(MBS) models are used to reconstruct the kinematics of the pedestrians in the two accidents and the impact conditions are calculated for initial impact velocity and orientations of the car and pedestrian during the collision.The FE model is used to perform injury reconstructions and predict the fractures by using physical parameters,such as von Mises stress of long bones.The calculated failure level of the long bones is correlated with the injury outcomes observed from the two accident cases.The reconstruction result shows that the HBM-LL FE model has acceptable biofidelity and can be applied to predict the risk of long bone fractures.This study provides an efficient methodology to investigate the long bone fracture suffered from vehicle traffic collisions.展开更多
文摘This study investigates pedestrian safety perception in Ho Chi Minh City under mixed traffic conditions by evaluating comfort,crash risk,and injury risk perceptions in two scenarios:walking along and crossing multilane roads.Using visual experiments with 510 participants,the study identifies how sidewalk quality,obstructions,crossing infrastructure,and traffic conditions shape pedestrian experiences.Statistical modeling reveals that protected sidewalks and comprehensive crossing features significantly enhance perceived safety and comfort.Findings emphasize the need for improved pedestrian infrastructure and traffic calming in dense urban settings to support safer,more inclusive mobility under mixed traffic conditions like Vietnam.
文摘Due to multi-scale variations and occlusion problems,accurate traffic road pedestrian detection faces great challenges.This paper proposes an improved pedestrian detection method called Multi Scales Attention-YOLOv5x(MSA-YOLOv5x)based on the YOLOv5x framework.Firstly,by replacing the first convolutional operation of the backbone network with the Focus module,this method expands the number of image input channels to enhance feature expressiveness.Secondly,we construct C3_CBAM module instead of the original C3 module for better feature fusion.In this way,the learning process could achieve more multi-scale features and occluded pedestrian target features through channel attention and spatial attention.Additionally,a new feature pyramid detection layer and a new detection channel are embedded in the feature fusion part for enhancing multi-scale pedestrian detection accuracy.Compared with the baseline methods,experimental results on a public dataset demonstrate that the proposed method achieves optimal detection accuracy for traffic road pedestrian detection.
文摘Pedestrian detection has been a hot spot in computer vision over the past decades due to the wide spectrum of promising applications,and the major challenge is false positives that occur during pedestrian detection.The emergence of various Convolutional Neural Network-based detection strategies substantially enhances pedestrian detection accuracy but still does not solve this problem well.This paper deeply analyzes the detection framework of the two-stage CNN detection methods and finds out false positives in detection results are due to its training strategy misclassifying some false proposals,thus weakening the classification capability of the following subnetwork and hardly suppressing false ones.To solve this problem,this paper proposes a pedestrian-sensitive training algorithm to help two-stage CNN detection methods effectively learn to distinguish the pedestrian and non-pedestrian samples and suppress the false positives in the final detection results.The core of the proposed algorithm is to redesign the training proposal generating scheme for the two-stage CNN detection methods,which can avoid a certain number of false ones that mislead its training process.With the help of the proposed algorithm,the detection accuracy of the MetroNext,a smaller and more accurate metro passenger detector,is further improved,which further decreases false ones in its metro passenger detection results.Based on various challenging benchmark datasets,experiment results have demonstrated that the feasibility of the proposed algorithm is effective in improving pedestrian detection accuracy by removing false positives.Compared with the existing state-of-the-art detection networks,PSTNet demonstrates better overall prediction performance in accuracy,total number of parameters,and inference time;thus,it can become a practical solution for hunting pedestrians on various hardware platforms,especially for mobile and edge devices.
基金sponsored by the National Natural Science Foundation of China(No.U21A20165,No.52072057).
文摘This study presents an interpretable surrogate framework for predicting pedestrian-leg injury severity that integrates high-fidelity finite-element(FE)simulations with a TabNet-based deep-learning model.We generated a parametric dataset of 3000 impact scenarios-covering ten vehicle types and various legform impactors-using automated FE runs configured via Latin hypercube sampling.After preprocessing and one-hot encoding of categorical features,we trained TabNet alongside Support-Vector Regression,Random Forest,and Decision-Tree ensembles.All models underwent hyperparameter tuning via Optuna’s Bayesian optimization coupled with repeated four-fold crossvalidation(20 trials per model).TabNet achieved the best balance of explanatory power and predictive accuracy,with an average R^(2)=0.94±0.01 and RMSE=0.14±0.02.On an independent test set,85%,88%,and 90%of predictions for tibial acceleration,knee-flexion angle,and shear displacement,respectively,fell within±20%of true peaks.SHAPbased analyses confirm that collision-point location and bumper geometry dominate injury outcomes.These results demonstrate TabNet’s capacity to deliver rapid,robust,and explainable injury predictions,offering actionable design insights for vehicle front-end optimization and regulatory assessment in early development stages.
基金Supported by the National Natural Science Foundation of China(No.61971162,61771186)the Natural Science Foundation of Heilongjiang Province(No.PL2024F025)+2 种基金the Open Research Fund of National Mobile Communications Research Laboratory Southeast University(No.2023D07)the Outstanding Youth Program of Natural Science Foundation of Heilongjiang Province(No.YQ2020F012)the Fundamental Scientific Research Funds of Heilongjiang Province(No.2022-KYYWF-1050).
文摘Visual indoor positioning methods have the potential for widespread application in complex large-scale indoor environments,such as shopping centers and hospitals.However,during the visual positioning process,passing pedestrians may cause occlusion in the visual image,leading to large deviations in the visual positioning results.Aiming at the problem of feature occlusion in visual images caused by pedestrians,this paper proposes a visual indoor positioning system that combines semantic segmentation and image restoration.The paper proposes a method called the fast image segmentation repair(FISR),which segments and rapidly repairs the selected image to eliminate the influence of pedestrians on image feature extraction and improve positioning accuracy.In addition,the paper proposes a method called local feature based bag-of-visual-words combined with high-level semantic information(LFHS)for image retrieval.LFHS uses both local features and high-level semantic information to obtain more comprehensive and accurate representations of image features.This approach improves the accuracy and robustness of image retrieval by harnessing the combined power of local features and high-level semantic information.Experimental results show that the proposed positioning method reduces the average positioning error by 0.35 m compared with NetVLAD and 0.49 m compared with MixVPR,significantly improving the performance of visual positioning technology.
基金This work was financially supported by Russian Science Foundation with co-financing of Bank Saint Petersburg[Agreement#17-71-30029].
文摘When arranging the pedestrian infrastructure,one of the most important components that make a tangible contribution to the safety of pedestrians is to organize the safe road crossing.In cities,pedestrians often cross a road in the wrong place due to established routes or inadequate location of crosswalks.Accidents with the participation of pedestrians who crossed the road neglecting the traffic rules,make up a significant part of the total amount of road accidents.In this paper,we propose a method that allows us,on the basis of the results of a computer simulation of pedestrian traffic,to obtain predicted routes for road crossing and to indicate optimal locations for crosswalks that take into account established pedestrian routes and increase their safety.The work describes an extension for the existing AntRoadPlanner simulation algorithm,which searches for and clusters points where pedestrians cross the roadway and suggests locations for new crosswalks.This method was tested on the basis of a comparative simulation of several territories before and after its application,as well as on the basis of a field study of the territories.The developed algorithm can also be used to search for other potentially dangerous places for pedestrians on plans of districts,for example,crossings in places with limited visibility.
基金The National Natural Science Foundation of China(No50378016)
文摘The pedestrian timing at signalized intersections is studied aiming at the problems of the inconsistency of the vehicular and pedestrian timing requirements and the insufficiency of pedestrian clearance. Based on the formulae of WALK and flashing DON'T WALK (FDW) in the highway capacity manual (HCM), the relationship between pedestrian signal indications and vehicular signal indications is discussed using the theory of traffic flow. Then, methods of pedestrian timing for different cases are established, particularly the methods of the pedestrian green adjustment. Ways of pedestrian crossing are analyzed for roadways with different forms and widths of the median island. The sampling values of calculation parameters are studied, and the recommended formulae of pedestrian timing for different conditions are presented.
文摘In view of the deficiencies in landscaping of commercial pedestrian streets,this study elaborated the functions of plant landscapes,such as improving the street environment,beautifying the street,creating spaces of diversified uses,and attracting more pedestrians.On the basis of this,plant landscape design principles and techniques for commercial pedestrian streets were put forward,by combining with successful cases,relevant design suggestions were given for particular streets or environments,so as to provide references for the landscaping of commercial pedestrian streets.
基金Project(2020YFB1600400)supported by the National Key Research and Development Program of ChinaProject(2019JJ50837)supported by the Natural Science Foundation of Hunan Province,ChinaProject(71801227)supported by the National Natural Science Foundation of China。
文摘The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability and pedestrian safety.Therefore,this study proposes a fuzzy cellular automata(FCA)model to explore the safety and efficiency impacts of pedestrian-vehicle conflicts at a two-lane roundabout.To reason the decision-making process of individual drivers before crosswalks,membership functions in the fuzzy inference system were calibrated with field data conducted in Changsha,China.Using specific indicators of efficiency and safety performance,it was shown that circulating vehicles can move smoothly in low traffic flow,but the roundabout system is prone to the traffic congestion if traffic flow reaches to a certain level.Also,the high yielding rate of drivers has a negative impact on the traffic efficiency but can improve pedestrian safety.Furthermore,a pedestrian restriction measure was deduced for the roundabout crosswalk from the FCA model and national guideline of setting traffic lights.
基金Sponsored by the State Key Laboratory of Subtropical Building Science(Grant No.2011ZA01)
文摘The Multi-dimensional Pedestrian System( MPS) is an integral part of the new campus of University of Macao. It observes the principle of "pedestrian first " and features a pedestrian-vehicle dividing system.Based on a comprehensive analysis of the location,climate,ecology and other factors of the project site,the conception of the idea of MPS and the related researches are illustrated. The transportation features of the MPS,as summarized,include multi-dimensions,short-distance and weather-resistance. Its features for the sake of livability include integration of nature, respect for the environment and sharing of landscape. Upon the completion of the project, the effects on its users were tested. Finally, some constructive rules for the construction of similar campus pedestrian systems were proposed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71771013 and 71621001)in part by the National Key Research and Development Program of China(Grant No.2019YFF0301403)+1 种基金in part by the Singapore Ministry of Education(MOE)Ac RF Tier 2(Grant No.MOE2016-T2-1-044)in part by the Fundamental Research Funds for the Central Universities,China(Grant NO.2019JBM041)。
文摘A new heuristics model based on the Voronoi diagram is presented to simulate pedestrian dynamics with the noncrowded state, in which these mechanisms of preference demand evading and surpassing, microscopic anti-deadlock, and site-fine-tuning are considered. The preference demand describes the willingness determination of detouring or following other pedestrians. In the evading and surpassing mechanisms, in order to achieve a balance between avoiding conflicts and minimizing detour distances, a new pair of concepts: "allow-areas and denial-areas" are introduced to divide the feasible region for pedestrians detour behaviors, in which the direction and magnitude of detour velocity are determined.A microscopic anti-deadlock mechanism is inserted to avoid deadlock problem of the counter-directional pedestrian. A site-fine-tuning mechanism is introduced to describe the behavior of avoiding getting too close to the neighbors in pedestrian movement. The presented model is verified through multiple scenarios, including the uni-or bi-direction pedestrian flow in the corridor without obstacles, the uni-direction pedestrian flow in the corridor with obstacles, and the pedestrian evacuation from a room with single-exit. The simulation results show that the velocity–density relationship is consistent with empirical data. Some self-organizing phenomena, such as lanes formation and arching are observed in the simulation.When pedestrians detour an obstacle, the avoiding area before the obstacle and the unoccupied area after the obstacle can be observed. When pedestrians evacuate through a bottleneck without panic, the fan-shaped crowd can be found, which is consistent with the actual observation. It is also found that the behavior of following others in an orderly manner is more conducive to the improvement of the overall movement efficiency when the crowd moves in a limited space.
基金The National Natural Science Foundation of China(No.50778141)the National Basic Research Program of China(973Program)(No.2006CB705505)National Key Technology R&D Program during the11th Five Year Plan of China(No.2006BAJ18B07)
文摘For studying the law of pedestrian cross-time in the signalized intersection, based on gap theory, a probability chorological discipline model of crossing pedestrians is built based on the observed data. Moreover, the number of pedestrians passing through in a critical gap is estimated under different conditions by three models. Then the models of pedestrian crosswalk average time, the 85th percentile pedestrian cross-time and the 90th percentile pedestrian cross-time are deduced. By quantitative analyses and the exemplification of the models, the main correlative factors acting on pedestrian cross-time are found, including the length of the crosswalk, the probability of the time-headway being less than the critical gap and the number of the turned motor vehicles in the intersection. The results indicate that the estimated errors of the models are less than 5%.
文摘Pedestrianisation is seen as a necessity in many cities of the world.Streets are main representatives of the city image,which have its reflection of its home country.Haileselassie Street in Piazza is shaped after the short-term confrontations of the Italians that profoundly affected the entire downtown.The prideful victory of Ethiopia is an important landmark of the urban fabric in Piazza,Addis Ababa.The Haileselassie Street lacks its vista and approach it deserves.Therefore,this paper introduces the scheme of pedestrianisation in Haileselassie Street by reclaiming the street for the people in order to remember the history.The pertinent questions this article seeks to address are:the factors that aim to transform the street into a‘pedestrian’street only?Which aspects of the pedestrianisation should be considered to improve the quality of the Haileselassie Street?Moreover,this article recommends the strategic proposal to improve the quality of the pedestrians in urban space.
文摘The increasing availability of ubiquitous sensor data on the built environment holds great potential for a new generation of travel and mobility research.Bluetooth technology,for example,is already vastly used in vehicular transportation management solutions and services.Current studies discuss the potential of this emerging technology for pedestrian mobility research,but it has yet to be examined in a large urban setting.One of the main problems is detecting pedestrians from Bluetooth records since their behavior and movement patterns share similarities with other urban transportation modes.This study aims to accurately detect pedestrians using a network of 65 Bluetooth detectors located in Tel-Aviv,Israel,which record on average over 60,000 unique daily Bluetooth Media-Access-Control addresses.We propose a detection methodology that includes system calibration,effective travel time calculation,and classification by velocity that takes into consideration the probability of vehicular traffic jams.An evaluation of the proposed methodology presents a promising pedestrian detection accuracy rate of 89%.We showcase the results of pedestrian traffic analysis,together with a discussion on the data analysis challenges and limitations.To the best of our knowledge,this work is the first to analyze pedestrian records detection from a Bluetooth network employed in a dynamic urban environment setting.
文摘At a typical signalized intersection, the pedestrian phase consists of a walk interval and a change/clearance interval, during which pedestrians are given the right of way. The walk interval is intended to allow pedestrians to exit the curb ramp and enter the crosswalk. The clearance interval will enable them to cross entirely to the other side of the road. Unfortunately, the literature is quite vague on how long the walk interval should be and provides values ranging from 4 to 15 seconds based on qualitative pedestrian demand ranging from Negligible to High. To provide some quantitative guidance for walk interval selection, this paper reports on a study that collected 1,500 pedestrian movement data from 12 signalized intersections with varying pedestrian demand, pedestrian storage areas, and pedestrian push-button locations. The data was used to propose a quantitative model for designers to select the appropriate walk interval. Specifically, this paper seeks to add values to the Traffic Operations Handbook walk-interval guidelines as to how many pedestrians are considered “negligible volume” and can be accommodated by the 4 second minimum time, how many pedestrians are considered “typical volume” and require 7 to 10 seconds, and how many pedestrians are considered “high volume” and require 10 to 15 seconds, or perhaps longer. In addition to examining pedestrian demand, this paper looks at the impact of storage areas and pedestrian push-button location on pedestrian start-up time and, consequently, an appropriate walk interval.
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
文摘With the development of business management model,commercial spaces have required more and more supporting services from the city.However,although commercial pedestrian streets lying on historical blocks have advantages in geological culture,they are not able to organically combine with the city environment,landscape creation on such streets have more and more problems.Taking the Five Horses Street in Wenzhou City for an example,this study through field investigation and document consultation proposes the principles and approaches of creating landscapes in historical commercial pedestrian streets,to provide support for the rational utilization of such streets.
基金the National Natural Science Foundation of China(No.61873190)。
文摘Simulation of pedestrians’behavior in the hub can help decision-makers to formulate better evacuation strategies.With this aim,this study develops an improved cellular automata model considering pedestrian’s mass-following psychology and competitive awareness,and based on this model,pedestrian’s evacuation process from the channel of the hub with two exits is simulated.Moreover,dynamic guidance information,e.g.,the realtime congestion situation of the evacuation routes,plays an important role during pedestrian evacuation processes in a hub,as the evaluation routes can be adjusted based on this information.That is,the congestion situation during the evaluation can be improved.Thus,dynamic signs are incorporated into the proposed model to study the influence of dynamic guidance information on pedestrian evacuation behavior.In simulation experiments,the influence of two parameters,namely the proportion of pedestrians unfamiliar with the hub and update interval of dynamic signs,on pedestrian evacuation behavior is studied.Results show that dynamic guidance information can improve the efficiency of pedestrian evacuation.In particular,the higher the proportion of pedestrians unfamiliar with the hub is,the more obvious the effect of dynamic guidance information is.Besides,different proportions of pedestrians unfamiliar with the hub lead to different update intervals of dynamic signs.Finally,the results of this study can provide some implications to the practical hub operation and evacuation,e.g.,to standardize the order of evacuation routes and improve the information service level in the hub.
基金supported by National Key Research and Development of China (No. 2017YFB1002800)
文摘With the development of micro-electromechanical systems(MEMS), miniaturized, low-power and low-cost inertial measurement units(IMUs) have been widely integrated into mobile terminals and smart wearable devices. This provides the prospect of a broad application for the inertial sensor-based pedestrian dead-reckoning(IPDR) systems. Especially for indoor navigation and indoor positioning, the IPDR systems have many unique advantages that other methods do not have. At present, a large number of technologies and methods for IPDR systems are proposed. In this paper, we have analyzed and outlined the IPDR systems based on about 80 documents in the field of IPDR in recent years. The article is structured in the form of an introduction-elucidation-conclusion framework. First, we proposed a general framework to explore the structure of an IPDR system. Then, according to this framework, the IPDR system was divided into six relatively independent sub-problems, which were discussed and summarized separately. Finally, we proposed a graph structure of IPDR systems, and a sub-directed graph, formed by selecting a combined path from the start node to the end node, skillfully constitutes a technical route of one specific IPDR system. At the end of the article, we summarized some key issues that need to be resolved before the IPDR systems are widely used.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No. 2006AA110101)"111 Program" of Ministry of Education and State Administration of Foreign Experts Affairs of China (Grant No. 111-2-11)+1 种基金General Motors Research and Development Center (Grant No. RD-209)Project of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,China (Grant No. 60870004)
文摘Lower limb injures are frequently observed in passenger car traffic accidents.Previous studies of the injuries focus on long bone fractures by using either cadaver component tests or simulations of the long bone kinematics,which lack in-depth study on the fractures in stress analysis.This paper aims to investigate lower limb impact biomechanics in real-world car to pedestrian accidents and to predict fractures of long bones in term of stress parameter for femur,tibia,and fibula.For the above purposes,a 3D finite element(FE) model of human body lower limb(HBM-LL) is developed based on human anatomy.The model consists of the pelvis,femur,tibia,fibula,patella,foot bones,primary tendons,knee joint capsule,meniscus,and ligaments.The FE model is validated by comparing the results from a lateral impact between simulations and tests with cadaver lower limb specimens.Two real-world accidents are selected from an in-depth accident database with detailed information about the accident scene,car impact speed,damage to the car,and pedestrian injuries.Multi-body system(MBS) models are used to reconstruct the kinematics of the pedestrians in the two accidents and the impact conditions are calculated for initial impact velocity and orientations of the car and pedestrian during the collision.The FE model is used to perform injury reconstructions and predict the fractures by using physical parameters,such as von Mises stress of long bones.The calculated failure level of the long bones is correlated with the injury outcomes observed from the two accident cases.The reconstruction result shows that the HBM-LL FE model has acceptable biofidelity and can be applied to predict the risk of long bone fractures.This study provides an efficient methodology to investigate the long bone fracture suffered from vehicle traffic collisions.