Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that...Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease.Previous studies revealed that Z.aethiopica,a member of the section Zantedeschia,is signi ficantly more resistant to Pectobacterium spp.than members of the same genus that belong to the section Aestivae.During early infection,we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections.Similar patterns of bacterial colonization were observed on polydimethylsiloxane(PDMS)arti fi cial inert replicas of leaf surfaces.The replicas con fi rmed the physical effect of leaf texture,in addition to a biochemical plant-bacterium interaction.The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments,as compared to Zantedeschia group species that have adapted to warm,marshy environments.Transverse leafsections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members.Finally,an analysis ofdefense marker genes revealed differential expression patterns in response to infection,with signi ficantly higher levels of lipoxygenase 2(lox 2)and phenylalanine ammonia lyase(pal)observed in the more resistant Z.aethiopica,suggesting greater activation of induced systemic resistance(ISR)mechanisms in this group.The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.展开更多
Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short...Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short-chain fatty acids,and influence immune responses.However,their diversity and functional differences have created challenges for their development and therapeutic use.Recent studies have shown that specific Prevotella species,such as P.copri,P.intestinalis,and P.histicola,can strengthen gut barrier integrity and reduce metabolic imbalances.Notably,Prevotella populations can be increased through high-fiber or herbal-based treatments.Traditional herbal medicines,including fiber-rich decoctions,also demonstrate the potential to boost endogenous Prevotella communities,enhance microbial fermentation,and improve glucose and lipid balance.This perspective examines the context-dependent roles of Prevotella spp.,with emphasis on the functional heterogeneity of key species such as P.copri,suggests a framework for combining herbal modulation with species-level microbiota profiling,and outlines a research plan to explore microbe-herb synergy in treating obesity,type 2 diabetes,and related metabolic disorders.This strategy offers a new,ecology-based approach to complement standard metabolic interventions.展开更多
Cronobacter spp.has strong resistance to desiccation and high permeability in Enterobacteriaceae,and powdered infant formula(PIF)is one of the main contamination routes.In recent years,the contamination of Cronobacter...Cronobacter spp.has strong resistance to desiccation and high permeability in Enterobacteriaceae,and powdered infant formula(PIF)is one of the main contamination routes.In recent years,the contamination of Cronobacter spp.in PIF incidents occurs from time to time,causing infant serious diseases or death.In this investigation,matrix-assisted laser desorption/ionization time of flight mass spectrometry was used to identify the phenotypes of 35 Cronobacter strains isolated from PIF and its processing environment.Subsequently,the isolates were evaluated for drying and osmotic pressure tolerance.The results showed that the deactivation rate of the strains ranged from 9.01%to 77.57%,and the highest osmotic pressure condition the strains could tolerate was 6 g/100 mL Na Cl.In addition,there was a positive correlation between biofilm formation ability and desiccation resistance.Combined with transcriptomics,Cronobacter spp.could activate biofilm synthesis,produce more trehalose,accumulate betaine and electrolytes to stabilize intracellular structure under the two treatment conditions.A total of 31 and 43 genes were found related to desiccation and permeability resistance,respectively.And some genes(cysM,thuF,ycjO,etc.)were found to be associated with two tolerances for the first time.展开更多
Objective:To evaluate the predictive value of secreted phosphoprotein 1(SPP1)gene expression for postoperative survival in patients with advanced liver cancer undergoing hepatic artery interventional chemoembolization...Objective:To evaluate the predictive value of secreted phosphoprotein 1(SPP1)gene expression for postoperative survival in patients with advanced liver cancer undergoing hepatic artery interventional chemoembolization treatment.Method:Bioinformatics methods,including gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis,were used to identify genes related to survival prognosis in hepatocellular carcinoma(HCC)patients.A retrospective analysis of 115 advanced liver cancer patients treated between January 2016 and October 2017 was conducted.Patients were categorized into SPP1 high-expression(n=89)and low-expression groups(n=26).Additionally,115 healthy individuals served as the control group.The relationship between SPP1 expression and clinical pathological features was analyzed.A 60-month follow-up and logistic regression analysis identified risk factors affecting survival.Results:SPP1 mRNA expression was significantly higher in liver cancer patients compared to healthy controls(P<0.05).SPP1 expression levels were significantly associated with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging(P<0.05).High SPP1 expression,along with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,were independent risk factors for survival(P<0.05).The 60-month survival rate was 17.39%,with a median survival of 40 months in the low-expression group versus 18 months in the high-expression group(P<0.05).Conclusion:SPP1 expression is significantly upregulated in advanced liver cancer patients and has predictive value for postoperative survival following hepatic artery chemoembolization treatment.SPP1,combined with clinical indicators such as tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,may serve as a prognostic biomarker for interventional treatment outcomes.展开更多
基金the Chief Scientist of the Israeli Ministry of Agriculture(Grant No.20-01-0193).
文摘Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease.Previous studies revealed that Z.aethiopica,a member of the section Zantedeschia,is signi ficantly more resistant to Pectobacterium spp.than members of the same genus that belong to the section Aestivae.During early infection,we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections.Similar patterns of bacterial colonization were observed on polydimethylsiloxane(PDMS)arti fi cial inert replicas of leaf surfaces.The replicas con fi rmed the physical effect of leaf texture,in addition to a biochemical plant-bacterium interaction.The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments,as compared to Zantedeschia group species that have adapted to warm,marshy environments.Transverse leafsections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members.Finally,an analysis ofdefense marker genes revealed differential expression patterns in response to infection,with signi ficantly higher levels of lipoxygenase 2(lox 2)and phenylalanine ammonia lyase(pal)observed in the more resistant Z.aethiopica,suggesting greater activation of induced systemic resistance(ISR)mechanisms in this group.The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.
基金supported by the National Research Foundation of Korea(2020R1F1A1074155).
文摘Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short-chain fatty acids,and influence immune responses.However,their diversity and functional differences have created challenges for their development and therapeutic use.Recent studies have shown that specific Prevotella species,such as P.copri,P.intestinalis,and P.histicola,can strengthen gut barrier integrity and reduce metabolic imbalances.Notably,Prevotella populations can be increased through high-fiber or herbal-based treatments.Traditional herbal medicines,including fiber-rich decoctions,also demonstrate the potential to boost endogenous Prevotella communities,enhance microbial fermentation,and improve glucose and lipid balance.This perspective examines the context-dependent roles of Prevotella spp.,with emphasis on the functional heterogeneity of key species such as P.copri,suggests a framework for combining herbal modulation with species-level microbiota profiling,and outlines a research plan to explore microbe-herb synergy in treating obesity,type 2 diabetes,and related metabolic disorders.This strategy offers a new,ecology-based approach to complement standard metabolic interventions.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U21A20272)。
文摘Cronobacter spp.has strong resistance to desiccation and high permeability in Enterobacteriaceae,and powdered infant formula(PIF)is one of the main contamination routes.In recent years,the contamination of Cronobacter spp.in PIF incidents occurs from time to time,causing infant serious diseases or death.In this investigation,matrix-assisted laser desorption/ionization time of flight mass spectrometry was used to identify the phenotypes of 35 Cronobacter strains isolated from PIF and its processing environment.Subsequently,the isolates were evaluated for drying and osmotic pressure tolerance.The results showed that the deactivation rate of the strains ranged from 9.01%to 77.57%,and the highest osmotic pressure condition the strains could tolerate was 6 g/100 mL Na Cl.In addition,there was a positive correlation between biofilm formation ability and desiccation resistance.Combined with transcriptomics,Cronobacter spp.could activate biofilm synthesis,produce more trehalose,accumulate betaine and electrolytes to stabilize intracellular structure under the two treatment conditions.A total of 31 and 43 genes were found related to desiccation and permeability resistance,respectively.And some genes(cysM,thuF,ycjO,etc.)were found to be associated with two tolerances for the first time.
基金Medical Research Project of Xi’an Science and Technology Bureau“Molecular Mechanism of miR-1305 Competitive Endogenous circRNA in the Development of Liver Cancer”(Project No.22YXYJ0134)General Project of Key Research and Development Program of Shaanxi Provincial Department of Science and Technology“Mechanism Study on the Inhibition of Liver Cancer Invasion and Metastasis by Downregulating METTL3 and Reducing the m6A Modification Level of MMP3 with Honokiol”(Project No.2023-YBSF-631)。
文摘Objective:To evaluate the predictive value of secreted phosphoprotein 1(SPP1)gene expression for postoperative survival in patients with advanced liver cancer undergoing hepatic artery interventional chemoembolization treatment.Method:Bioinformatics methods,including gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis,were used to identify genes related to survival prognosis in hepatocellular carcinoma(HCC)patients.A retrospective analysis of 115 advanced liver cancer patients treated between January 2016 and October 2017 was conducted.Patients were categorized into SPP1 high-expression(n=89)and low-expression groups(n=26).Additionally,115 healthy individuals served as the control group.The relationship between SPP1 expression and clinical pathological features was analyzed.A 60-month follow-up and logistic regression analysis identified risk factors affecting survival.Results:SPP1 mRNA expression was significantly higher in liver cancer patients compared to healthy controls(P<0.05).SPP1 expression levels were significantly associated with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging(P<0.05).High SPP1 expression,along with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,were independent risk factors for survival(P<0.05).The 60-month survival rate was 17.39%,with a median survival of 40 months in the low-expression group versus 18 months in the high-expression group(P<0.05).Conclusion:SPP1 expression is significantly upregulated in advanced liver cancer patients and has predictive value for postoperative survival following hepatic artery chemoembolization treatment.SPP1,combined with clinical indicators such as tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,may serve as a prognostic biomarker for interventional treatment outcomes.