This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time ...This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time and length and their probability density functions(PDFs),was investigated.The results demonstrated that turbulence intensity was relatively greater on a rough bed in the roller length,whereas further downstream,the decay rate was higher.In addition,the relationship between turbulence intensity and dimensionless bubble count rate reflected an increase in turbulence intensity associated with the number of entrained particles.Triple decomposition analysis(TDA)was performed to determine the contributions of slow and fast turbulent components.The TDA results indicated that,regardless of bed type and inflow conditions,the sum of the band-pass(T'_(u))and high-pass(T″_(u))filtered turbulence intensities was equal to the turbulence intensity of the raw signal data(T_(u)).T″_(u) highlighted a higher turbulence intensity and larger vorticities on the rough bed for an identical inflow Froude number.Additional TDA results were presented in terms of the interfacial velocity,auto-and cross-correlation time scales,and longitudinal advection length scale,with the effects of low-and high-frequency signal components on each highlighted parameter.The analysis of the air chord time indicated an increase in the proportion of small bubbles moving downstream.The second part of this research focused on the basic properties of particle grouping and clustering.展开更多
A survey on bubble clustering in air–water flow processes may provide significant insights into turbulent two-phaseflow.These processes have been studied in plunging jets,dropshafts,and hydraulic jumps on a smooth bed....A survey on bubble clustering in air–water flow processes may provide significant insights into turbulent two-phaseflow.These processes have been studied in plunging jets,dropshafts,and hydraulic jumps on a smooth bed.As a first attempt,this study examined the bubble clustering process in hydraulic jumps on a pebbled rough bed using experimental data for 1.70<Fr_(1)<2.84(with Fr_(1) denoting the inflow Froude number).The basic properties of particle grouping and clustering,including the number of clusters,the dimensionless number of clusters per second,the percentage of clustered bubbles,and the number of bubbles per cluster,were analyzed based on two criteria.For both criteria,the maximum cluster count rate was greater on the rough bed than on the smooth bed,suggesting greater interactions between turbulence and bubbly flow on the rough bed.The results were consistent with the longitudinal distribution of the interfacial velocity using one of the criteria.In addition,the clustering process was analyzed using a different approach:the interparticle arrival time of bubbles.The comparison showed that the bubbly flow structure had a greater density of bubbles per unitflux on the rough bed than on the smooth bed.Bed roughness was the dominant parameter close to the jump toe.Further downstream,Fr_(1) predominated.Thus,the rate of bubble density decreased more rapidly for the hydraulic jump with the lowest Fr_(1).展开更多
To elucidate the wear mechanisms of the scraper in shield tunneling through sandy pebble strata,this study aims to achieve high efficiency and low wear during the tunneling process.We evaluate the operational paramete...To elucidate the wear mechanisms of the scraper in shield tunneling through sandy pebble strata,this study aims to achieve high efficiency and low wear during the tunneling process.We evaluate the operational parameters and tool wear characteristics of a 9-m diameter spoke-type shield machine used on the Beijing Daxing Airport Line.The analysis focuses on the wear values of the scrapers and rippers,wear of the scraper in different wear forms,and scraper wear relative to the position of the rippers obtained from the field.The study yielded the following conclusions.The wear values of scrapers on different spokes vary significantly owing to ripper protection.The wear of the scrapers can be categorized into six types:tooth chipping,local damage of teeth,wear of side teeth,wave-type of wear,wear on intermediate teeth,and flat wear,with the majority exhibiting wear on the side and intermediate teeth.The 0°spoke maintained the initial shape of the scrapers,making it more suitable for tunneling in sandy pebble strata.Based on the differences in the relative positions of the ripper and scraper,a model is proposed to determine the ripper plowing influence area.It was found that this area depends on the geological conditions of the soil;thus,the influence angle of ripper plowing in the considered sandy pebble strata is determined to be between 35°and 50°.The results obtained in this study provide a theoretical reference for optimizing scraper layouts in shield construction,even when operating under varying geological conditions.展开更多
基于计算流体力学(Computational Fluid Dynamics,CFD)通用计算程序Fluent,研究了模块化熔盐冷却球床堆(Pebble Bed Advanced High Temperature Reactor,PB-AHTR)中心热通道稳态热工水力行为。利用已开发的多孔介质流固两相局域非热平...基于计算流体力学(Computational Fluid Dynamics,CFD)通用计算程序Fluent,研究了模块化熔盐冷却球床堆(Pebble Bed Advanced High Temperature Reactor,PB-AHTR)中心热通道稳态热工水力行为。利用已开发的多孔介质流固两相局域非热平衡模型计算了球床堆中的压降、冷却剂的温场分布以及固相球床的温场分布,计算并比较了不同的多孔介质阻力因子(Ergun与KTA)对通道内的冷却剂流动以及温场分布的影响,并对丧失部分冷却剂情况下通道内的冷却剂及燃料温度进行了计算分析。结果表明使用不同的阻力因子对堆芯压降计算结果和流场的分布影响较大;而冷却剂温场及固相球床温场和球心的温度分布在不同的阻力因子下的差别较小,在PB-AHTR的设计参数下堆芯产生的热量能够被有效的输出,设计具有较大的安全裕度。计算结果对于球床堆的优化设计提供了一定的参考价值。展开更多
The Gan-Hang Belt in Southeast China is characterized by several igneous and siliciclastic basins associated with crustal extension during Late Mesozoic. The sedimentary evolution of the red basins is still poorly und...The Gan-Hang Belt in Southeast China is characterized by several igneous and siliciclastic basins associated with crustal extension during Late Mesozoic. The sedimentary evolution of the red basins is still poorly understood. In this study, sedimentary fades analysis and pebble counting were performed on outcrop sections of the Late Cretaceous Guifeng Group in the Yongfeng-Chongren Basin in central Jiangxi Province. Thirty-five conglomerate outcrops were chosen to measure pebble lithology, size, roundness, weathering degree and preferred orientation. Results show that gravels are mostly fine to coarse pebbles and comprise dominantly quartzites, metamorphic rocks, granitoids and sandstones. Rose diagrams based on imbricated pebbles indicate variable paleocurrent directions. Combining with typical sedimentary structures and vertical successions, we suggest that the Guifeng Group were deposited in alluvial fan, river and playa lake depositional systems. The proposed depositional model indicates that the Hekou Formation represents the start-up stage of the faulted basin, accompanied by sedimentation in alluvial fan and braided river environments. Then this basin turned into a stable expansion stage during the deposition of the Tangbian Formation. Except for minor coarse sediments at the basin margin, the other area is covered with fine-grained sediments of lake and river environments. The Lianhe Formation, however, is once again featured by conglomerates, suggesting a probable tectonic event. Therefore, the study region possibly suffered two tectonic events represented by the conglomerates of the Hekou and Lianhe formations in the context of the crustal extension in Southeast China.展开更多
Compared with the long use of carbon materials in human history,the debut of carbon materials in the Chicago Pile-1 nuclear reactor took place only 70 years ago.Since then,carbon materials have played important roles ...Compared with the long use of carbon materials in human history,the debut of carbon materials in the Chicago Pile-1 nuclear reactor took place only 70 years ago.Since then,carbon materials have played important roles in nuclear reactors,especially in high temperature gas-cooled reactors(HTRs)because of their many excellent properties.As the most promising candidate for Generation IV reactors,a demonstration plant for HTRs,an HTR pebble-bed module(HTR-PM)is currently under construction in China.In the HTR-PM,carbon materials act as the core structural material,reflector,fuel matrix,moderator,and thermal and neutron shields.Because the dimensions and properties of the carbon are generally influenced by the high temperature and neutron irradiation in the HTR-PM,there are rigorous requirements for their performance.Since the precursor materials such as cokes and natural graphite,and the subsequent forming method play a critical role in determining the structure,properties and performance of the material under irradiation,a judicious selection of the raw materials and forming method is required to obtain the desired structure and properties.This paper introduces the detailed property requirements of different carbon materials in the HTR-PM and their fabrication processes.In addition,the current status and future commercialization of the HTR-PM in China and abroad are presented.In order to meet the requirement of full local production in a commercial HTR,long-term considerations such as the sustainable and stable supply of the raw materials,optimization of the manufacturing process in the local production of nuclear graphite for structural graphite and graphite pebbles,and the stable production and reduced cost of the precursor materials are discussed.Finally,current progress and future arrangements for the irradiation testing of Chinese nuclear graphite at the Oak Ridge National Laboratory(USA)are presented.This manuscript is intended to act as a reference for carbon material producers who intend to develop nuclear graphite and carbon materials for use in future commercial HTRs.Meanwhile,a great deal of information introduced in the manuscript is also useful for scientific researchers of carbon materials.展开更多
Tritium breeder and neutron multiplier as functional materials play an important role not only in ITER test blanket module (TBM) but also in fusion reactor. The paper describes the status of the fabrication of the t...Tritium breeder and neutron multiplier as functional materials play an important role not only in ITER test blanket module (TBM) but also in fusion reactor. The paper describes the status of the fabrication of the two materials in Southwestern Institute of Physics (SWIP). Li4SiO4 pebbles were fabricated by melt-spraying method. Most of the pebbles with the diazneter of 1.0 mm are well spherically shaped. The properties of the pebbles have been investigated. The results show that the pebbles produced by this method have a high density of 93% TD (theoretical density). It was also found that the open/closed porosity will be decreased after thermal treatment, but the average crush load will be increased to 7 N. The rotating electrode process (REP) has been adopted to produce beryllium pebble for impurity control and mass production. The pebbles with the diameter of 1.0 mm were produced by REP. The beryllium pebbles produced by REP look almost perfectly spherical with a very smooth surface and a high density of 98% TD. The test results indicate that REP method has excellent prospects for the fabrication of beryllium pebbles and the attractiveness of their properties.展开更多
The pebble-bed reactor is one of the most promising designs for the nuclear energy industry. In this paper,a discrete element method-computational fluid dynamics(DEM-CFD) approach that includes thermal conduction, rad...The pebble-bed reactor is one of the most promising designs for the nuclear energy industry. In this paper,a discrete element method-computational fluid dynamics(DEM-CFD) approach that includes thermal conduction, radiation, and natural convection mechanisms was proposed to simulate the thermal-fluid phenomena after the failure of forced circulation cooling system in a pebble-bed core. The whole large-scale packed bed was created using the DEM technique, and the calculated radial porosity of the bed was validated with empirical correlations reported by researchers. To reduce computational costs, a segment of the bed was extracted, which served as a good representative of the large-scale packed bed for CFD calculation. The temperature distributions simulated with two different fluids in this DEM-CFD approach were in good agreement with SANA experimental data. The influence of the natural convection mechanism on heat transfer must be taken into account for coolants with strong convective capacity. The proposed DEM-CFD methodology offers a computationally efficient and widely applied method for understanding the heat transfer process in a pebble-bed core. The method can also be easily extended to assess the passive safety features of newly designed fluoride-salt-cooled pebble-bed reactors.展开更多
文摘This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time and length and their probability density functions(PDFs),was investigated.The results demonstrated that turbulence intensity was relatively greater on a rough bed in the roller length,whereas further downstream,the decay rate was higher.In addition,the relationship between turbulence intensity and dimensionless bubble count rate reflected an increase in turbulence intensity associated with the number of entrained particles.Triple decomposition analysis(TDA)was performed to determine the contributions of slow and fast turbulent components.The TDA results indicated that,regardless of bed type and inflow conditions,the sum of the band-pass(T'_(u))and high-pass(T″_(u))filtered turbulence intensities was equal to the turbulence intensity of the raw signal data(T_(u)).T″_(u) highlighted a higher turbulence intensity and larger vorticities on the rough bed for an identical inflow Froude number.Additional TDA results were presented in terms of the interfacial velocity,auto-and cross-correlation time scales,and longitudinal advection length scale,with the effects of low-and high-frequency signal components on each highlighted parameter.The analysis of the air chord time indicated an increase in the proportion of small bubbles moving downstream.The second part of this research focused on the basic properties of particle grouping and clustering.
文摘A survey on bubble clustering in air–water flow processes may provide significant insights into turbulent two-phaseflow.These processes have been studied in plunging jets,dropshafts,and hydraulic jumps on a smooth bed.As a first attempt,this study examined the bubble clustering process in hydraulic jumps on a pebbled rough bed using experimental data for 1.70<Fr_(1)<2.84(with Fr_(1) denoting the inflow Froude number).The basic properties of particle grouping and clustering,including the number of clusters,the dimensionless number of clusters per second,the percentage of clustered bubbles,and the number of bubbles per cluster,were analyzed based on two criteria.For both criteria,the maximum cluster count rate was greater on the rough bed than on the smooth bed,suggesting greater interactions between turbulence and bubbly flow on the rough bed.The results were consistent with the longitudinal distribution of the interfacial velocity using one of the criteria.In addition,the clustering process was analyzed using a different approach:the interparticle arrival time of bubbles.The comparison showed that the bubbly flow structure had a greater density of bubbles per unitflux on the rough bed than on the smooth bed.Bed roughness was the dominant parameter close to the jump toe.Further downstream,Fr_(1) predominated.Thus,the rate of bubble density decreased more rapidly for the hydraulic jump with the lowest Fr_(1).
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.8252017)National Natural Science Foundation of China(Grant Nos.51608521,52178375)Beijing Urban Construction Group Co.,Ltd.
文摘To elucidate the wear mechanisms of the scraper in shield tunneling through sandy pebble strata,this study aims to achieve high efficiency and low wear during the tunneling process.We evaluate the operational parameters and tool wear characteristics of a 9-m diameter spoke-type shield machine used on the Beijing Daxing Airport Line.The analysis focuses on the wear values of the scrapers and rippers,wear of the scraper in different wear forms,and scraper wear relative to the position of the rippers obtained from the field.The study yielded the following conclusions.The wear values of scrapers on different spokes vary significantly owing to ripper protection.The wear of the scrapers can be categorized into six types:tooth chipping,local damage of teeth,wear of side teeth,wave-type of wear,wear on intermediate teeth,and flat wear,with the majority exhibiting wear on the side and intermediate teeth.The 0°spoke maintained the initial shape of the scrapers,making it more suitable for tunneling in sandy pebble strata.Based on the differences in the relative positions of the ripper and scraper,a model is proposed to determine the ripper plowing influence area.It was found that this area depends on the geological conditions of the soil;thus,the influence angle of ripper plowing in the considered sandy pebble strata is determined to be between 35°and 50°.The results obtained in this study provide a theoretical reference for optimizing scraper layouts in shield construction,even when operating under varying geological conditions.
文摘基于计算流体力学(Computational Fluid Dynamics,CFD)通用计算程序Fluent,研究了模块化熔盐冷却球床堆(Pebble Bed Advanced High Temperature Reactor,PB-AHTR)中心热通道稳态热工水力行为。利用已开发的多孔介质流固两相局域非热平衡模型计算了球床堆中的压降、冷却剂的温场分布以及固相球床的温场分布,计算并比较了不同的多孔介质阻力因子(Ergun与KTA)对通道内的冷却剂流动以及温场分布的影响,并对丧失部分冷却剂情况下通道内的冷却剂及燃料温度进行了计算分析。结果表明使用不同的阻力因子对堆芯压降计算结果和流场的分布影响较大;而冷却剂温场及固相球床温场和球心的温度分布在不同的阻力因子下的差别较小,在PB-AHTR的设计参数下堆芯产生的热量能够被有效的输出,设计具有较大的安全裕度。计算结果对于球床堆的优化设计提供了一定的参考价值。
基金supported by China Geological Survey projects (Grant Nos.1212011120836,1212011220248)China Scholarship Council (Grant No.201308360142)+2 种基金Gan-Po Excellent Talents 555 Project of Jiangxi Province (GCZ 2012-1)Research Foundation of Jiangxi Education Department (Grant No.GJJ13438)the open fund of Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (Grant No.RGET1304)
文摘The Gan-Hang Belt in Southeast China is characterized by several igneous and siliciclastic basins associated with crustal extension during Late Mesozoic. The sedimentary evolution of the red basins is still poorly understood. In this study, sedimentary fades analysis and pebble counting were performed on outcrop sections of the Late Cretaceous Guifeng Group in the Yongfeng-Chongren Basin in central Jiangxi Province. Thirty-five conglomerate outcrops were chosen to measure pebble lithology, size, roundness, weathering degree and preferred orientation. Results show that gravels are mostly fine to coarse pebbles and comprise dominantly quartzites, metamorphic rocks, granitoids and sandstones. Rose diagrams based on imbricated pebbles indicate variable paleocurrent directions. Combining with typical sedimentary structures and vertical successions, we suggest that the Guifeng Group were deposited in alluvial fan, river and playa lake depositional systems. The proposed depositional model indicates that the Hekou Formation represents the start-up stage of the faulted basin, accompanied by sedimentation in alluvial fan and braided river environments. Then this basin turned into a stable expansion stage during the deposition of the Tangbian Formation. Except for minor coarse sediments at the basin margin, the other area is covered with fine-grained sediments of lake and river environments. The Lianhe Formation, however, is once again featured by conglomerates, suggesting a probable tectonic event. Therefore, the study region possibly suffered two tectonic events represented by the conglomerates of the Hekou and Lianhe formations in the context of the crustal extension in Southeast China.
文摘Compared with the long use of carbon materials in human history,the debut of carbon materials in the Chicago Pile-1 nuclear reactor took place only 70 years ago.Since then,carbon materials have played important roles in nuclear reactors,especially in high temperature gas-cooled reactors(HTRs)because of their many excellent properties.As the most promising candidate for Generation IV reactors,a demonstration plant for HTRs,an HTR pebble-bed module(HTR-PM)is currently under construction in China.In the HTR-PM,carbon materials act as the core structural material,reflector,fuel matrix,moderator,and thermal and neutron shields.Because the dimensions and properties of the carbon are generally influenced by the high temperature and neutron irradiation in the HTR-PM,there are rigorous requirements for their performance.Since the precursor materials such as cokes and natural graphite,and the subsequent forming method play a critical role in determining the structure,properties and performance of the material under irradiation,a judicious selection of the raw materials and forming method is required to obtain the desired structure and properties.This paper introduces the detailed property requirements of different carbon materials in the HTR-PM and their fabrication processes.In addition,the current status and future commercialization of the HTR-PM in China and abroad are presented.In order to meet the requirement of full local production in a commercial HTR,long-term considerations such as the sustainable and stable supply of the raw materials,optimization of the manufacturing process in the local production of nuclear graphite for structural graphite and graphite pebbles,and the stable production and reduced cost of the precursor materials are discussed.Finally,current progress and future arrangements for the irradiation testing of Chinese nuclear graphite at the Oak Ridge National Laboratory(USA)are presented.This manuscript is intended to act as a reference for carbon material producers who intend to develop nuclear graphite and carbon materials for use in future commercial HTRs.Meanwhile,a great deal of information introduced in the manuscript is also useful for scientific researchers of carbon materials.
基金supported by the Major State Basic Research Development Program of China (973 Program) (No.2009GB108000)
文摘Tritium breeder and neutron multiplier as functional materials play an important role not only in ITER test blanket module (TBM) but also in fusion reactor. The paper describes the status of the fabrication of the two materials in Southwestern Institute of Physics (SWIP). Li4SiO4 pebbles were fabricated by melt-spraying method. Most of the pebbles with the diazneter of 1.0 mm are well spherically shaped. The properties of the pebbles have been investigated. The results show that the pebbles produced by this method have a high density of 93% TD (theoretical density). It was also found that the open/closed porosity will be decreased after thermal treatment, but the average crush load will be increased to 7 N. The rotating electrode process (REP) has been adopted to produce beryllium pebble for impurity control and mass production. The pebbles with the diameter of 1.0 mm were produced by REP. The beryllium pebbles produced by REP look almost perfectly spherical with a very smooth surface and a high density of 98% TD. The test results indicate that REP method has excellent prospects for the fabrication of beryllium pebbles and the attractiveness of their properties.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘The pebble-bed reactor is one of the most promising designs for the nuclear energy industry. In this paper,a discrete element method-computational fluid dynamics(DEM-CFD) approach that includes thermal conduction, radiation, and natural convection mechanisms was proposed to simulate the thermal-fluid phenomena after the failure of forced circulation cooling system in a pebble-bed core. The whole large-scale packed bed was created using the DEM technique, and the calculated radial porosity of the bed was validated with empirical correlations reported by researchers. To reduce computational costs, a segment of the bed was extracted, which served as a good representative of the large-scale packed bed for CFD calculation. The temperature distributions simulated with two different fluids in this DEM-CFD approach were in good agreement with SANA experimental data. The influence of the natural convection mechanism on heat transfer must be taken into account for coolants with strong convective capacity. The proposed DEM-CFD methodology offers a computationally efficient and widely applied method for understanding the heat transfer process in a pebble-bed core. The method can also be easily extended to assess the passive safety features of newly designed fluoride-salt-cooled pebble-bed reactors.