This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to ...This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to improve the convergence. And its convergence is proved un- der some suitable conditions. Numerical results illustrate that the bi-extrapolated subgradient projection algorithm converges more quickly than the existing algorithms.展开更多
Cloud detection and classification form a basis in weather analysis. Split window algorithm (SWA) is one of the simple and matured algorithms used to detect and classify water and ice clouds in the atmosphere using sa...Cloud detection and classification form a basis in weather analysis. Split window algorithm (SWA) is one of the simple and matured algorithms used to detect and classify water and ice clouds in the atmosphere using satellite data. The recent availability of Himawari-8 data has considerably strengthened the possibility of better cloud classification owing to its enhanced multi-band configuration as well as high temporal resolution. In SWA, cloud classification is attained by considering the spatial distributions of the brightness temperature (BT) and brightness temperature difference (BTD) of thermal infrared bands. In this study, we compare unsupervised classification results of SWA using the band pair of band 13 and 15 (SWA13-15, 10 and 12 μm bands), versus that of band 15 and 16 (SWA15-16, 12 and 13 μm bands) over the Japan area. Different threshold values of BT and BTD are chosen in winter and summer seasons to categorize cloud regions into nine different types. The accuracy of classification is verified by using the cloud-top height information derived from the data of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). For this purpose, six different paths of the space-borne lidar are selected in both summer and winter seasons, on the condition that the time span of overpass falls within the time ranges between 01:00 and 05:00 UTC, which corresponds to the local time around noon. The result of verification indicates that the classification based on SWA13-15 can detect more cloud types as compared with that based on SWA15-16 in both summer and winter seasons, though the latter combination is useful for delineating cumulonimbus underneath dense cirrus展开更多
The increased concern over global climate change and lack of long-term sustainability of fossil fuels in the projected future has prompted further research into advanced alternative fuel vehicles to reduce vehicle emi...The increased concern over global climate change and lack of long-term sustainability of fossil fuels in the projected future has prompted further research into advanced alternative fuel vehicles to reduce vehicle emissions and fuel consumption. One of the primary advanced vehicle research areas involves electrification and hybridization of vehicles. As hybrid-electric vehicle technology has advanced, so has the need for more innovative control schemes for hybrid vehicles, including the development and optimization of hybrid powertrain transmission shift schedules. The hybrid shift schedule works in tandem with a cost function-based torque split algorithm that dynamically determines the optimal torque command for the electric motor and engine. The focus of this work is to develop and analyze the benefits and limitations of two different shift schedules for a position-3 (P3) parallel hybrid-electric vehicle. a traditional two-parameter shift schedule that operates as a function of vehicle accelerator position and vehicle speed (state of charge (SOC) independent shift schedule), and a three-parameter shift schedule that also adapts to fluctuations in the state of charge of the high voltage batteries (SOC dependent shift schedule). The shift schedules were generated using an exhaustive search coupled with a fitness function to evaluate all possible vehicle operating points. The generated shift schedules were then tested in the software-in-the-loop (SIL) environment and the vehicle-in-the-loop (VIL) environment and compared to each other, as well as to the stock 8L45 8-speed transmission shift schedule. The results show that both generated shift schedules improved upon the stock transmission shift schedule used in the hybrid powertrain comparing component efficiency, vehicle efficiency, engine fuel economy, and vehicle fuel economy.展开更多
In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an opt...In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.展开更多
In this paper, we propose two hybrid inertial CQ projection algorithms with linesearch process for the split feasibility problem. Based on the hybrid CQ projection algorithm, we firstly add the inertial term into the ...In this paper, we propose two hybrid inertial CQ projection algorithms with linesearch process for the split feasibility problem. Based on the hybrid CQ projection algorithm, we firstly add the inertial term into the iteration to accelerate the convergence of the algorithm, and adopt flexible rules for selecting the stepsize and the shrinking projection region, which makes an optimal stepsize available at each iteration. The shrinking projection region is the intersection of three sets, which are the set C and two hyperplanes. Furthermore, we modify the Armijo-type line-search step in the presented algorithm to get a new algorithm.The algorithms are shown to be convergent under certain mild assumptions. Besides, numerical examples are given to show that the proposed algorithms have better performance than the general CQ algorithm.展开更多
The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper...The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper, we present new iterative algorithms for solving the split common fixed point problem of demimetric mappings in Hilbert spaces. Moreover, our algorithm does not need any prior information of the operator norm. Weak and strong convergence theorems are given under some mild assumptions. The results in this paper are the extension and improvement of the recent results in the literature.展开更多
In this paper,we propose a new analysis framework to study the linear convergence of relaxed operator splitting methods,which can be viewed as an extension of the classic Krasnosel'skii-Mann iteration and Banach-P...In this paper,we propose a new analysis framework to study the linear convergence of relaxed operator splitting methods,which can be viewed as an extension of the classic Krasnosel'skii-Mann iteration and Banach-Picard contraction.As applications,we derive the linear convergence of the generalized proximal point algorithm and the relaxed forward-backward splitting method in a simple and elegant way.展开更多
In this paper,we make use of the boosting method to introduce a new learning algorithm for Gaussian Mixture Models (GMMs) called adapted Boosted Mixture Learning (BML). The method possesses the ability to rectify the ...In this paper,we make use of the boosting method to introduce a new learning algorithm for Gaussian Mixture Models (GMMs) called adapted Boosted Mixture Learning (BML). The method possesses the ability to rectify the existing problems in other conventional techniques for estimating the GMM parameters, due in part to a new mixing-up strategy to increase the number of Gaussian components. The discriminative splitting idea is employed for Gaussian mixture densities followed by learning via the introduced method. Then, the GMM classifier was applied to distinguish between healthy infants and those that present a selected set of medical conditions. Each group includes both full-term and premature infants. Cry-pattern for each pathological condition is created by using the adapted BML method and 13-dimensional Mel-Frequency Cepstral Coefficients (MFCCs) feature vector. The test results demonstrate that the introduced method for training GMMs has a better performance than the traditional method based upon random splitting and EM-based re-estimation as a reference system in multi-pathological classification task.展开更多
The split-radix 2/4 algorithm for discrete Hartley transform(DHT)of length-2~m isnow very popular.In this paper,the split-radix approach is generalized to length-p^m DHT.It isshown that the radix-p/p^2 algorithm is su...The split-radix 2/4 algorithm for discrete Hartley transform(DHT)of length-2~m isnow very popular.In this paper,the split-radix approach is generalized to length-p^m DHT.It isshown that the radix-p/p^2 algorithm is superior to both the radix-p and the radix-p^2 algorithmsin the number of multiplications.As an example,a radix-3/9 fast algorithm for length-3~m DHTis developed.And its diagram of butterfly operation is given.展开更多
Image inpainting is an important part of image science,but in the past,researches were focused on gray value image inpainting.In this paper,we investigate the inpainting effects of some variational models of color ima...Image inpainting is an important part of image science,but in the past,researches were focused on gray value image inpainting.In this paper,we investigate the inpainting effects of some variational models of color image diffusion.Five variational models for color image inpainting are proposed and their Split Bregman algorithms are designed.Their regularizers are LTV(Layered Total Variation) regularizer,CTV(Color Total Variation) regularizer,MTV(Multichannel Total Variation) regularizer,PA(Polyakov Action) regularizer and RPA(Reduced Polyakov Action) regularizer respectively.In order to compare their performances,we use the same data term...Some numerical experiments show the differences of the above mentioned models for color image inpainting.展开更多
To overcome the limitation that complex data types with noun attributes cannot be processed by rank learning algorithms, a new rank learning algorithm is designed. In the learning algorithm based on the decision tree,...To overcome the limitation that complex data types with noun attributes cannot be processed by rank learning algorithms, a new rank learning algorithm is designed. In the learning algorithm based on the decision tree, the splitting rule of the decision tree is revised with a new definition of rank impurity. A new rank learning algorithm, which can be intuitively explained, is obtained and its theoretical basis is provided. The experimental results show that in the aspect of average rank loss, the ranking tree algorithm outperforms perception ranking and ordinal regression algorithms and it also has a faster convergence speed. The rank learning algorithm based on the decision tree is able to process categorical data and select relative features.展开更多
基金Supported by Natural Science Foundation of Shanghai(14ZR1429200)National Science Foundation of China(11171221)+4 种基金Shanghai Leading Academic Discipline Project(XTKX2012)Innovation Program of Shanghai Municipal Education Commission(14YZ094)Doctoral Program Foundation of Institutions of Higher Educationof China(20123120110004)Doctoral Starting Projection of the University of Shanghai for Science and Technology(ID-10-303-002)Young Teacher Training Projection Program of Shanghai for Science and Technology
文摘This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to improve the convergence. And its convergence is proved un- der some suitable conditions. Numerical results illustrate that the bi-extrapolated subgradient projection algorithm converges more quickly than the existing algorithms.
文摘Cloud detection and classification form a basis in weather analysis. Split window algorithm (SWA) is one of the simple and matured algorithms used to detect and classify water and ice clouds in the atmosphere using satellite data. The recent availability of Himawari-8 data has considerably strengthened the possibility of better cloud classification owing to its enhanced multi-band configuration as well as high temporal resolution. In SWA, cloud classification is attained by considering the spatial distributions of the brightness temperature (BT) and brightness temperature difference (BTD) of thermal infrared bands. In this study, we compare unsupervised classification results of SWA using the band pair of band 13 and 15 (SWA13-15, 10 and 12 μm bands), versus that of band 15 and 16 (SWA15-16, 12 and 13 μm bands) over the Japan area. Different threshold values of BT and BTD are chosen in winter and summer seasons to categorize cloud regions into nine different types. The accuracy of classification is verified by using the cloud-top height information derived from the data of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). For this purpose, six different paths of the space-borne lidar are selected in both summer and winter seasons, on the condition that the time span of overpass falls within the time ranges between 01:00 and 05:00 UTC, which corresponds to the local time around noon. The result of verification indicates that the classification based on SWA13-15 can detect more cloud types as compared with that based on SWA15-16 in both summer and winter seasons, though the latter combination is useful for delineating cumulonimbus underneath dense cirrus
文摘The increased concern over global climate change and lack of long-term sustainability of fossil fuels in the projected future has prompted further research into advanced alternative fuel vehicles to reduce vehicle emissions and fuel consumption. One of the primary advanced vehicle research areas involves electrification and hybridization of vehicles. As hybrid-electric vehicle technology has advanced, so has the need for more innovative control schemes for hybrid vehicles, including the development and optimization of hybrid powertrain transmission shift schedules. The hybrid shift schedule works in tandem with a cost function-based torque split algorithm that dynamically determines the optimal torque command for the electric motor and engine. The focus of this work is to develop and analyze the benefits and limitations of two different shift schedules for a position-3 (P3) parallel hybrid-electric vehicle. a traditional two-parameter shift schedule that operates as a function of vehicle accelerator position and vehicle speed (state of charge (SOC) independent shift schedule), and a three-parameter shift schedule that also adapts to fluctuations in the state of charge of the high voltage batteries (SOC dependent shift schedule). The shift schedules were generated using an exhaustive search coupled with a fitness function to evaluate all possible vehicle operating points. The generated shift schedules were then tested in the software-in-the-loop (SIL) environment and the vehicle-in-the-loop (VIL) environment and compared to each other, as well as to the stock 8L45 8-speed transmission shift schedule. The results show that both generated shift schedules improved upon the stock transmission shift schedule used in the hybrid powertrain comparing component efficiency, vehicle efficiency, engine fuel economy, and vehicle fuel economy.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB301801)the National Natural Science Foundation of China (GrantNos. 91233202,10904099,11204188,61205097,and 11174211)
文摘In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.
基金Supported by the National Natural Science Foundation of China(72071130)。
文摘In this paper, we propose two hybrid inertial CQ projection algorithms with linesearch process for the split feasibility problem. Based on the hybrid CQ projection algorithm, we firstly add the inertial term into the iteration to accelerate the convergence of the algorithm, and adopt flexible rules for selecting the stepsize and the shrinking projection region, which makes an optimal stepsize available at each iteration. The shrinking projection region is the intersection of three sets, which are the set C and two hyperplanes. Furthermore, we modify the Armijo-type line-search step in the presented algorithm to get a new algorithm.The algorithms are shown to be convergent under certain mild assumptions. Besides, numerical examples are given to show that the proposed algorithms have better performance than the general CQ algorithm.
文摘The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper, we present new iterative algorithms for solving the split common fixed point problem of demimetric mappings in Hilbert spaces. Moreover, our algorithm does not need any prior information of the operator norm. Weak and strong convergence theorems are given under some mild assumptions. The results in this paper are the extension and improvement of the recent results in the literature.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1180145511871059+4 种基金11971238)China Postdoctoral Science Foundation(Grant Nos.2019M6634592020T130081)the Applied Basic Project of Sichuan Province(Grant No.2020YJ0111)the Open Project of Key Laboratory of School of Mathematical Sciences,Chongqing Normal University(Grant No.CSSXKFKTM202004)。
文摘In this paper,we propose a new analysis framework to study the linear convergence of relaxed operator splitting methods,which can be viewed as an extension of the classic Krasnosel'skii-Mann iteration and Banach-Picard contraction.As applications,we derive the linear convergence of the generalized proximal point algorithm and the relaxed forward-backward splitting method in a simple and elegant way.
文摘In this paper,we make use of the boosting method to introduce a new learning algorithm for Gaussian Mixture Models (GMMs) called adapted Boosted Mixture Learning (BML). The method possesses the ability to rectify the existing problems in other conventional techniques for estimating the GMM parameters, due in part to a new mixing-up strategy to increase the number of Gaussian components. The discriminative splitting idea is employed for Gaussian mixture densities followed by learning via the introduced method. Then, the GMM classifier was applied to distinguish between healthy infants and those that present a selected set of medical conditions. Each group includes both full-term and premature infants. Cry-pattern for each pathological condition is created by using the adapted BML method and 13-dimensional Mel-Frequency Cepstral Coefficients (MFCCs) feature vector. The test results demonstrate that the introduced method for training GMMs has a better performance than the traditional method based upon random splitting and EM-based re-estimation as a reference system in multi-pathological classification task.
文摘The split-radix 2/4 algorithm for discrete Hartley transform(DHT)of length-2~m isnow very popular.In this paper,the split-radix approach is generalized to length-p^m DHT.It isshown that the radix-p/p^2 algorithm is superior to both the radix-p and the radix-p^2 algorithmsin the number of multiplications.As an example,a radix-3/9 fast algorithm for length-3~m DHTis developed.And its diagram of butterfly operation is given.
文摘Image inpainting is an important part of image science,but in the past,researches were focused on gray value image inpainting.In this paper,we investigate the inpainting effects of some variational models of color image diffusion.Five variational models for color image inpainting are proposed and their Split Bregman algorithms are designed.Their regularizers are LTV(Layered Total Variation) regularizer,CTV(Color Total Variation) regularizer,MTV(Multichannel Total Variation) regularizer,PA(Polyakov Action) regularizer and RPA(Reduced Polyakov Action) regularizer respectively.In order to compare their performances,we use the same data term...Some numerical experiments show the differences of the above mentioned models for color image inpainting.
基金The Planning Program of Science and Technology of Hunan Province (No05JT1039)
文摘To overcome the limitation that complex data types with noun attributes cannot be processed by rank learning algorithms, a new rank learning algorithm is designed. In the learning algorithm based on the decision tree, the splitting rule of the decision tree is revised with a new definition of rank impurity. A new rank learning algorithm, which can be intuitively explained, is obtained and its theoretical basis is provided. The experimental results show that in the aspect of average rank loss, the ranking tree algorithm outperforms perception ranking and ordinal regression algorithms and it also has a faster convergence speed. The rank learning algorithm based on the decision tree is able to process categorical data and select relative features.