The widespread application of direct ethanol fuel cells is hampered due to the low activity,high cost and poor operation durability of electrocatalysts for ethanol oxidation reaction(EOR).Herein,we report a one-pot sy...The widespread application of direct ethanol fuel cells is hampered due to the low activity,high cost and poor operation durability of electrocatalysts for ethanol oxidation reaction(EOR).Herein,we report a one-pot synthetic method to synthesize PdPb3 nanochains with well-defined shape,size and composition via a solution-phase reduction method.The morphology,composition distribution and structure characteristics of PdPb3 nanochains were investigated by transmission electron microscopy,X-ray photoelectron spectroscopy and X-ray diffraction.Thanks to the unique structure,the as-obtained PdPb3 nanochains can manifest much higher mass activity(2523 mA·mg-1)and higher operation durability than commercial Pd/C(1272 mA·mg-1)during the EOR measurements.More importantly,further CO-stripping measurements indicate that the incorporation of Pb species could favor the oxidative removal of CO intermediates on the Pd electrode at the negative potential and enhance the EOR activity and stability,making it possible to develop highly active and durable electrocatalysts.展开更多
The construction of novel inorganic‐organic hybrid nanomaterials for synchronous photocatalyticremoval of heavy metal ions and organic pollutants has received significant attention.We successfullysynthesized gold‐lo...The construction of novel inorganic‐organic hybrid nanomaterials for synchronous photocatalyticremoval of heavy metal ions and organic pollutants has received significant attention.We successfullysynthesized gold‐loaded graphene oxide/PDPB(polymer poly(diphenylbutadiyne))composites(Au‐GO/PDPB)through a facile mechanical agitation and photoreduction method.The compositeswere characterized by XPS and TEM images,which confirmed the presence of GO and Au nanoparticleson the PDPB.The as‐prepared Au‐GO/PDPB composites displayed enhanced photocatalytic activity compared with that of pure PDPB for the synchronous photoreduction of hexavalent chromium(Cr(VI))and photo‐oxidation of phenol.We also determined the optimal loading mass of GO and Au nanoparticles on the PDPB;the Au1‐GO2/PDPB(2.0wt%GO and1.0wt%Au)composite displayed the best photocatalytic activity among all the catalysts.Our study provides a facile way to prepare inorganic‐organic composites for the synchronous photocatalytic removal of heavy metal ions and organic pollutants.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Less-expensive but efficient electrocatalysts are essential to accelerate the commercialization of fuel cells.Herein,ultrathin PdPb nanowires(PdPb NWs)with a diameter of around 3.5 nm were prepared by using a one-step...Less-expensive but efficient electrocatalysts are essential to accelerate the commercialization of fuel cells.Herein,ultrathin PdPb nanowires(PdPb NWs)with a diameter of around 3.5 nm were prepared by using a one-step hydrothermal method.The introduction of Pb in Pd-based bimetallic nanostructures produced high differences in the morphology from Pd nanoparticles(NPs)to various PdPb NWs.All the as-prepared PdPb NWs exhibited better electrocatalytic activity and durability than Pd NPs due to the synergistic effect.Especially,Pd65Pb35 possessed the highest current density of about 3460 mA mgPd^−1 for the ethanol electrooxidation which was around 6.3 times higher than commercial Pd/C.The high-performance of Pd65Pb35 is attributed to the defect-rich and stable nanowire structure with optimized surface atomic arrangement,as evidenced by high resolution transmission electron microscopy measurements and long-time treatment in an acidic media.The differences in the morphologies and electrocatalytic activities of PdPb NWs with varied Pb contents have also been discussed and analyzed.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21673150,21703146 and 51802206)the Natural Science Foundation of Jiangsu Province(Nos.BK20180097 and BK20180846)+2 种基金the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(111 Project)the Collaborative Innovation Center of Suzhou Nano Science and Technology(NANO-CIC)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘The widespread application of direct ethanol fuel cells is hampered due to the low activity,high cost and poor operation durability of electrocatalysts for ethanol oxidation reaction(EOR).Herein,we report a one-pot synthetic method to synthesize PdPb3 nanochains with well-defined shape,size and composition via a solution-phase reduction method.The morphology,composition distribution and structure characteristics of PdPb3 nanochains were investigated by transmission electron microscopy,X-ray photoelectron spectroscopy and X-ray diffraction.Thanks to the unique structure,the as-obtained PdPb3 nanochains can manifest much higher mass activity(2523 mA·mg-1)and higher operation durability than commercial Pd/C(1272 mA·mg-1)during the EOR measurements.More importantly,further CO-stripping measurements indicate that the incorporation of Pb species could favor the oxidative removal of CO intermediates on the Pd electrode at the negative potential and enhance the EOR activity and stability,making it possible to develop highly active and durable electrocatalysts.
基金supported by the National Natural Science Foundation of China(21577036,21377038,21237003,21677048)the National Basic Research Program of China(973 Program,2013CB632403)+1 种基金State Key Research Development Program of China(2016YFA0204200)the Fundamental Research Funds for the Central Universities(22A201514021)~~
文摘The construction of novel inorganic‐organic hybrid nanomaterials for synchronous photocatalyticremoval of heavy metal ions and organic pollutants has received significant attention.We successfullysynthesized gold‐loaded graphene oxide/PDPB(polymer poly(diphenylbutadiyne))composites(Au‐GO/PDPB)through a facile mechanical agitation and photoreduction method.The compositeswere characterized by XPS and TEM images,which confirmed the presence of GO and Au nanoparticleson the PDPB.The as‐prepared Au‐GO/PDPB composites displayed enhanced photocatalytic activity compared with that of pure PDPB for the synchronous photoreduction of hexavalent chromium(Cr(VI))and photo‐oxidation of phenol.We also determined the optimal loading mass of GO and Au nanoparticles on the PDPB;the Au1‐GO2/PDPB(2.0wt%GO and1.0wt%Au)composite displayed the best photocatalytic activity among all the catalysts.Our study provides a facile way to prepare inorganic‐organic composites for the synchronous photocatalytic removal of heavy metal ions and organic pollutants.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金This work was financially supported by the National Natural Science Foundation of China(21773133)Taishan Scholars Advantageous and Distinctive Discipline Program for supporting the research team of energy storage materials of Shandong Province,China.
文摘Less-expensive but efficient electrocatalysts are essential to accelerate the commercialization of fuel cells.Herein,ultrathin PdPb nanowires(PdPb NWs)with a diameter of around 3.5 nm were prepared by using a one-step hydrothermal method.The introduction of Pb in Pd-based bimetallic nanostructures produced high differences in the morphology from Pd nanoparticles(NPs)to various PdPb NWs.All the as-prepared PdPb NWs exhibited better electrocatalytic activity and durability than Pd NPs due to the synergistic effect.Especially,Pd65Pb35 possessed the highest current density of about 3460 mA mgPd^−1 for the ethanol electrooxidation which was around 6.3 times higher than commercial Pd/C.The high-performance of Pd65Pb35 is attributed to the defect-rich and stable nanowire structure with optimized surface atomic arrangement,as evidenced by high resolution transmission electron microscopy measurements and long-time treatment in an acidic media.The differences in the morphologies and electrocatalytic activities of PdPb NWs with varied Pb contents have also been discussed and analyzed.