Phosphoric acid/phosphate solu-tions are commonly used as buffer solutions in the fundamental stud-ies in electrochemistry.Informa-tion on the nature of adsorbed(bi)phosphate as well as the do-main structures is of gr...Phosphoric acid/phosphate solu-tions are commonly used as buffer solutions in the fundamental stud-ies in electrochemistry.Informa-tion on the nature of adsorbed(bi)phosphate as well as the do-main structures is of great impor-tance in unveiling the impact on electrochemical processes occur-ring at electrode electrolyte interface.In this work,the pH effect on the adsorption of phosphate related species on Pd(111)electrode has been investigated by cyclic voltammetry over a broad pH range from 1 to 14.Af-ter carefully analyzing the related onset desorption potential of(bi)phosphate adsorbate to the thermodynamic equilibrium potential of the corresponding electrode reactions,three dif-ferent phosphate related adsorbates have been identified,which are highly pH-dependent.Our analysis reveals that the dominant phosphate anions in bulk solution undergo deprotona-tion upon adsorption.At pH<1.5,the main adsorbate on Pd(111)is;H_(2)PO_(4)^(λ_(1)^(-))in solutions with 1.5<pH<7,the main adsorbate changes into.HPO_(4)^(λ_2^(-))At higher pHs,PO_(4)^(λ_(3)^(-))on electrode surface dominates.The exact charging value ofλ_(i),which represents the true va-lence of the(bi)phosphate adsorbate,could be determined using theoretical calculations.In addition,our results can not rule out the possibility of co-adsorbed H_(3)PO_(4)molecules on Pd(111)at pH<1.5,which needs to be proved by infrared spectroscopy in the future.展开更多
Owing to the ppb-level detection standard toward the toxic and harmful gas,the detection of trace gases has become an important subject in the field of indoor environment management.However,the traditional resistive g...Owing to the ppb-level detection standard toward the toxic and harmful gas,the detection of trace gases has become an important subject in the field of indoor environment management.However,the traditional resistive gas sensors hardly meet the requirement due to the weak signal generated by trace gas molecules that are difficult to capture.Herein,a visible-light-assisted Pd/TiO_(2)gas sensor is proposed to endow the effective detection of trace formaldehyde(HCHO)gas without heating temperature.Benefiting from the enhanced photocatalytic properties of TiO_(2)by Pd decoration,the visible-light-assisted Pd/TiO_(2)gas sensor can detect the HCHO gas as low as80×10^(–9)at room temperature.The successful preparation of nanoscale TiO_(2)sensing layer is facilitated by the ultrathin carbon nanotube interdigital electrode in the gas sensor,which avoids the discontinuity of the sensing layer caused by the excessive thickness of the traditional metal electrode.In addition,the whole preparation process of the Pd/TiO_(2)gas sensor with carbon nanotube electrodes is compatible with mainstream CMOS fabrication technology,which is expected to realize the batch fabrication and micro-integrated application of gas sensors.It is expected that our work can provide a new strategy for the batch preparation of high-performance trace HCHO gas sensors and their future applications in portable electronic devices such as smartphones.展开更多
Pd-MnO2/TiO2 nanotube arrays(NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO2/TiO2 NTAs photo electrodes were analyzed by scanning electro...Pd-MnO2/TiO2 nanotube arrays(NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO2/TiO2 NTAs photo electrodes were analyzed by scanning electron microscopy(SEM), X-ray diffraction(XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet–visible diffuse reflectance spectrum(DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination(xenon light). The performed analyses illustrated that Pd-MnO2 codoped particles were successfully deposited onto the surface of the TiO2 nanotube arrays;DRS results showed significant improvement in visible light absorption which was between400 and 700 nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant(Rhodamine B) illustrated a superior photocatalytic(PC) efficiency of approximately 95% compared to the bare TiO2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of UOH radicals.展开更多
The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that ...The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that in 0.1 mol/L HClO4. It is found that adsorbed sulfate has significant inhibition effect on FAO kinetics. After addition of 0.05 mol/L or 0.1 mol/L Na2SO4, FAO current in the negative-going scan is found to be significantly smaller than that at the same potential in the positive-going scan. We speculate that at potentials positive of the phase transition potential for the (SO4*ad)m+[(H2O)n-H3O+] or(SO4*ad)m+[Na+(H2O)n-H3O+] adlayer, the adlayer structure probably becomes denser and more stable with the increase of potential or with the addition of Na2SO4. The formation of connected adlayer network greatly enhance the stability of the adlayer, and the insertion of positive-charged H+ or Na+ into the adlayer network further reduces the electrostatic repulsion between partially charged sulfates. As a result, the destruction/desorption of compact sulfate adlayer becomes more difficult, which leaves much less free sites on the surface for FAO, and thus FAO kinetics at higher potentials and in the subsequent negative-going potential scan is significantly inhibited.展开更多
Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electroche...Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiOxHy/Sb-SnO2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L-(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm-(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na2SO4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiOxHy/Sb-SnO2electrode,which provides an efficient way for elimination of aniline from aqueous solution.展开更多
Four methods, including voltammetric measurement of double layer capacitance, surface oxides reduction, under potential deposition of Cu and carbon monoxide (CO) stripping have been applied to evaluate the real surf...Four methods, including voltammetric measurement of double layer capacitance, surface oxides reduction, under potential deposition of Cu and carbon monoxide (CO) stripping have been applied to evaluate the real surface area of a polycrystalline Pd (pc-Pd) electrode. The results reveal that the second and third methods lead to consistent results with deviations below 5%. And from the determined double layer capacitance and CO stripping charge, it is deduced that the double layer capacity unit area is 23.1±0.4μF/cm2 and the saturated CO adlayer should be ca. 0.66 ML in order to ensure that the real surface area as determined is consistent with the other two techniques. The applicability as well as the attentions when applying these techniques for the determination of the real surface area of pc-Pd electrodes have been discussed.展开更多
Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The p...Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.展开更多
Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterize...Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterized by SEM and XRD. Mixture uniform design was used in the optimization of the electrolytic conditions; mathematical model was established according to the rate of wiping COD off, which revealed the relationship between the current intensity, time of electrolysis, the amount of doped Pr, and the ratio of area (SnOJTi:Al). On the basis of the analysis of the empirical model, the optimized parameters had been obtained; the rate of wiping COD off was up to 94.9%, it decreased from 392 to 20 mg/L. Experimental results showed that the electrocatalytic performance of the electrode doped with Pr was superior for the treatment of pharmaceutical wastewater.展开更多
Electrochemical dechlorination of chloroform in neutral aqueous solution was investigated using palladium-loaded electrodes at ambient temperature. Palladium/foam-nickel (Pd/foam-Ni) and palladium/polymeric pyrrole ...Electrochemical dechlorination of chloroform in neutral aqueous solution was investigated using palladium-loaded electrodes at ambient temperature. Palladium/foam-nickel (Pd/foam-Ni) and palladium/polymeric pyrrole film/foam-nickel (Pd/PPy/foam-Ni) composite electrodes which provided catalytic surface for reductive dechlorination of chloroform in aqueous solution were prepared using an electrodepositing method. Scanning electron microscope (SEM) micrographs showed that polymeric pyrrole film modified the electrode-surface characteristics and resulted in the uniform dispersion of needle-shaped palladium particles on foam-Ni supporting electrode. The experimental results of dechlorination indicated that the removal efficiency of chloroform and current efficiency in neutral aqueous solution on Pd/PPy/foam-Ni electrode could be up to 36.8% and 33.0% at dechlorination current of 0.1 mA and dechlorination time of 180 min, which is much higher than that of Pd/foam-Ni electrode.展开更多
Electrochemicaldegradation of2,4-dichlorophenol (2,4-DCP) in aqueous solutionwas investigated over Ti/SnO2-Sb anode. The factors influencing thedegradation rate, such as applied currentdensity (2-40 mA/cm2 ), pH ...Electrochemicaldegradation of2,4-dichlorophenol (2,4-DCP) in aqueous solutionwas investigated over Ti/SnO2-Sb anode. The factors influencing thedegradation rate, such as applied currentdensity (2-40 mA/cm2 ), pH (3-11) and initial concentration (5-200 mg/L)were evaluated. Thedegradation of2,4-DCP followed apparent pseudo first-order kinetics. Thedegradation ratio on Ti/SnO2 -Sb anode attained 〉 99.9% after 20 min of electrolysis at initial 5-200 mg/L concentrations at a constant currentdensity of 30 mA/cm2 with a 10 mmol/L sodium sulphate (Na2SO4 ) supporting electrolyte solution. The results showed that 2,4-DCP (100 mg/L)degradation and total organic carbon (TOC) removal ratio achieved 99.9% and 92.8%, respectively, at the optimal conditions after 30 min electrolysis. Under this condition, thedegradation rate constant (k) and thedegradation half-life (t1/2 )were 0.21 min1 and (2.8 ± 0.2) min, respectively. Mainly carboxylic acids (propanoic acid, maleic acid, propanedioic acid, acetic acid and oxalic acid) weredetected as intermediates. The energy efficiencies for2,4-DCPdegradation (5-200 mg/L)with Ti/SnO2-Sb anode ranged from 0.672 to 1.602 g/kWh. The Ti/SnO2-Sb anodewith a high activity to rapid organic oxidation could be employed todegrade chlorophenols, particularly2,4-DCP inwastewater.展开更多
Ti3C2Tx,a novel two-dimensional layer material,is widely used as electrode materials of supercapacitor due to its good metal conductivity,redox reaction active surface,and so on.However,there are many challenges to be...Ti3C2Tx,a novel two-dimensional layer material,is widely used as electrode materials of supercapacitor due to its good metal conductivity,redox reaction active surface,and so on.However,there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance,such as restacking,re-crushing,and oxidation of titanium.Recently,many advances have been proposed to enhance capacitance performance of Ti3C2Tx.In this review,recent strategies for improving specific capacitance are summarized and compared,for example,film formation,surface modification,and composite method.Furthermore,in order to comprehend the mechanism of those efforts,this review analyzes the energy storage performance in different electrolytes and influencing factors.This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.展开更多
This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface wi...This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft.展开更多
The different electrocatalytic reactors could be constructed for the electrocatalytic oxidation of 2,2,3,3-tetrafluoro-1-propanol(TFP) with two typical MnO_x/Ti electrodes, i.e.the electrocatalytic membrane reactor(EC...The different electrocatalytic reactors could be constructed for the electrocatalytic oxidation of 2,2,3,3-tetrafluoro-1-propanol(TFP) with two typical MnO_x/Ti electrodes, i.e.the electrocatalytic membrane reactor(ECMR) with the Ti membrane electrode and the electrocatalytic reactor(ECR) with the traditional Ti plate electrode.For the electro-oxidation of TFP, the conversion with membrane electrode(70.1%) in the ECMR was 3.3 and 1.7 times higher than that of the membrane electrode without permeate flow(40.8%) in the ECMR and the plate electrode(21.5%) in the ECR, respectively.Obviously, the pore structure of membrane and convection-enhanced mass transfer in the ECMR dramatically improved the catalytic activity towards the electro-oxidation of TFP.The specific surface area of porous electrode was 2.22 m^2·g^(-1).The surface area of plate electrode was 2.26 cm^2(1.13 cm^2× 2).In addition, the electrochemical results showed that the mass diffusion coefficient of the MnO_x/Ti membrane electrode(1.80 × 10^(-6) cm^2·s^(-1)) could be increased to 6.87 × 10^(-6) cm^2·s^(-1) at the certain flow rate with pump, confirming the lower resistance of mass transfer due to the convection-enhanced mass transfer during the operation of the ECMR.Hence, the porous structure and convection-enhanced mass transfer would improve the electrochemical property of the membrane electrode and the catalytic performance of the ECMR,which could give guideline for the design and application of the porous electrode and electrochemical reactor.展开更多
Regulation of the electronic structure and interface property becomes a major strategy in the preparation of electrocatalyst.This paper reports the synthesis of cerium(Ce)and sodium dodecyl benzene sulfonate(SDBS)como...Regulation of the electronic structure and interface property becomes a major strategy in the preparation of electrocatalyst.This paper reports the synthesis of cerium(Ce)and sodium dodecyl benzene sulfonate(SDBS)comodified Ti/PbO_(2)electrodes(Ti/PbO2CeSDBS).Ce and SDBS could greatly change the electronic structure and interface property of PbO2.Ti/PbO_(2)CeSDBS exhibited excellent electrocatalytic activity and stability in Rhodamine B(RhB)electrocatalytic oxidation reaction.The improved electrocatalytic activity associates with the synergistic effect of electronic and interface factors.In the electrochemical degradation of RhB,the removal efficiencies of RhB and COD are about 0.880 and 0.694 respectively after the electrolysis of 220 min with Ti/PbO_(2)Ce4SDBS40,which are higher than the contrast Ti/PbO_(2)electrodes.In the meantime,the accelerated lifetime of Ti/PbO_(2)Ce4SDBS40 is more than 6.2 times than that of Ti/PbO_(2).展开更多
Ti/SnO2–Sb electrode has a good effect on the removal of organic pollutants. But its short service life limits its large-scale application in industry. Electro-catalytic degradation performances and service life of t...Ti/SnO2–Sb electrode has a good effect on the removal of organic pollutants. But its short service life limits its large-scale application in industry. Electro-catalytic degradation performances and service life of the electrode can be significantly improved by doping rare earth(RE) ions into the oxide coating of Ti/SnO2–Sb electrode. Ti/SnO2–Sb electrodes doped with different RE elements(Ce, Dy, La, and Eu) were prepared by the thermal decomposition method at 550 ℃. Electro-catalytic degradation performances of electrodes doped with different RE elements were evaluated by linear sweep voltammetry(LSV) and Tafel curves. During the electrolysis,the conversion of p-nitrophenol was performed with these electrodes as anodes under galvanostatic control. The structures and morphologies of the surface coating of the electrodes were characterized by scanning electron microscope(SEM). The results demonstrate that the electro-catalytic degradation performances of Ti/SnO2–Sb electrodes are improved to different levels by doping different RE ions. Improved Ti/SnO2–Sb electrodes by the introduction of different RE have higher oxygen evolution potential, better electro-catalysis ability, better coverage,and longer electrode life.展开更多
The electrochemical treatment of COD contained in biologically pretreated coking wastewater treated by a three-dimensional electrode system with modified coke as the particle electrode was investigated. And the electr...The electrochemical treatment of COD contained in biologically pretreated coking wastewater treated by a three-dimensional electrode system with modified coke as the particle electrode was investigated. And the electrochemical perromance of the coke modified with various active components was studied. The results show that the coke modified with Fe(NO3)2 has the lowest energy consumption and higher COD removal rate under the same condition, and the modified coke has better surface characteristics for the purpose of this study. In addition, the kinetic constant was also calculated. The study shows that the three-dimensional electrode system with Fe (NO3)z-modified coke can give a satisfactory solution in biologically pretreated coking wastewater.展开更多
The Ti base PbO 2 electrode prepared by electrodeposition of PbO 2 on the surface of titanium was used for electro catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition...The Ti base PbO 2 electrode prepared by electrodeposition of PbO 2 on the surface of titanium was used for electro catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition of PbO 2 at a higher current density for a short time, then followed by a lower current density can get a compact and combinative PbO 2 layer. The properties of a Ti/PbO 2 electrode with an interlayer of oxide are the best. When this kind of electrode is used to treat phenol containing waste water, the phenol removal rate is higher and the slot voltage is lower. In addition, by using the phenol removal rate as an index, the influences of electrolysis current density, mass transfer condition and pH were studied and the optimal condition was confirmed.展开更多
The electrochemical behaviour of Ti(Ⅲ) and Ti(Ⅱ) in LiCl-KCl eutectic system has been studied by cyclic voltammetry and chronoamperometry.The cathodic reduction of Ti(Ⅲ) and Ti(Ⅱ) has been found to be stepwise:Ti(...The electrochemical behaviour of Ti(Ⅲ) and Ti(Ⅱ) in LiCl-KCl eutectic system has been studied by cyclic voltammetry and chronoamperometry.The cathodic reduction of Ti(Ⅲ) and Ti(Ⅱ) has been found to be stepwise:Ti(Ⅲ)+e=Ti(Ⅱ),Ti(Ⅱ)+2e =Ti.The reductions are diffusion controlled.When an equilibrium between Ti subchlorides and excess metallic Ti was estab- lished by reaction 2TiCl_3+Ti=3TiCl_2 in LiCl-KCl melt at 475℃,then the average valence of Ti is less than 2.1.In this system the diffusion coefficient for Ti(Ⅱ) ion was calculated as D=2.5×10^(-5)cm^2·s^(-1).The chronoamperometric studies showed that the initial nucleation stage and growth of nuclei were observed when Ti ions were electrodeposited on low carbon steel substrate. The investigation of nucleation of metal may provide the method for obtaining smooth,coherent and adherent deposits of titanium.展开更多
基金supported by the National Natural Science Foundation of China(No.22172151)。
文摘Phosphoric acid/phosphate solu-tions are commonly used as buffer solutions in the fundamental stud-ies in electrochemistry.Informa-tion on the nature of adsorbed(bi)phosphate as well as the do-main structures is of great impor-tance in unveiling the impact on electrochemical processes occur-ring at electrode electrolyte interface.In this work,the pH effect on the adsorption of phosphate related species on Pd(111)electrode has been investigated by cyclic voltammetry over a broad pH range from 1 to 14.Af-ter carefully analyzing the related onset desorption potential of(bi)phosphate adsorbate to the thermodynamic equilibrium potential of the corresponding electrode reactions,three dif-ferent phosphate related adsorbates have been identified,which are highly pH-dependent.Our analysis reveals that the dominant phosphate anions in bulk solution undergo deprotona-tion upon adsorption.At pH<1.5,the main adsorbate on Pd(111)is;H_(2)PO_(4)^(λ_(1)^(-))in solutions with 1.5<pH<7,the main adsorbate changes into.HPO_(4)^(λ_2^(-))At higher pHs,PO_(4)^(λ_(3)^(-))on electrode surface dominates.The exact charging value ofλ_(i),which represents the true va-lence of the(bi)phosphate adsorbate,could be determined using theoretical calculations.In addition,our results can not rule out the possibility of co-adsorbed H_(3)PO_(4)molecules on Pd(111)at pH<1.5,which needs to be proved by infrared spectroscopy in the future.
基金financially supported by the National Natural Science Foundation of China(Nos.62071410 and 62101477)Hunan Provincial Natural Science Foundation(No.2021JJ40542)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20210627)。
文摘Owing to the ppb-level detection standard toward the toxic and harmful gas,the detection of trace gases has become an important subject in the field of indoor environment management.However,the traditional resistive gas sensors hardly meet the requirement due to the weak signal generated by trace gas molecules that are difficult to capture.Herein,a visible-light-assisted Pd/TiO_(2)gas sensor is proposed to endow the effective detection of trace formaldehyde(HCHO)gas without heating temperature.Benefiting from the enhanced photocatalytic properties of TiO_(2)by Pd decoration,the visible-light-assisted Pd/TiO_(2)gas sensor can detect the HCHO gas as low as80×10^(–9)at room temperature.The successful preparation of nanoscale TiO_(2)sensing layer is facilitated by the ultrathin carbon nanotube interdigital electrode in the gas sensor,which avoids the discontinuity of the sensing layer caused by the excessive thickness of the traditional metal electrode.In addition,the whole preparation process of the Pd/TiO_(2)gas sensor with carbon nanotube electrodes is compatible with mainstream CMOS fabrication technology,which is expected to realize the batch fabrication and micro-integrated application of gas sensors.It is expected that our work can provide a new strategy for the batch preparation of high-performance trace HCHO gas sensors and their future applications in portable electronic devices such as smartphones.
基金supported by the National Natural Science Foundation of China (No. 51178138)the National Creative Research Groups of China (No. 51121062)the State Key Laboratory of Urban Water Resources and Environment (No. 2010DX03)
文摘Pd-MnO2/TiO2 nanotube arrays(NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO2/TiO2 NTAs photo electrodes were analyzed by scanning electron microscopy(SEM), X-ray diffraction(XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet–visible diffuse reflectance spectrum(DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination(xenon light). The performed analyses illustrated that Pd-MnO2 codoped particles were successfully deposited onto the surface of the TiO2 nanotube arrays;DRS results showed significant improvement in visible light absorption which was between400 and 700 nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant(Rhodamine B) illustrated a superior photocatalytic(PC) efficiency of approximately 95% compared to the bare TiO2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of UOH radicals.
基金supported by the National Natural Science Foundation of China(No.21872132 and No.21832004)973 Program from the Ministry of Science and Technology of China(No.201503932301)
文摘The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that in 0.1 mol/L HClO4. It is found that adsorbed sulfate has significant inhibition effect on FAO kinetics. After addition of 0.05 mol/L or 0.1 mol/L Na2SO4, FAO current in the negative-going scan is found to be significantly smaller than that at the same potential in the positive-going scan. We speculate that at potentials positive of the phase transition potential for the (SO4*ad)m+[(H2O)n-H3O+] or(SO4*ad)m+[Na+(H2O)n-H3O+] adlayer, the adlayer structure probably becomes denser and more stable with the increase of potential or with the addition of Na2SO4. The formation of connected adlayer network greatly enhance the stability of the adlayer, and the insertion of positive-charged H+ or Na+ into the adlayer network further reduces the electrostatic repulsion between partially charged sulfates. As a result, the destruction/desorption of compact sulfate adlayer becomes more difficult, which leaves much less free sites on the surface for FAO, and thus FAO kinetics at higher potentials and in the subsequent negative-going potential scan is significantly inhibited.
基金supported by the National Natural Science Foundation of China(21507104)the Fundamental Research Funds for the Central Universities of China
文摘Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiOxHy/Sb-SnO2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L-(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm-(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na2SO4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiOxHy/Sb-SnO2electrode,which provides an efficient way for elimination of aniline from aqueous solution.
文摘Four methods, including voltammetric measurement of double layer capacitance, surface oxides reduction, under potential deposition of Cu and carbon monoxide (CO) stripping have been applied to evaluate the real surface area of a polycrystalline Pd (pc-Pd) electrode. The results reveal that the second and third methods lead to consistent results with deviations below 5%. And from the determined double layer capacitance and CO stripping charge, it is deduced that the double layer capacity unit area is 23.1±0.4μF/cm2 and the saturated CO adlayer should be ca. 0.66 ML in order to ensure that the real surface area as determined is consistent with the other two techniques. The applicability as well as the attentions when applying these techniques for the determination of the real surface area of pc-Pd electrodes have been discussed.
基金Project supported by the Institute of Environmental Engineering,Peking University and China Postdoctoral Science Foundation(No.2005037032)
文摘Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.
基金the Fund of the Natural Science of Guangxi (0731015)
文摘Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterized by SEM and XRD. Mixture uniform design was used in the optimization of the electrolytic conditions; mathematical model was established according to the rate of wiping COD off, which revealed the relationship between the current intensity, time of electrolysis, the amount of doped Pr, and the ratio of area (SnOJTi:Al). On the basis of the analysis of the empirical model, the optimized parameters had been obtained; the rate of wiping COD off was up to 94.9%, it decreased from 392 to 20 mg/L. Experimental results showed that the electrocatalytic performance of the electrode doped with Pr was superior for the treatment of pharmaceutical wastewater.
文摘Electrochemical dechlorination of chloroform in neutral aqueous solution was investigated using palladium-loaded electrodes at ambient temperature. Palladium/foam-nickel (Pd/foam-Ni) and palladium/polymeric pyrrole film/foam-nickel (Pd/PPy/foam-Ni) composite electrodes which provided catalytic surface for reductive dechlorination of chloroform in aqueous solution were prepared using an electrodepositing method. Scanning electron microscope (SEM) micrographs showed that polymeric pyrrole film modified the electrode-surface characteristics and resulted in the uniform dispersion of needle-shaped palladium particles on foam-Ni supporting electrode. The experimental results of dechlorination indicated that the removal efficiency of chloroform and current efficiency in neutral aqueous solution on Pd/PPy/foam-Ni electrode could be up to 36.8% and 33.0% at dechlorination current of 0.1 mA and dechlorination time of 180 min, which is much higher than that of Pd/foam-Ni electrode.
基金supported by the National Science Foundation for Innovative Research Group of China(No.51121003)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110003110023)the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control of China
文摘Electrochemicaldegradation of2,4-dichlorophenol (2,4-DCP) in aqueous solutionwas investigated over Ti/SnO2-Sb anode. The factors influencing thedegradation rate, such as applied currentdensity (2-40 mA/cm2 ), pH (3-11) and initial concentration (5-200 mg/L)were evaluated. Thedegradation of2,4-DCP followed apparent pseudo first-order kinetics. Thedegradation ratio on Ti/SnO2 -Sb anode attained 〉 99.9% after 20 min of electrolysis at initial 5-200 mg/L concentrations at a constant currentdensity of 30 mA/cm2 with a 10 mmol/L sodium sulphate (Na2SO4 ) supporting electrolyte solution. The results showed that 2,4-DCP (100 mg/L)degradation and total organic carbon (TOC) removal ratio achieved 99.9% and 92.8%, respectively, at the optimal conditions after 30 min electrolysis. Under this condition, thedegradation rate constant (k) and thedegradation half-life (t1/2 )were 0.21 min1 and (2.8 ± 0.2) min, respectively. Mainly carboxylic acids (propanoic acid, maleic acid, propanedioic acid, acetic acid and oxalic acid) weredetected as intermediates. The energy efficiencies for2,4-DCPdegradation (5-200 mg/L)with Ti/SnO2-Sb anode ranged from 0.672 to 1.602 g/kWh. The Ti/SnO2-Sb anodewith a high activity to rapid organic oxidation could be employed todegrade chlorophenols, particularly2,4-DCP inwastewater.
基金National Natural Science Foundation of China with Grant No.21905304Natural Science Foundation of Shandong Province(No.ZR2019BEM031)the Fundamental Research Funds for the Central Universities(Nos.18CX02158A and 19CX05001A).
文摘Ti3C2Tx,a novel two-dimensional layer material,is widely used as electrode materials of supercapacitor due to its good metal conductivity,redox reaction active surface,and so on.However,there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance,such as restacking,re-crushing,and oxidation of titanium.Recently,many advances have been proposed to enhance capacitance performance of Ti3C2Tx.In this review,recent strategies for improving specific capacitance are summarized and compared,for example,film formation,surface modification,and composite method.Furthermore,in order to comprehend the mechanism of those efforts,this review analyzes the energy storage performance in different electrolytes and influencing factors.This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.
文摘This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft.
基金Supported by the National Natural Science Foundation of China(21676200,21576208)the Program for Innovative Research Team in University of Ministry of Education of China(IRT-17R80)+2 种基金the Science and Technology Plans of Tianjin(17JCYBJC19800)111 Project(B12015)College Students' Innovation and Entrepreneurship Project(201510058083)
文摘The different electrocatalytic reactors could be constructed for the electrocatalytic oxidation of 2,2,3,3-tetrafluoro-1-propanol(TFP) with two typical MnO_x/Ti electrodes, i.e.the electrocatalytic membrane reactor(ECMR) with the Ti membrane electrode and the electrocatalytic reactor(ECR) with the traditional Ti plate electrode.For the electro-oxidation of TFP, the conversion with membrane electrode(70.1%) in the ECMR was 3.3 and 1.7 times higher than that of the membrane electrode without permeate flow(40.8%) in the ECMR and the plate electrode(21.5%) in the ECR, respectively.Obviously, the pore structure of membrane and convection-enhanced mass transfer in the ECMR dramatically improved the catalytic activity towards the electro-oxidation of TFP.The specific surface area of porous electrode was 2.22 m^2·g^(-1).The surface area of plate electrode was 2.26 cm^2(1.13 cm^2× 2).In addition, the electrochemical results showed that the mass diffusion coefficient of the MnO_x/Ti membrane electrode(1.80 × 10^(-6) cm^2·s^(-1)) could be increased to 6.87 × 10^(-6) cm^2·s^(-1) at the certain flow rate with pump, confirming the lower resistance of mass transfer due to the convection-enhanced mass transfer during the operation of the ECMR.Hence, the porous structure and convection-enhanced mass transfer would improve the electrochemical property of the membrane electrode and the catalytic performance of the ECMR,which could give guideline for the design and application of the porous electrode and electrochemical reactor.
基金Thanks to the financial support from the Science and technology project of Shaanxi Province(2017ZDXM-GY-041).
文摘Regulation of the electronic structure and interface property becomes a major strategy in the preparation of electrocatalyst.This paper reports the synthesis of cerium(Ce)and sodium dodecyl benzene sulfonate(SDBS)comodified Ti/PbO_(2)electrodes(Ti/PbO2CeSDBS).Ce and SDBS could greatly change the electronic structure and interface property of PbO2.Ti/PbO_(2)CeSDBS exhibited excellent electrocatalytic activity and stability in Rhodamine B(RhB)electrocatalytic oxidation reaction.The improved electrocatalytic activity associates with the synergistic effect of electronic and interface factors.In the electrochemical degradation of RhB,the removal efficiencies of RhB and COD are about 0.880 and 0.694 respectively after the electrolysis of 220 min with Ti/PbO_(2)Ce4SDBS40,which are higher than the contrast Ti/PbO_(2)electrodes.In the meantime,the accelerated lifetime of Ti/PbO_(2)Ce4SDBS40 is more than 6.2 times than that of Ti/PbO_(2).
基金financially supported by the National Natural Science Foundation of China (No. 51364024 and 51404124)Gansu Province Department of Education Fund (No. 2013A-029)the Foundation of State Key Laboratory of Gansu Advanced Nonferrous Metal Materials (Nos. SKL 1316 and SKL 1314)
文摘Ti/SnO2–Sb electrode has a good effect on the removal of organic pollutants. But its short service life limits its large-scale application in industry. Electro-catalytic degradation performances and service life of the electrode can be significantly improved by doping rare earth(RE) ions into the oxide coating of Ti/SnO2–Sb electrode. Ti/SnO2–Sb electrodes doped with different RE elements(Ce, Dy, La, and Eu) were prepared by the thermal decomposition method at 550 ℃. Electro-catalytic degradation performances of electrodes doped with different RE elements were evaluated by linear sweep voltammetry(LSV) and Tafel curves. During the electrolysis,the conversion of p-nitrophenol was performed with these electrodes as anodes under galvanostatic control. The structures and morphologies of the surface coating of the electrodes were characterized by scanning electron microscope(SEM). The results demonstrate that the electro-catalytic degradation performances of Ti/SnO2–Sb electrodes are improved to different levels by doping different RE ions. Improved Ti/SnO2–Sb electrodes by the introduction of different RE have higher oxygen evolution potential, better electro-catalysis ability, better coverage,and longer electrode life.
文摘The electrochemical treatment of COD contained in biologically pretreated coking wastewater treated by a three-dimensional electrode system with modified coke as the particle electrode was investigated. And the electrochemical perromance of the coke modified with various active components was studied. The results show that the coke modified with Fe(NO3)2 has the lowest energy consumption and higher COD removal rate under the same condition, and the modified coke has better surface characteristics for the purpose of this study. In addition, the kinetic constant was also calculated. The study shows that the three-dimensional electrode system with Fe (NO3)z-modified coke can give a satisfactory solution in biologically pretreated coking wastewater.
文摘The Ti base PbO 2 electrode prepared by electrodeposition of PbO 2 on the surface of titanium was used for electro catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition of PbO 2 at a higher current density for a short time, then followed by a lower current density can get a compact and combinative PbO 2 layer. The properties of a Ti/PbO 2 electrode with an interlayer of oxide are the best. When this kind of electrode is used to treat phenol containing waste water, the phenol removal rate is higher and the slot voltage is lower. In addition, by using the phenol removal rate as an index, the influences of electrolysis current density, mass transfer condition and pH were studied and the optimal condition was confirmed.
文摘The electrochemical behaviour of Ti(Ⅲ) and Ti(Ⅱ) in LiCl-KCl eutectic system has been studied by cyclic voltammetry and chronoamperometry.The cathodic reduction of Ti(Ⅲ) and Ti(Ⅱ) has been found to be stepwise:Ti(Ⅲ)+e=Ti(Ⅱ),Ti(Ⅱ)+2e =Ti.The reductions are diffusion controlled.When an equilibrium between Ti subchlorides and excess metallic Ti was estab- lished by reaction 2TiCl_3+Ti=3TiCl_2 in LiCl-KCl melt at 475℃,then the average valence of Ti is less than 2.1.In this system the diffusion coefficient for Ti(Ⅱ) ion was calculated as D=2.5×10^(-5)cm^2·s^(-1).The chronoamperometric studies showed that the initial nucleation stage and growth of nuclei were observed when Ti ions were electrodeposited on low carbon steel substrate. The investigation of nucleation of metal may provide the method for obtaining smooth,coherent and adherent deposits of titanium.