A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-Ir...A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-IrO_2-SnO_2/Ti anodes. The influences of electric current density, inlet liquid circulation flowrate, high gravity factor, sodium chloride concentration,and initial pH value on phenol degradation efficiency were investigated, with the optimal operating conditions determined. The results showed that under the optimal operating conditions covering a current density of 35 mA/cm^2, an inlet liquid circulation flowrate of 48 L/h, a high gravity factor of 20, a sodium chloride concentration of 8.5 g/L, an initial pH value of 6.5, a reaction time of 100 min, and an initial phenol concentration of 500 mg/L, the efficiency for removal of phenol reached 99.7%, which was improved by 10.4% as compared to that achieved in the normal gravity field. The tendency regarding the change in efficiency for removal of phenol, total organic carbon(TOC), and chemical oxygen demand(COD)over time was studied. The intermediates and degradation pathway of phenol were deduced by high performance liquid chromatography(HPLC).展开更多
As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limi...As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li4Ti5O12nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li4Ti5O12(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li4Ti5O12 anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ahg^-1 at 500 mAg^-1(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 mAhg^-1 at4000 mAg^-1),an outstanding cycling stability(reversible specific capacity of 883 mAhg^-1 after 150 cycles)and a low volume expansion rate(only 3.3% after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li4Ti5O12nanocomposite anode materials for practical lithium-ion batteries.展开更多
Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti ...Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti alloys and to produce TiO_(2) films with enhanced bone formation abilities.Scanning electron microscopy coupled with energy dispersive spectroscopy(SEM−EDS)and atomic force microscopy(AFM)were applied to investigate the morphological,chemical,and surface topography of the prepared alloys and to confirm the growth of hydroxyapatite(HA)on their surfaces.Results disclosed that the surface roughness of TiO_(2) films formed on Ti−6Al−7Nb alloys was superior to that of Ti−6Al−4V alloys.Ti−6Al−7Nb alloy anodized at 80 V had the highest yields of HA after immersion in simulated body fluid with enhanced HA surface coverage.The developed HA layer had a mean thickness of(128.38±18.13)μm,suggesting its potential use as an orthopedic implantable material due to its promising bone integration and,hence,remarkable stability inside the human body.展开更多
In the work,we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate(NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2(designed as NTO...In the work,we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate(NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2(designed as NTO/Ti3C2).Benefiting from the inherent structural and componential superiorities,the resulted NTO/Ti3C2 composite exhibits long-duration cycling stability and superior rate behaviors when evaluated as a hybrid anode for advanced SIBs,which delivers a reversible and stable capacity of^82 mAh/g even after 1900 cycles at 2000 mA/g for SIBs.展开更多
Metatitanic acid was synthesized from industrial titanyl sulfate solution via controlling pH during hydrolyzing process. Inductively coupled plasma(ICP)analysis confirmed that a little Fe,Mg and Ca were deposited into...Metatitanic acid was synthesized from industrial titanyl sulfate solution via controlling pH during hydrolyzing process. Inductively coupled plasma(ICP)analysis confirmed that a little Fe,Mg and Ca were deposited into precursor TiO2·H2O.Spinel Li4Ti5O12 was prepared by sintering amorphous mixture at 800℃for 16 h.The amorphous mixture was activated by ball-milling at room temperature,using the as-prepared TiO2·H2O and Li2CO3 as raw materials.The sample was characterized by X-ray diffractometry,scanning electron microscopy and electrochemical charge and discharge test.The results show that spinel Li4Ti5O12 is obtained,but it contains a few rutile TiO2 impurities.The sample has fine particles with size of around 50 nm and homogenous size distribution.At room temperature,the initial reversible specific capacity of the sample is 136.9,128.0,119.2 and 96.3 mA·h/g at 0.1C, 1C,2C and 5C,respectively,and the sample shows excellent cycling performance.展开更多
Li4Ti5O12/C composite materials were synthesized by two-step solid state reaction method with glucose, sucrose, and starch as carbon sources, respectively. The effects of carbon sources on the structure, morphology, a...Li4Ti5O12/C composite materials were synthesized by two-step solid state reaction method with glucose, sucrose, and starch as carbon sources, respectively. The effects of carbon sources on the structure, morphology, and electrochemical performance of Li4Ti5O12/C composite materials were investigated by SEM, XRD and electrochemical tests. The results indicate that carbon sources have almost no effect on the structure of Li4Ti5O12/C composite materials. The initial discharge capacities of the Li4Ti1O12/C composite materials are slightly lower than those of as-synthesized Li4Ti5O12. However, Li4Ti5O12/C composite materials show better electrochemical rate performance than the as-synthesized Li4Ti5O12. The capacity retention (79%) of the Li4Ti5O12/C composite materials with starch as carbon source, is higher than that of Li4Ti5O12/C composite materials with glucose and sucrose as carbon source at current rate of 2.0C.展开更多
The synthesis of Pd-Ag alloy nanowires in nanopores of porous anodic aluminum oxide (AAO) template by electrochemical deposition technique was reported. Pd-Ag alloy nanowires with 16%-25% Ag content are expected to ...The synthesis of Pd-Ag alloy nanowires in nanopores of porous anodic aluminum oxide (AAO) template by electrochemical deposition technique was reported. Pd-Ag alloy nanowires with 16%-25% Ag content are expected to serve as candidates of useful nanomaterials for the hydrogen sensors. Scanning electron microscopy (SEM) and energy dispersed X-ray spectroscopy (EDX) were employed to characterize the morphologies and compositions of the Pd-Ag nanowires. X-ray diffraction (XRD) was used to characterize the phase properties of the Pd-Ag nanowires. Pd-Ag alloy nanowire arrays with 17.28%-23.76% Ag content have been successfully fabricated by applying potentials ranging from -0.8 to -1.0 V (vs SCE). The sizes of the alloy nanowires are in agreement with the diameter of AAO nanopores. The underpotential deposition of Ag+ on Pd and Au plays an important role in producing an exceptionally high Ag content in the alloy. Alloy compositions can still be controlled by adjusting the ion concentration ratio of Pd^2+ and Ag+ and the electrodeposition processes. XRD shows that nanowires obtained are in the form of alloy of Pd and Ag.展开更多
The passivation behavior of insoluble anode from 8 kinds of Ti-base alloys in the 40% H_2SO_4(aq)and1 mol/L MnSO_4 -0.75 mol/L H_2SO_4 was studied respectively by analyzing potential-controlling stationarypolarizatio...The passivation behavior of insoluble anode from 8 kinds of Ti-base alloys in the 40% H_2SO_4(aq)and1 mol/L MnSO_4 -0.75 mol/L H_2SO_4 was studied respectively by analyzing potential-controlling stationarypolarization curve. Results indicate that the passivation curves of Ti-base alloy insoluble anode are analogousto that of pare titanium anodc in spite of the critical passivation current density i_b for the former is somewhathigher and passivation retaining current density i_p increases significantly, the passivation region diminishes.the passivation becomes not so clear. Ou the basis of electrochemical and X-ray diffraction data the passivationmechanism of pure titanium anode in EMD industry is discussed and authors suggest that the Ti- base alloyanode is better than the pure titanium anode.展开更多
Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe...Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.展开更多
基金financially supported by the Nature Science Foundation of China (Grant No.U1610106)the Nature Science Foundation of China (Grant No.21703208)
文摘A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-IrO_2-SnO_2/Ti anodes. The influences of electric current density, inlet liquid circulation flowrate, high gravity factor, sodium chloride concentration,and initial pH value on phenol degradation efficiency were investigated, with the optimal operating conditions determined. The results showed that under the optimal operating conditions covering a current density of 35 mA/cm^2, an inlet liquid circulation flowrate of 48 L/h, a high gravity factor of 20, a sodium chloride concentration of 8.5 g/L, an initial pH value of 6.5, a reaction time of 100 min, and an initial phenol concentration of 500 mg/L, the efficiency for removal of phenol reached 99.7%, which was improved by 10.4% as compared to that achieved in the normal gravity field. The tendency regarding the change in efficiency for removal of phenol, total organic carbon(TOC), and chemical oxygen demand(COD)over time was studied. The intermediates and degradation pathway of phenol were deduced by high performance liquid chromatography(HPLC).
基金the financial support from the National Natural Science Foundation of China (51876052, 51676128)
文摘As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li4Ti5O12nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li4Ti5O12(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li4Ti5O12 anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ahg^-1 at 500 mAg^-1(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 mAhg^-1 at4000 mAg^-1),an outstanding cycling stability(reversible specific capacity of 883 mAhg^-1 after 150 cycles)and a low volume expansion rate(only 3.3% after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li4Ti5O12nanocomposite anode materials for practical lithium-ion batteries.
基金financial support from the Science and Technology Development Fund of Egypt (No.5540)。
文摘Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti alloys and to produce TiO_(2) films with enhanced bone formation abilities.Scanning electron microscopy coupled with energy dispersive spectroscopy(SEM−EDS)and atomic force microscopy(AFM)were applied to investigate the morphological,chemical,and surface topography of the prepared alloys and to confirm the growth of hydroxyapatite(HA)on their surfaces.Results disclosed that the surface roughness of TiO_(2) films formed on Ti−6Al−7Nb alloys was superior to that of Ti−6Al−4V alloys.Ti−6Al−7Nb alloy anodized at 80 V had the highest yields of HA after immersion in simulated body fluid with enhanced HA surface coverage.The developed HA layer had a mean thickness of(128.38±18.13)μm,suggesting its potential use as an orthopedic implantable material due to its promising bone integration and,hence,remarkable stability inside the human body.
基金financial support from National Natural Science Foundation of China(Nos.51772127and 51772131)Taishan Scholars(No.ts201712050)+1 种基金Major Program of Shandong Province Natural Science Foundation(No.ZR2018ZB0317)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong。
文摘In the work,we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate(NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2(designed as NTO/Ti3C2).Benefiting from the inherent structural and componential superiorities,the resulted NTO/Ti3C2 composite exhibits long-duration cycling stability and superior rate behaviors when evaluated as a hybrid anode for advanced SIBs,which delivers a reversible and stable capacity of^82 mAh/g even after 1900 cycles at 2000 mA/g for SIBs.
基金Project(2007CB613607)supported by the National Basic Research Program of China
文摘Metatitanic acid was synthesized from industrial titanyl sulfate solution via controlling pH during hydrolyzing process. Inductively coupled plasma(ICP)analysis confirmed that a little Fe,Mg and Ca were deposited into precursor TiO2·H2O.Spinel Li4Ti5O12 was prepared by sintering amorphous mixture at 800℃for 16 h.The amorphous mixture was activated by ball-milling at room temperature,using the as-prepared TiO2·H2O and Li2CO3 as raw materials.The sample was characterized by X-ray diffractometry,scanning electron microscopy and electrochemical charge and discharge test.The results show that spinel Li4Ti5O12 is obtained,but it contains a few rutile TiO2 impurities.The sample has fine particles with size of around 50 nm and homogenous size distribution.At room temperature,the initial reversible specific capacity of the sample is 136.9,128.0,119.2 and 96.3 mA·h/g at 0.1C, 1C,2C and 5C,respectively,and the sample shows excellent cycling performance.
基金Project(2007BAE12B01) supported by the National Key Technology Research and Development Program of China
文摘Li4Ti5O12/C composite materials were synthesized by two-step solid state reaction method with glucose, sucrose, and starch as carbon sources, respectively. The effects of carbon sources on the structure, morphology, and electrochemical performance of Li4Ti5O12/C composite materials were investigated by SEM, XRD and electrochemical tests. The results indicate that carbon sources have almost no effect on the structure of Li4Ti5O12/C composite materials. The initial discharge capacities of the Li4Ti1O12/C composite materials are slightly lower than those of as-synthesized Li4Ti5O12. However, Li4Ti5O12/C composite materials show better electrochemical rate performance than the as-synthesized Li4Ti5O12. The capacity retention (79%) of the Li4Ti5O12/C composite materials with starch as carbon source, is higher than that of Li4Ti5O12/C composite materials with glucose and sucrose as carbon source at current rate of 2.0C.
基金supported by the National Natural Science Foundation of China under Grant No.20373015the Hunan Education Office under Grant No.04C033.
文摘The synthesis of Pd-Ag alloy nanowires in nanopores of porous anodic aluminum oxide (AAO) template by electrochemical deposition technique was reported. Pd-Ag alloy nanowires with 16%-25% Ag content are expected to serve as candidates of useful nanomaterials for the hydrogen sensors. Scanning electron microscopy (SEM) and energy dispersed X-ray spectroscopy (EDX) were employed to characterize the morphologies and compositions of the Pd-Ag nanowires. X-ray diffraction (XRD) was used to characterize the phase properties of the Pd-Ag nanowires. Pd-Ag alloy nanowire arrays with 17.28%-23.76% Ag content have been successfully fabricated by applying potentials ranging from -0.8 to -1.0 V (vs SCE). The sizes of the alloy nanowires are in agreement with the diameter of AAO nanopores. The underpotential deposition of Ag+ on Pd and Au plays an important role in producing an exceptionally high Ag content in the alloy. Alloy compositions can still be controlled by adjusting the ion concentration ratio of Pd^2+ and Ag+ and the electrodeposition processes. XRD shows that nanowires obtained are in the form of alloy of Pd and Ag.
文摘The passivation behavior of insoluble anode from 8 kinds of Ti-base alloys in the 40% H_2SO_4(aq)and1 mol/L MnSO_4 -0.75 mol/L H_2SO_4 was studied respectively by analyzing potential-controlling stationarypolarization curve. Results indicate that the passivation curves of Ti-base alloy insoluble anode are analogousto that of pare titanium anodc in spite of the critical passivation current density i_b for the former is somewhathigher and passivation retaining current density i_p increases significantly, the passivation region diminishes.the passivation becomes not so clear. Ou the basis of electrochemical and X-ray diffraction data the passivationmechanism of pure titanium anode in EMD industry is discussed and authors suggest that the Ti- base alloyanode is better than the pure titanium anode.
基金Project(1254G024)supported by the Young Core Instructor Foundation from Heilongjiang Educational Committee,ChinaProject(2012RFQXS113)supported by Scientific and Technological Innovation Talents of Harbin,China
文摘Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.