The successful control of hydrocarbon and CO emissions from low-temperature diesel exhausts requires the use of highly active co-oxidation catalysts.In this study,Sn was used to enhance the catalytic performance of Pd...The successful control of hydrocarbon and CO emissions from low-temperature diesel exhausts requires the use of highly active co-oxidation catalysts.In this study,Sn was used to enhance the catalytic performance of Pd/CeO_(2)in CO and C_(3)H_(6)co-oxidation conditions.CeO_(2)with added stannum(Sn)was prepared as a support using the co-precipitation method,and Pd was loaded onto the support using the impregnation method.After Sn addition(the optimal Ce/Sn ratio is 0.75:0.25),the T_(50)values of CO and C_(3)H_(6)are reduced by 20 and 32℃,respectively.A series of characterization methods indicates that the addition of Sn to the support greatly enhances its lattice oxygen mobility and increases the proportion of PdO.During the co-oxidation process,stronger lattice oxygen mobility allows CO to react faster through the Mars-van Krevelen mechanism,weakening the competition with C_(3)H_(6)for O_(2).A higher PdO content enhances the C_(3)H_(6)oxidation capability.Moreover,CO can more readily reduce PdO than Pd^(2+)in solid solution with the support,which consequently further enhances co-oxidation activity.Therefore,the addition of Sn is a simple and effective strategy for enhancing the performance of Pd/CeO_(2)catalysts in CO and C_(3)H_(6)co-oxidation reactions.Furthermore,the promotional effect of CO achieved in this study contributes to a deeper understanding of the interactions that occur during the co-oxidation of C_(3)H_(6)and CO.展开更多
Formaldehyde(HCHO)is a significant indoor pollutant found in various sources and poses potential health risks to humans.Noble metal catalysts show efficient and stable catalytic activity for ambient-temperature HCHO o...Formaldehyde(HCHO)is a significant indoor pollutant found in various sources and poses potential health risks to humans.Noble metal catalysts show efficient and stable catalytic activity for ambient-temperature HCHO oxidation,yet suffer from low metal utilization.Efforts focus on designing catalysts with enhanced intrinsic activity and reduced noble metal loading.In this study,we developed a simple pretreatment method using ammonia solution on SiO_(2)carrier to enhance the activity of the Pd/SiO_(2)catalyst for HCHO oxidation.After the carrier was pretreated with an ammonia solution,a significant promoting effect was observed on the Pd/SiO_(2)(NH_(3)·H_(2)O)-R catalyst.It achieved almost complete oxidation of 150 ppmV of HCHO at 25℃,much better than the Pd/SiO_(2)-R(5%HCHO conversion rate).Multiple characterization results indicated that the ammonia solution pretreatment of the SiO_(2)carrier increased the surface defects,facilitating the anchoring of Pd nanoparticles and increasing their dispersion.The increase dispersion of Pd resulted in the generation of additional oxygen vacancies on the catalyst surfaces.The increased in oxygen vacancies on the catalyst was beneficial for enhancing the catalyst's ability to activate H_(2)O to form surface hydroxyl groups,thereby accelerating the catalytic oxidation process of HCHO.The reaction mechanism of HCHO on the Pd/SiO_(2)(NH_(3)·H_(2)O)-R catalyst mainly follows an efficient pathway:firstly,the HCHO being oxidized by surface active hydroxyl groups to formate;subsequently,the formate being oxidized by hydroxyl groups to H_(2)O and CO_(2).This study provides a promising strategy for designing high-performance noble metal catalysts for HCHO catalytic oxidation.展开更多
This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is fou...This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is found that the toluene complete conversion over Pd/7.5Ce-beta zeolite occurs at 190℃,with a minimal increase of 20℃even after sulfur poisoning.It is shown that Ce-doping markedly enhances sulfur tolerance besides catalytic activity.The underlying mechanism involves CeO_(2)sites capturing sulfur species,thus safeguarding active Pd species from sulfur poisoning.It can be observed that Pd0active sites,which are crucial in the catalytic high activity,are still present in the most severely poisoned catalyst.Furthermore,Ce-modified catalyst exhibits a more stable pore structure and increased acid strength after sulfur poisoning,all of which are beneficial to improving the sulfur tolerance.Consequently,Pd/Ce-beta zeolite is a promising solution for processing sulfur-containing volatile organic compounds,offering valuable insights for developing effective and sustainable catalysts for environmental remediation.展开更多
Highly dispersed noble metals are acknowledged for its pivotal role in influencing the efficiency of catalysts during the HCHO oxidation process.Interestingly,in this work,an innovative approach was employed to augmen...Highly dispersed noble metals are acknowledged for its pivotal role in influencing the efficiency of catalysts during the HCHO oxidation process.Interestingly,in this work,an innovative approach was employed to augmenting the stabilization of noble metals on irreducible carriers supported noble metal catalyst(Pd/SiO_(2))by adding alkali metal potassium(K).A formidable promotion effect was observed when the K doping to Pd/SiO_(2) catalysts.It achieves a conversion rate of 93%for 270 ppmV of HCHO to harmless CO_(2) and H_(2)O at a weight hourly space velocity(WHSV)of 300,000 mL/(g·hr)at 25℃.Multiple characterization results illustrated that a strong interaction between added K and Pd species was formed after K addition,which not only stabilized Pd species on the carrier surface but alsomarkedly enhanced its dispersal on the SiO_(2) carrier.The increasing Pd dispersion induced more oxygen vacancies on the surfaces of the Pd/SiO_(2) catalysts.The formation of these oxygen vacancies can be attributed to the phenomenon of hydrogen spillover,which also contributed to elevating the electron density on the Pd sites.Meanwhile,the oxygen vacancies favored the O_(2) activation to formmore reactive oxygen species participating in the HCHO oxidation reaction,thus improving the performance of Pd/SiO_(2) catalysts displayed for HCHO oxidation.This study provides a simple strategy to design high-performance irreducible carriers supported noble metal catalysts for HCHO catalytic oxidation.展开更多
基金Project supported by the National Key R&D Program of China(2022YFC3701804)the National Natural Science Foundation of China(52225004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23010201)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2022309)。
文摘The successful control of hydrocarbon and CO emissions from low-temperature diesel exhausts requires the use of highly active co-oxidation catalysts.In this study,Sn was used to enhance the catalytic performance of Pd/CeO_(2)in CO and C_(3)H_(6)co-oxidation conditions.CeO_(2)with added stannum(Sn)was prepared as a support using the co-precipitation method,and Pd was loaded onto the support using the impregnation method.After Sn addition(the optimal Ce/Sn ratio is 0.75:0.25),the T_(50)values of CO and C_(3)H_(6)are reduced by 20 and 32℃,respectively.A series of characterization methods indicates that the addition of Sn to the support greatly enhances its lattice oxygen mobility and increases the proportion of PdO.During the co-oxidation process,stronger lattice oxygen mobility allows CO to react faster through the Mars-van Krevelen mechanism,weakening the competition with C_(3)H_(6)for O_(2).A higher PdO content enhances the C_(3)H_(6)oxidation capability.Moreover,CO can more readily reduce PdO than Pd^(2+)in solid solution with the support,which consequently further enhances co-oxidation activity.Therefore,the addition of Sn is a simple and effective strategy for enhancing the performance of Pd/CeO_(2)catalysts in CO and C_(3)H_(6)co-oxidation reactions.Furthermore,the promotional effect of CO achieved in this study contributes to a deeper understanding of the interactions that occur during the co-oxidation of C_(3)H_(6)and CO.
基金supported by the Sanming University(No.23YG05)the Science Foundation of Fujian Province(No.2023J011027).
文摘Formaldehyde(HCHO)is a significant indoor pollutant found in various sources and poses potential health risks to humans.Noble metal catalysts show efficient and stable catalytic activity for ambient-temperature HCHO oxidation,yet suffer from low metal utilization.Efforts focus on designing catalysts with enhanced intrinsic activity and reduced noble metal loading.In this study,we developed a simple pretreatment method using ammonia solution on SiO_(2)carrier to enhance the activity of the Pd/SiO_(2)catalyst for HCHO oxidation.After the carrier was pretreated with an ammonia solution,a significant promoting effect was observed on the Pd/SiO_(2)(NH_(3)·H_(2)O)-R catalyst.It achieved almost complete oxidation of 150 ppmV of HCHO at 25℃,much better than the Pd/SiO_(2)-R(5%HCHO conversion rate).Multiple characterization results indicated that the ammonia solution pretreatment of the SiO_(2)carrier increased the surface defects,facilitating the anchoring of Pd nanoparticles and increasing their dispersion.The increase dispersion of Pd resulted in the generation of additional oxygen vacancies on the catalyst surfaces.The increased in oxygen vacancies on the catalyst was beneficial for enhancing the catalyst's ability to activate H_(2)O to form surface hydroxyl groups,thereby accelerating the catalytic oxidation process of HCHO.The reaction mechanism of HCHO on the Pd/SiO_(2)(NH_(3)·H_(2)O)-R catalyst mainly follows an efficient pathway:firstly,the HCHO being oxidized by surface active hydroxyl groups to formate;subsequently,the formate being oxidized by hydroxyl groups to H_(2)O and CO_(2).This study provides a promising strategy for designing high-performance noble metal catalysts for HCHO catalytic oxidation.
基金Project supported by Zhejiang Public Welfare Technology Research Project(LGG19B070003)the National Natural Science Foundation of China(21902069)。
文摘This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is found that the toluene complete conversion over Pd/7.5Ce-beta zeolite occurs at 190℃,with a minimal increase of 20℃even after sulfur poisoning.It is shown that Ce-doping markedly enhances sulfur tolerance besides catalytic activity.The underlying mechanism involves CeO_(2)sites capturing sulfur species,thus safeguarding active Pd species from sulfur poisoning.It can be observed that Pd0active sites,which are crucial in the catalytic high activity,are still present in the most severely poisoned catalyst.Furthermore,Ce-modified catalyst exhibits a more stable pore structure and increased acid strength after sulfur poisoning,all of which are beneficial to improving the sulfur tolerance.Consequently,Pd/Ce-beta zeolite is a promising solution for processing sulfur-containing volatile organic compounds,offering valuable insights for developing effective and sustainable catalysts for environmental remediation.
基金supported by the Youth Innovation Promotion Association,CAS(No.2020310)Sanming University(No.23YG05).
文摘Highly dispersed noble metals are acknowledged for its pivotal role in influencing the efficiency of catalysts during the HCHO oxidation process.Interestingly,in this work,an innovative approach was employed to augmenting the stabilization of noble metals on irreducible carriers supported noble metal catalyst(Pd/SiO_(2))by adding alkali metal potassium(K).A formidable promotion effect was observed when the K doping to Pd/SiO_(2) catalysts.It achieves a conversion rate of 93%for 270 ppmV of HCHO to harmless CO_(2) and H_(2)O at a weight hourly space velocity(WHSV)of 300,000 mL/(g·hr)at 25℃.Multiple characterization results illustrated that a strong interaction between added K and Pd species was formed after K addition,which not only stabilized Pd species on the carrier surface but alsomarkedly enhanced its dispersal on the SiO_(2) carrier.The increasing Pd dispersion induced more oxygen vacancies on the surfaces of the Pd/SiO_(2) catalysts.The formation of these oxygen vacancies can be attributed to the phenomenon of hydrogen spillover,which also contributed to elevating the electron density on the Pd sites.Meanwhile,the oxygen vacancies favored the O_(2) activation to formmore reactive oxygen species participating in the HCHO oxidation reaction,thus improving the performance of Pd/SiO_(2) catalysts displayed for HCHO oxidation.This study provides a simple strategy to design high-performance irreducible carriers supported noble metal catalysts for HCHO catalytic oxidation.