期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Highly dispersed Pd clusters/nanoparticles encapsulated in MOFs via in situ auto-reduction method for aqueous phenol hydrogenation 被引量:1
1
作者 Xiubing Huang Xiaoyu Li +3 位作者 Wei Xia Bin Hu Martin Muhler Baoxiang Peng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第14期167-175,共9页
In this work,a novel in situ auto-reduction strategy was developed to encapsulate uniformly dispersed Pd clusters/nanoparticles in MIL-125-NH_(2).It is demonstrated that the amino groups in MIL-125-NH_(2)can react wit... In this work,a novel in situ auto-reduction strategy was developed to encapsulate uniformly dispersed Pd clusters/nanoparticles in MIL-125-NH_(2).It is demonstrated that the amino groups in MIL-125-NH_(2)can react with formaldehyde to form novel reducing groups(-NH-CH_(2)OH),which can in situ auto-reduce the encapsulated Pd^(2+)ions to metallic Pd clusters/nanoparticles.As no additional reductants are required,the strategy limits the aggregation and migration of Pd clusters and the formation of large Pd nanoparticles via controlling the amount of Pd^(2+)precursor.When applied as catalysts in the hydrogenation of phenol in the aqueous phase,the obtained Pd(1.5)/MIL-125-NH-CH_(2)OH catalyst with highly dispersed Pd clusters/nanoparticles with the size of around 2 nm exhibited 100%of phenol conversion and 100%of cyclohexanone selectivity at 70℃ after 5 h,as well as remarkable reusability for at least five cycles due to the large MOF surface area,the highly dispersed Pd clusters/nanoparticles and their excellent stability within the MIL-125-NH-CH_(2)OH framework. 展开更多
关键词 pd clusters pd nanoparticles MIL-125-NH_(2) In situ auto-reduction Double solvent method Hydrogenation of phenol
原文传递
Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction
2
作者 Fenglin Wang Chengwei Kuang +6 位作者 Zhicheng Zheng Dan Wu Hao Wan Gen Chen Ning Zhang Xiaohe Liu Renzhi Ma 《Chinese Chemical Letters》 2025年第6期714-719,共6页
The sluggish reaction kinetics of the oxygen evolution reaction(OER)and methanol oxidation reaction(MOR)remain obstacles to the commercial promotion of water splitting and direct methanol fuel cells.Considering the vi... The sluggish reaction kinetics of the oxygen evolution reaction(OER)and methanol oxidation reaction(MOR)remain obstacles to the commercial promotion of water splitting and direct methanol fuel cells.Considering the vital role of noble metals in electrocatalytic activity,this work focuses on the rational synthesis of Ni-noble metal composite nanocatalysts for overcoming the drawbacks of high cost and susceptible oxidized surfaces of noble metals.The inherent catalytic activity is improved by the altered electronic structure and effective active sites of the catalyst induced by the size effect of noble metal clusters.In particular,a series of Ni-noble metal nanocomposites are successfully synthesized by partially introducing noble metal into Ni with porous interfacial defects derived from Ni-Al layered double hydroxide(LDH).The Ni_(10)Pd_(1)nanocomposite exhibits high OER catalytic activity with an overpotential of 0.279 V at 10 m A/cm^(2),surpassing Ni_(10)Ag_(1)and Ni_(10)Au_(1)counterparts.Furthermore,the average diameter of Pd clusters gradually increases from 5.57 nm to 44.44 nm with the increased proportion of doped Pd,leading to the passivation of catalytic activity due to the exacerbated surface oxidation of Pd in the form of Pd^(2+).After optimization,Ni_(10)Pd_(1)delivers significantly enhanced OER and MOR electroactivities and long-term stability compared to that of Ni_(2)Pd_(1),Ni_(1)Pd_(1)and Ni_(1)Pd_(2),which is conducive to the effective utilization of Pd and alleviation of surface oxidation. 展开更多
关键词 Size effect pd cluster Mass activity Oxygen evolution reaction Methanol oxidation reaction
原文传递
Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts 被引量:1
3
作者 Xianglin Pei Yi Deng +4 位作者 Bo Duan Ting-Shan Chan Jyh-Fu Lee Aiwen Lei Lina Zhang 《Nano Research》 SCIE EI CAS CSCD 2018年第6期3145-3153,共9页
For the first time, chitin microspheres woven from nanowires with multi-scale porous structures were used as an excellent support for a catalyst of ultra-small Pd clusters. The Pd species anchored on the precursor Pre... For the first time, chitin microspheres woven from nanowires with multi-scale porous structures were used as an excellent support for a catalyst of ultra-small Pd clusters. The Pd species anchored on the precursor Pre-Pd@chitin were 0.6 nm in average size, while the reduced catalyst Red-Pd@chitin featured ultra-small particles of 1.3 nm in average size. X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) demonstrated that the Pd catalyst in both oxidative and reductive states retained good dispersity and ultra-small clusters. The catalyst was tested for the hydrogenation of p-nitroanisole, exhibiting an excellent initial rate (13× that of commercial Pd/C) and excellent turnover frequency reaching 52,000 h^-1. Furthermore, the catalyst could be recycled and used more than 10 times with no decay of the catalytic activity, suggesting potential industrial applications. 展开更多
关键词 pd clusters chitin nanowires supported catalyst HYDROGENATION
原文传递
The regulating effect of doping Cu on the catalytic performance of CO oxidative coupling to DMO on Pd_(x)Cu_(y)/GDY:A DFT study
4
作者 Juan Zhao Min Han +3 位作者 Zhanhui Wang Lixia Ling Riguang Zhang Baojun Wang 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期742-754,共13页
Rely on the density functional theory(DFT)calculation,the catalytic performance of Pd_(x)Cu_(y)/GDY(x=1,2,3,4;x+y≤4)for CO oxidative coupling reaction was obtained.The Pdx/GDY(x=1,2,3,4)are not ideal catalyst for dim... Rely on the density functional theory(DFT)calculation,the catalytic performance of Pd_(x)Cu_(y)/GDY(x=1,2,3,4;x+y≤4)for CO oxidative coupling reaction was obtained.The Pdx/GDY(x=1,2,3,4)are not ideal catalyst for dimethyl oxalate(DMO)formation because byproduct dimethyl carbonate(DMC)is easily formed on Pd_(1)/GDY and Pd_(2)/GDY,and high activation energies are needed on Pd_(3)/GDY and Pd_(4)/GDY.Therefore the second metal Cu is doped to regulate the performance of Pdx/GDY(x=1,2,3,4).Doping Cu not only improve the activity of DMO formation,but more importantly,controlling the ratio of Cu:Pd can effectively regulate the selectivity of DMO.Thus taking into account the activity and selectivity of the reaction for the preparation of DMO by CO oxidative coupling,the Pd_(1)Cu_(1)/GDY and Pd_(1)Cu_(2)/GDY with the activation energies of 105.2 and 99.2 kJ mol^(-1)to generate DMO show excellent catalytic activity and high DMO selectivity,which are considered as good catalysts for CO oxidative coupling.The differential charge density analysis shows the decrease in the charge density of metal clusters is an important reason for improving the selectivity of the catalyst. 展开更多
关键词 GDY pd clusters Cu:pd ratio DMO formation Catalytic performance
在线阅读 下载PDF
Insight into ventilation air methane combustion of ultralow sub-nanometer palladium catalyst within the MFI zeolite
5
作者 Xueli Zhang Tao Zhu +3 位作者 Shuai Liu Baisheng Nie Bo Yuan Yiwei Han 《Journal of Environmental Sciences》 2025年第9期1-12,共12页
Methane’s complete catalytic oxidation process has been widely studied,but efficient catalytic oxidation of low-concentration methane(≤0.75%)remains a crucial problem in the coal chemical industry.How to prevent the... Methane’s complete catalytic oxidation process has been widely studied,but efficient catalytic oxidation of low-concentration methane(≤0.75%)remains a crucial problem in the coal chemical industry.How to prevent the sintering deactivation of the active component in Pd-based catalysts and achieve efficient and stable operation of sub-nanometer catalysts remains challenging.Here,we utilize the interaction between amine ligands and Pd nanoparticles to stabilize and encapsulate the Pd particles within the pores of a molecular sieve carrier,effectively promoting the high dispersion of Pd particles.By leveraging the low acidity,high hydrophobicity,and high hydrothermal stability of the zeolite carrier,the Pd@S-1 catalyst exhibits excellent activity and stability in the catalytic oxidation of methane at lowconcentrations.Finally,density functional theory is employed to investigate the reaction mechanism of low-concentration methane during the catalytic process.Encapsulating the active metal component in zeolite to improve catalytic activity and stability provides a theoretical basis and direction for preparing complete oxidation catalysts for low-concentration methane. 展开更多
关键词 Low-concentration methane Sub-nanometer catalysts pd cluster Silicalite-1 zeolite Catalytic mechanisms
原文传递
Rapid synthesis of Pd single‐atom/cluster as highly active catalysts for Suzuki coupling reactions 被引量:2
6
作者 Hehe Wei Xiaoyang Li +7 位作者 Bohan Deng Jialiang Lang Ya Huang Xingyu Hua Yida Qiao Binghui Ge Jun Ge Hui Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期1058-1065,共8页
Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annea... Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annealing process to stabilize nitrogen‐mesoporous carbon supported Pd single‐atom/cluster(Pd/NMC)material,which provided a catalyst with superior performance for Suzuki coupling reactions.In comparison with commercial palladium/carbon(Pd/C)catalysts,the Pd/NMC catalyst exhibited significantly boosted activity(100%selectivity and 95%yield)and excellent stability(almost no decay in activity after 10 reuse cycles)for the Suzuki coupling reactions of chlorobenzenes,together with superior yield and excellent selectivity in the fields of the board scope of the reactants.Moreover,our newly developed rapid annealing process of precursor solutions is applied as a generalized method to stabilize metal clusters(e.g.Pd,Pt,Ru),opening new possibilities in the construction of efficient highly dispersed metal atom and sub‐nanometer cluster catalysts with high performance. 展开更多
关键词 pd single‐atom/cluster catalyst Suzuki coupling reactions Solution rapid annealing Energy barrier High yield
在线阅读 下载PDF
Nitrogen-doped graphene supported Pd@PdO core- shell clusters for C-C coupling reactions 被引量:7
7
作者 Baojiang Jiang Sanzhao Song +6 位作者 Jianqiang Wang Ying Xie Wenyi Chu Hongfeng Li Hui Xu Chungui Tian Honggang Fu 《Nano Research》 SCIE EI CAS CSCD 2014年第9期1280-1290,共11页
The introduction of nitrogen significantly decreases the metal particle size and improves the performance of metal-based graphene-supported catalysts. In this work, the density functional theory is used to understand ... The introduction of nitrogen significantly decreases the metal particle size and improves the performance of metal-based graphene-supported catalysts. In this work, the density functional theory is used to understand the interaction between nitrogen-doped graphene and Pd@PdO clusters. Experiments show that small size Pd@PdO clusters (1-2 nm) can be grown uniformly on nitrogen-doped graphene sheets by a facile oxidation-reduction method. The nanoscale interaction relationship between nitrogen-doped graphene and Pd@PdO clusters is investigated through X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectra (XAS). The composite catalysts are applied in Suzuki-Miyaura reactions giving high yields and good structural stability. These results have potential impact in design and optimization of future high performance catalyst materials for cross coupling reactions. 展开更多
关键词 GRAPHENE NITROGEN-DOPED pd cluster catalyst Suzuki reaction
原文传递
Graphdiyne anchoring to construct highly dense palladium trimer active sites for the selective hydrogenation of acetylene 被引量:2
8
作者 Rongrong Li Yuxue Yue +9 位作者 Xianlang Chen Renqin Chang Jiaxin Zhang Bo Zhao Jieyu Zhang Di Cai Yihan Zhu Deman Han Jia Zhao Xiaonian Li 《Nano Research》 SCIE EI CSCD 2023年第5期6167-6177,共11页
Semi-hydrogenation of acetylene is of growing interest and popularity but subjects to a major challenge in selective hydrogenation to ethylene.Here,we report a strategy that uses graphdiyne(GDY)as a carrier to prepare... Semi-hydrogenation of acetylene is of growing interest and popularity but subjects to a major challenge in selective hydrogenation to ethylene.Here,we report a strategy that uses graphdiyne(GDY)as a carrier to prepare single-cluster catalysts(SCCs),which on average clusters composed of three atoms(denoted as Pd3 trimer)and applied it to the acetylene semihydrogenation in the presence of large amounts of ethylene.Based on experimental results and systematic quantum chemical research and computational screening,we found that there are multiple active Pd structures on GDY and the Pd3 trimer anchored on GDY is a specific and durable cluster with great potential for accurate and efficient heterogeneous catalysis.The synergetic effects between neighboring atoms in Pd trimer guarantee easy desorption of ethylene and the absence of unselective hydride species thereby preventing excessive hydrogenation to generate unwanted byproducts,which is a crucial mechanism for the excellent selectivity of the catalyst.This new method for precise synthesis Pd clusters provides accurate ways for designing selective hydrogenation catalysts at the atomic scale. 展开更多
关键词 pd cluster catalysts acetylene semi-hydrogenation pd trimer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部