用硅烷和钛酸酯偶联剂对 Ba Ti O3粉进行了表面处理 ,使用溶剂法制备了 PVDF/Ba Ti O3复合薄膜。通过疏水亲油实验定性地分析了硅烷和钛酸酯偶联剂对 Ba Ti O3粉的偶联作用可以改善 PVDF/Ba-Ti O3的界面结合 ,通过测定 PVDF/Ba Ti O3的...用硅烷和钛酸酯偶联剂对 Ba Ti O3粉进行了表面处理 ,使用溶剂法制备了 PVDF/Ba Ti O3复合薄膜。通过疏水亲油实验定性地分析了硅烷和钛酸酯偶联剂对 Ba Ti O3粉的偶联作用可以改善 PVDF/Ba-Ti O3的界面结合 ,通过测定 PVDF/Ba Ti O3的介电常数和介电损耗角正切值表征了复合材料的介电性能 ,PVDF/Ba Ti O3扫描电子显微镜 (SEM)的微观形态分析发现 ,经过偶联剂表面处理 ,Ba Ti O3粉在PVDF中的分散情况改善 。展开更多
In the field of roads,due to the effect of vehicle loads,piezoelectric materials under the road surface can convert mechanical vibration into electrical energy,which can be further used in road facilities such as traf...In the field of roads,due to the effect of vehicle loads,piezoelectric materials under the road surface can convert mechanical vibration into electrical energy,which can be further used in road facilities such as traffic signals and street lamps.The barium titanate/polyvinylidene fluoride(BaTiO_(3)/PVDF)composite,the most common hybrid ceramic-polymer system,was widely used in various fields because the composite combines the good dielectric property of ceramic materials with the good flexibility of PVDF material.Previous studies have found that conductive particles can further improve the dielectric and piezoelectric properties of other composites.However,few studies have investigated the effect of conductive carbon black on the dielectric and piezoelectric properties of BaTiO_(3)/PVDF composites.In this study,BaTiO_(3)/PVDF/conductive carbon black composites were prepared with various conductive carbon black contents based on the optimum ratio of BaTiO_(3)to PVDF.The effects of conductive carbon black content on the morphologies,thermal performance,conductivities,dielectric properties,and piezoelectric properties of the BaTiO_(3)/PVDF/conductive carbon black composites were then investigated.The addition of conductive carbon black greatly enhances the conductivities,dielectric properties,and piezoelectric properties of the BaTiO_(3)/PVDF/conductive carbon black composites,especially when the carbon black content is 0.8%by weight of PVDF.Additionally,the conductive carbon black does not have an obvious effect on the morphologies and thermal stabilities of BaTiO_(3)/PVDF/conductive carbon black composites.展开更多
Polymer nanocrystal composites were fabricated by embedding polyvinylidene fluoride (PVDF) with K0.5Na0.5NbO3 (KNN) nanocrystallites of different volume fraction using the hot-pressing technique.For comparison,PVDF-KN...Polymer nanocrystal composites were fabricated by embedding polyvinylidene fluoride (PVDF) with K0.5Na0.5NbO3 (KNN) nanocrystallites of different volume fraction using the hot-pressing technique.For comparison,PVDF-KNN microcrystal composites of the same compositions were also fabricated which facilitated the studies of the crystallite size (wide range) effect on the dielectric and piezoelectric properties.The structural,morphological,dielectric,and piezoelectric properties of these nano and micro crystal composites were investigated.The incorporation of KNN fillers in PVDF at both nanometer and micron scales above 10 vol% resulted in the formation of polar β-form of PVDF.The room temperature dielectric constant as high as 3273 at 100 Hz was obtained for the PVDF comprising 40 vol% KNN nanocrystallites due to dipole-dipole interactions (as the presence of β-PVDF is prominent),whereas it was only 236 for the PVDF containing the same amount (40 vol%) of micron-sized crystallites of KNN at the same frequency.Various theoretical models were employed to predict the dielectric constants of the PVDF-KNN nano and micro crystal composites.The PVDF comprising 70 vol% micron-sized crystallites of KNN exhibited a d33 value of 35 pC/N,while the nanocrystal composites of PVDF-KNN did not exhibit any piezoelectric response perhaps due to the unrelieved internal stress within each grain,besides the fact that they have less domain walls.展开更多
液态电解质锂离子电池因其潜在的安全性问题,发展新的固态电解质锂离子电池是目前所研究的热点。磷酸铝钛锂(Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3),LATP)是一种NASICON型陶瓷材料,由于其空气稳定性和较好的Li^(+)导电性而备受关注。然...液态电解质锂离子电池因其潜在的安全性问题,发展新的固态电解质锂离子电池是目前所研究的热点。磷酸铝钛锂(Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3),LATP)是一种NASICON型陶瓷材料,由于其空气稳定性和较好的Li^(+)导电性而备受关注。然而,为了达到良好的离子导电性并降低晶界阻抗,LATP需要950℃以上的高温来实现致密化,这对于大规模应用来说耗时且昂贵。本文使用简单的溶液浇铸法,通过将LATP嵌入共聚物PVDF-HFP(聚偏氟乙烯-六氟丙烯)基体,合成新的复合固态电解质膜。在此基础上,以磷酸铁锂(LiFePO_(4))为正极,使用PVDF-HFP/LATP复合固态电解质膜进行电池组装。在室温下,利用X射线衍射仪(X-ray diffractometer,XRD)、扫描电子显微镜(scanning electron microscope,SEM)对不同质量比的固态电解质膜进行物理特性研究,并进行相关电化学测试。结果表明,PVDF-HFP/LATP质量比为5∶1的复合固态电解质膜,其LATP的NASICON型晶体结构得到了很好的保持;制备的聚合物固态电解质膜具有阻燃性;组装的半电池在常温条件下锂离子迁移数达到0.70。全电池在20次充放电循环下,放电比容量保持率为85%。展开更多
Flexible self-powered electromechanical devices,such as piezoelectric nanogenerators(PENGs),which are used in wearable and implantable devices,are emerging as state-of-the-art clean energy sources.In this study,a scal...Flexible self-powered electromechanical devices,such as piezoelectric nanogenerators(PENGs),which are used in wearable and implantable devices,are emerging as state-of-the-art clean energy sources.In this study,a scalable supersonic spraying technique was used to prepare flexible piezocomposite films of polyvinylidene fluoride(PVDF)and hydrothermally synthesized ZnSnO_(3)(ZSO)cubes for PENGs.Raman spectra confirmed that the transformation of the α-phase of PVDF to its β-phase was induced by the shear stress generated between the ZSO particles and PVDF polymer during supersonic spraying.The op-timized sample comprising 0.43 g of ZSO cubes and 1 g of PVDF produced a maximum piezopotential of 41.5 V and a short-circuit current,I_(sc),of 52.5 μA.A maximum power density of 50.6 μW cm-2 was ob-tained at a loading resistance of 0.4 MΩ,which matched the impedance of the PENG.Long-term tapping and bending cycles of N_(tap)=4200 and N_(bend)=600 yielded piezopotentials of 40.5 and 1.7 V,respectively.In addition,electrical poling for 2 h increased the piezopotential to 52 V owing to the alignment of the ferroelectric dipoles in the PVDF.展开更多
Piezoelectric nanogenerators(PENGs)that can harvest mechanical energy from ambient environment have broad prospects for multi-functional applications.Here,multi-layered piezoelectric composites with a porous structure...Piezoelectric nanogenerators(PENGs)that can harvest mechanical energy from ambient environment have broad prospects for multi-functional applications.Here,multi-layered piezoelectric composites with a porous structure based on highly oriented Pb(Zr_(0.52)Ti_(0.48))O_(3)/PVDF(PZT/PVDF)electrospinning fibers are prepared via a laminating method to construct high-performance PENGs.PZT particles as piezoelectric reinforcing phases are embedded in PVDF fibers and facilitate the formation of polarβphase in PVDF.The multi-layered,porous structure effectively promotes the overall polarization and surface bound charge density,resulting in a highly efficient electromechanical conversion.The PENG based on 10 wt%PZT/PVDF composite fibers with a 220µm film thickness outputs an optimal voltage of 62.0 V and a power of 136.9μW,which are 3.4 and 6.5 times those of 10 wt%PZT/PVDF casting film-based PENG,respectively.Importantly,the PENG shows a high sensitivity of 12.4 V·N^(−1),presenting a significant advantage in comparison to PENGs with other porous structures.In addition,the composites show excellent flexibility with a Young’s modulus of 227.2 MPa and an elongation of 262.3%.This study shows a great potential application of piezoelectric fiber composites in flexible energy harvesting devices.展开更多
文摘用硅烷和钛酸酯偶联剂对 Ba Ti O3粉进行了表面处理 ,使用溶剂法制备了 PVDF/Ba Ti O3复合薄膜。通过疏水亲油实验定性地分析了硅烷和钛酸酯偶联剂对 Ba Ti O3粉的偶联作用可以改善 PVDF/Ba-Ti O3的界面结合 ,通过测定 PVDF/Ba Ti O3的介电常数和介电损耗角正切值表征了复合材料的介电性能 ,PVDF/Ba Ti O3扫描电子显微镜 (SEM)的微观形态分析发现 ,经过偶联剂表面处理 ,Ba Ti O3粉在PVDF中的分散情况改善 。
基金We are grateful for the financial supported by the National Natural Science Foundation of China(Grant No.52178408)the National Key R&D Program of China(Grant No.2018YFE0103800).
文摘In the field of roads,due to the effect of vehicle loads,piezoelectric materials under the road surface can convert mechanical vibration into electrical energy,which can be further used in road facilities such as traffic signals and street lamps.The barium titanate/polyvinylidene fluoride(BaTiO_(3)/PVDF)composite,the most common hybrid ceramic-polymer system,was widely used in various fields because the composite combines the good dielectric property of ceramic materials with the good flexibility of PVDF material.Previous studies have found that conductive particles can further improve the dielectric and piezoelectric properties of other composites.However,few studies have investigated the effect of conductive carbon black on the dielectric and piezoelectric properties of BaTiO_(3)/PVDF composites.In this study,BaTiO_(3)/PVDF/conductive carbon black composites were prepared with various conductive carbon black contents based on the optimum ratio of BaTiO_(3)to PVDF.The effects of conductive carbon black content on the morphologies,thermal performance,conductivities,dielectric properties,and piezoelectric properties of the BaTiO_(3)/PVDF/conductive carbon black composites were then investigated.The addition of conductive carbon black greatly enhances the conductivities,dielectric properties,and piezoelectric properties of the BaTiO_(3)/PVDF/conductive carbon black composites,especially when the carbon black content is 0.8%by weight of PVDF.Additionally,the conductive carbon black does not have an obvious effect on the morphologies and thermal stabilities of BaTiO_(3)/PVDF/conductive carbon black composites.
文摘Polymer nanocrystal composites were fabricated by embedding polyvinylidene fluoride (PVDF) with K0.5Na0.5NbO3 (KNN) nanocrystallites of different volume fraction using the hot-pressing technique.For comparison,PVDF-KNN microcrystal composites of the same compositions were also fabricated which facilitated the studies of the crystallite size (wide range) effect on the dielectric and piezoelectric properties.The structural,morphological,dielectric,and piezoelectric properties of these nano and micro crystal composites were investigated.The incorporation of KNN fillers in PVDF at both nanometer and micron scales above 10 vol% resulted in the formation of polar β-form of PVDF.The room temperature dielectric constant as high as 3273 at 100 Hz was obtained for the PVDF comprising 40 vol% KNN nanocrystallites due to dipole-dipole interactions (as the presence of β-PVDF is prominent),whereas it was only 236 for the PVDF containing the same amount (40 vol%) of micron-sized crystallites of KNN at the same frequency.Various theoretical models were employed to predict the dielectric constants of the PVDF-KNN nano and micro crystal composites.The PVDF comprising 70 vol% micron-sized crystallites of KNN exhibited a d33 value of 35 pC/N,while the nanocrystal composites of PVDF-KNN did not exhibit any piezoelectric response perhaps due to the unrelieved internal stress within each grain,besides the fact that they have less domain walls.
文摘液态电解质锂离子电池因其潜在的安全性问题,发展新的固态电解质锂离子电池是目前所研究的热点。磷酸铝钛锂(Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3),LATP)是一种NASICON型陶瓷材料,由于其空气稳定性和较好的Li^(+)导电性而备受关注。然而,为了达到良好的离子导电性并降低晶界阻抗,LATP需要950℃以上的高温来实现致密化,这对于大规模应用来说耗时且昂贵。本文使用简单的溶液浇铸法,通过将LATP嵌入共聚物PVDF-HFP(聚偏氟乙烯-六氟丙烯)基体,合成新的复合固态电解质膜。在此基础上,以磷酸铁锂(LiFePO_(4))为正极,使用PVDF-HFP/LATP复合固态电解质膜进行电池组装。在室温下,利用X射线衍射仪(X-ray diffractometer,XRD)、扫描电子显微镜(scanning electron microscope,SEM)对不同质量比的固态电解质膜进行物理特性研究,并进行相关电化学测试。结果表明,PVDF-HFP/LATP质量比为5∶1的复合固态电解质膜,其LATP的NASICON型晶体结构得到了很好的保持;制备的聚合物固态电解质膜具有阻燃性;组装的半电池在常温条件下锂离子迁移数达到0.70。全电池在20次充放电循环下,放电比容量保持率为85%。
基金National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(Nos.NRF-2020R1A5A1018153 and 2022M3J1A106422611)The authors acknowledge King Saud University,Riyadh,Saudi Arabia,for funding this work through Researchers Supporting Project number(No.RSP2023R30).
文摘Flexible self-powered electromechanical devices,such as piezoelectric nanogenerators(PENGs),which are used in wearable and implantable devices,are emerging as state-of-the-art clean energy sources.In this study,a scalable supersonic spraying technique was used to prepare flexible piezocomposite films of polyvinylidene fluoride(PVDF)and hydrothermally synthesized ZnSnO_(3)(ZSO)cubes for PENGs.Raman spectra confirmed that the transformation of the α-phase of PVDF to its β-phase was induced by the shear stress generated between the ZSO particles and PVDF polymer during supersonic spraying.The op-timized sample comprising 0.43 g of ZSO cubes and 1 g of PVDF produced a maximum piezopotential of 41.5 V and a short-circuit current,I_(sc),of 52.5 μA.A maximum power density of 50.6 μW cm-2 was ob-tained at a loading resistance of 0.4 MΩ,which matched the impedance of the PENG.Long-term tapping and bending cycles of N_(tap)=4200 and N_(bend)=600 yielded piezopotentials of 40.5 and 1.7 V,respectively.In addition,electrical poling for 2 h increased the piezopotential to 52 V owing to the alignment of the ferroelectric dipoles in the PVDF.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(No.51772267)the Key R&D Program of Zhejiang Province(No.2020C01004).
文摘Piezoelectric nanogenerators(PENGs)that can harvest mechanical energy from ambient environment have broad prospects for multi-functional applications.Here,multi-layered piezoelectric composites with a porous structure based on highly oriented Pb(Zr_(0.52)Ti_(0.48))O_(3)/PVDF(PZT/PVDF)electrospinning fibers are prepared via a laminating method to construct high-performance PENGs.PZT particles as piezoelectric reinforcing phases are embedded in PVDF fibers and facilitate the formation of polarβphase in PVDF.The multi-layered,porous structure effectively promotes the overall polarization and surface bound charge density,resulting in a highly efficient electromechanical conversion.The PENG based on 10 wt%PZT/PVDF composite fibers with a 220µm film thickness outputs an optimal voltage of 62.0 V and a power of 136.9μW,which are 3.4 and 6.5 times those of 10 wt%PZT/PVDF casting film-based PENG,respectively.Importantly,the PENG shows a high sensitivity of 12.4 V·N^(−1),presenting a significant advantage in comparison to PENGs with other porous structures.In addition,the composites show excellent flexibility with a Young’s modulus of 227.2 MPa and an elongation of 262.3%.This study shows a great potential application of piezoelectric fiber composites in flexible energy harvesting devices.